

"His Masłer's Voice"

SERVICE MANUAL

for

FIVE-VALVE DUAL-WAVE

VIBRATOR-OPERATED BATTERY RECEIVER

TABLE MODEL 268

CONSOLE MODEL 328
(Incorporating Chassis Type A557DM)

TECHNICAL SPECIFICATION

POWER SUPPLY:

6 volt 130 amp . hour Accumulator.

CONSUMPTION:

1 amp. at 6.0 Volts.
FREQUENCY RANGE:
Broadcast: $540 \mathrm{Kc} / \mathrm{s}$ to $1600 \mathrm{Kc} / \mathrm{s}$.
Short-Wave: 16.5 Metres to 51 Metres.
I.F. FREQUENCY:
$457.5 \mathrm{Kc} / \mathrm{s}$.
VALVE COMPLEMENT:
1C7G Converter
1M5G 1st IF. Amplifier
1K7G 2nd I.F. Amplifier,-Demod.,-AVC
1 K7G A.F. Amplifier
1L5G Power.

DIAL LAMPS (2):
6.3 voits, 0.15 to 0.3 amp .

LOUDSPEAKERS:
Model 268: 6in. Permagnetic
Model 328: 6in. Permagnetic
10 in . Permagnetic
Voice Coil Impedance at 400 c.p.s.
bin. Speaker: 3.7 ohms
10in. Speaker: 2.7 ohms.

DIMENSIONS:	Width	Height	Depth
Model 268:	19in.	$11 \frac{3}{4} \mathrm{in}$.	$10 \frac{1}{5} \mathrm{in}$.
Model 328:	32in.	$29 \frac{1}{2} \mathrm{in}$.	12 in.

WEIGHT:
Model 268
Model 328
Accumulators

Gross	Net
36 lbs.	29 lbs.
71 lbs	61 lbs.
56 lbs.	52 lbs.

CIRCUIT DESCRIPTION

These models incorporate a 5 -valve vibrator-operated superheterodyne receiver for broadcast and short-wave reception.

FREQUENCY CHANGER:

The aerial, on the broadcast band, is coupled to the signal frequency circuit by means of the irondust cored aerial transformer L1-L2. For short-wave reception, the short-wave derial transformer L.5-L6 is switched into circuit.

A pentagrid converter is employed as frequency changer. Fixed padding capacitors are used on both wave bands. A variable padding adjustment is provided on the broadcast band by means of an iron-dust bolt in the broadcast oscillator coil L3-L4.

1st I.F. AMPLIFIER

The converter valve is transformer coupled to a super-control pentode, V2, which functions as an I.F. amplifier. This valve is in turn transformer coupled to the 2nd I.F. amplifier vaive V3, which is a duo-diode-pentode. The I.F. transformers are of the permeability tuned type with fixed tuning condensers.

2nd I.F. AMPLIFIER,-DEMODULATOR,-AVC
The output of this valve is transformer coupled to the demodulator diode. The remaining diode is capacity coupled to the plate circuit and supplies AVC voitage to the 1st I.F. valve and the broadcast section of the converter. AVC diode delay voltage and also standing bias for this valve is obtained from the voltage drop across the filament of the 1st I.F. valve.

A.F. AMPLIFIER

The input of this valve may be switched to either the demodulator diode load, R12, or to external pick-up terminals. Tone Control is effected at this stage by means of switch S2, which gives bass or treble cut as required, by switching appropriate condensers. The output circuit of this valve is resistance-capacity coupled to the grid of the power pentode valve $V 5$.

POWER STAGE

The output of the power valve is coupled to the speaker by transformer T2. Negative feedback voltage is taken from the secondary of the transformer and led into the volume control tap through a resistor. This arrangement provides negative leedback over the whole of the audio feed system. By advancing the volume control setting for higher gain the feedback factor is reduced. A phasing network comprising C33, R18 is connected across the transiormer primary.

In Model 328, two speakers, each having different characteristics, are connected to appropriate taps on the output transformer secondary. This arrangement ensures that the output valve is working into its correct load, and, at the same time, different proportions of power are fed to each speaker.

NOTE: The speakers are connected to the chassis by means of polarised 2 -pin plugs; it is
important that the large and small speakers be plugged into their correct sockets, i.e., "large" and "small," respectively.

When servicing has been carried out on a speaker, it is necessary to make sure that the speaker cones are correctly phased so that both cones move in the same direction, otherwise lack of bass response will be experienced. This may be taken care of by ensuring that the voice coil connections of a serviced speaker are correctly reconnected to the polarised plug.

HIGH TENSION SUPPLY

High tension voltage is obtained by means of a synchronous vibrator and associated transformer and filters, the whole being incorporated on a subchassis which is shock-mounted on the main receiver chassis. The vibrator cartridge is readily accessible by removing the rubber-lined metal cover enclosing it. The vibrator input circuit is protected by a 10 amp. fuse in the positive side of the circuit. A double-pole single-throw switch - combined with the Volume Control-controls the vibrator and valve filament circuits.

DISMANTLING

MODEL 268

1. Disconnect battery leads.
2. Remove control knobs.
3. Disconnect dial lamp switch plug from chassis.
4. Unscrew two chassis holding screws.
5. Withdraw chassis.

MODEL 328

1. Disconnect battery leads.
2. Remove control knobs.
3. Disconnect speaker and dial lamp switch plugs from chassis.
4. Unscrew two chassis fixing nuts and withdraw bolts.
5. Withdraw chassis.

WIRE TO PASS UNDER NUT

 AT REAR OF SCREW

2 COMPLETE TURNS.

- VOLTAGE TABLE-

- - VOLTACES AND CURRENTS ARE WITH THE RECEIVER OPERATING WITH BATTERY TERMINAL VOLTACE OF 6.O VOLTS, AND TUNED TO A POINT OF NO RECEPTION ON THE BROADCAST BAND. - - VOLTACE READINGS TAKEN WITH METER RESISTANCE OF 1,000 OHMS PER VOLT.
- VOLTACE AND CURRENT READINCS WITHIN $\pm 15 \%$.
- RESISTANCE READINGS ARE APPROXIMATE.

VOLTS TO CHASSIS	CURRENT MA.	$\begin{gathered} \text { RESISTANCE } \\ \text { TO } \\ \text { CHASSIS } \end{gathered}$	VALVE ELECTRODE	```BOTTOM VIEW OF VALVE SOCKET```	valve ELECTRODE	$\begin{aligned} & \text { VOLTS } \\ & \text { TO } \\ & \text { CHASSIS } \end{aligned}$	CURRENT MA.	$\begin{gathered} \text { RESISTANCE } \\ \text { TO } \\ \text { CHASSIS } \end{gathered}$
VI								
				\square	GRIO	-	-	$2 \cdot 1 \mathrm{M} \Omega$
30	$1 \cdot 5$	$0.1 \mathrm{M} \Omega$	SCREEN GRIO		OSC CRID	-	-	$50 \mathrm{~K} \Omega$
.130	0.7	INFIN.	PLATE		OSC. ANOOE	110	$2 \cdot 0$	INFIN.
1.95	120	-	FILAMENT +		FILAMENT -	NIL	-	NIL
			NO CONN.		NO CONN			
$V 2$ IM5-G IST I F. AMPLIFIER								
				--	GRID	-	- -	$2 M \Omega$
63	0.78	INFIN	SCREEN GRID	-	NO CONN			
135	$2 \cdot 5$	INFIN	PLATE	$\rightarrow 0$				
$1 \cdot 95$	120	-	FILAMENT +	+	FILAMENT -	NIL	-	NIL
			NO CONN.		NO CONN.			
$V 3$				1K7-G 2ND I.F. AMPLIFIER - DEMODUL ATOR - A.V.C				
				-	GRID	\longrightarrow	-	15Ω
-	-	$1 M \Omega$	DIODE (AV.C)	\bigcirc	DIODE (DET.)	-	\longrightarrow	$0 \cdot 3 \mathrm{M} \Omega$
135	$0 \cdot 5$	INFIN	PLATE	$0 \rightarrow$	SCREEN CRID	63	$0 \cdot 17$	INFIN.
$3 \cdot 90$	120	-	FILAMENT +	(0)	FILAMENT -	-	-	-
			NO CONN		NO CONN.			
$\vee 4$				AUDIO AMPLIFIER				
				--	CRID	-	-	$1 \mathrm{M} \Omega *$
NIL	-	NIL	DIODE	-	DIODE	NIL	-	NIL
70	0.15	INFIN.	plate		SCREEN CRID	15	0.1	INFIN
$3 \cdot 90$	120	$\underline{\square}$	FILAMENT+	+	FILAMENT -	-	-	$\underline{\square}$
			NO CONN.		NO CONN			
$\checkmark 5$				OUTPUT AMPLIFIER				
135	$1 \cdot 3$	INFIN	SCREEN CRID		CRID	-	-	$1 \mathrm{M} \Omega$
132	$6 \cdot 8$	INFIN	PLATE	\bigcirc				
$5 \cdot 85$	240	-	FILAMENT +		FIL AMENT -	—....	$\underline{\square}$	$\underline{\square}$
			NO CONN.	-	NO CONN.			

REMARKS:-

H.T. VOLTS	$=35.0 \mathrm{VOLTS}$
H.T. CURRENT	$=5.5 \mathrm{MA} .(\mathrm{S} / \mathrm{W} 20.0 \mathrm{MA)}$.
TOTAL FILAMENT VOLTACE	$=5.85 \mathrm{VOLTS}$.
TOTAL FILAMENT CURRENT	$=0.24 \mathrm{AMP}$.
TOTAL BATTERY DRAIN	$=1.0 \mathrm{AMP}$.
VOLUME CONTROL FULLY CLOCKWISE.	

PARTS LIST

REF.	PART No.	DESCRIPTION	REF.	PART No.	description	REF.	PART No.	description
	RESISTORS		CONDENSERS			MISCELLANEOUS		
R1	H2X	50,000 ohm $\frac{1}{2}$ watt $\pm 10 \%$	C1	D0243P	$100 \mathrm{mmF} . \pm 10 \%$	VC1, VC2	C0159A	2 Gang Condenser
R2	J2X	100,000 ohm $\frac{1}{2}$ watt $\pm 10 \%$	C2	D0243BU	$3 \mathrm{mmF} . \pm 1 \mathrm{mmF}$.	VR1, S3	D2350	1 Megohm Potentiometer
R3	J3X	100,000 ohm $1 \mathrm{watt} \pm 10 \%$	C3	C0013M	0.05 mF .200 V .			(Tapped at 25,000 ohm)
R4	H3X	50,000 ohm 1 watt $\pm 10 \%$	C4	D0243Q	$50 \mathrm{mmF} . \pm 10 \%$			Incorp. Mains Switch
R5	F3X	10,000 ohm 1 watt $\pm 10 \%$	C5	D0243CQ	$4000 \mathrm{mmF} . \pm 100 \mathrm{mmF}$.	S1	D2346	6-Pole 3-Position Switch
R6	$\vee 3 \mathrm{X}$	20,000 ohm 1 watt $\pm 10 \%$	C6	D0243AM	$400 \mathrm{mmF} . \pm 5 \mathrm{mmF}$.	52	D2424A	2-Pole 4-Position Switch
R7	X2X	5,000 ohm $\frac{1}{2}$ watt $\pm 10 \%$	C7	C0013Q	0.1 mF .200 V .	S4	D1361B	Push-Button Switch
R8	P2X	1 Megohm $\frac{1}{2}$ watt $\pm 10 \%$	C8	C0013N	0.01 mF .600 V .	IFT. 1	D2417	1st I.F. Transformer
R9	AN3X	75,000 ohm 1 watt $\pm 10 \%$	C9	C00131	0.02 mF .400 V .	IFT. 2	D2417	2nd I.F. Transformer
R10	P2X	1 Megohm $\frac{1}{2}$ watt $\pm 10 \%$	C10	C0014AZ	$8 \mathrm{mF} .350 \mathrm{P} . \mathrm{V}$.	IFT. 3	D2418	3rd I.F. Transformer
R11	H 2 X	50,000 ohm $\frac{1}{2}$ watt $\pm 10 \%$	C11	C0014BA	16 mF .350 P.V.	T1	D2423	Output Transformer
R12	N2X	250,000 ohm $\frac{1}{2}$ watt $\pm 10 \%$	C12	D4405W	$100 \mathrm{mmF} . \pm 5 \%$	T2	D2317	Vibrator Transformer
R13	J2X	100,000 ohm $\frac{1}{2}$ watt $\pm 10 \%$	C13	C0013M	0.05 mF .200 V .	CK. 1	D5624	L.T. R.F. Choke
R14	Q3X	1.5 Megohm 1 watt $\pm 10 \%$,	C14	C0013M	0.05 mF .200 V .	CK. 2	D5623	H.T. R.F. Choke
R15	K3X	150,000 ohm 1 watt $\pm 10 \%$	C15	D4405W	$100 \mathrm{mmF} . \pm 5^{\prime} \mathrm{i}$	CK. 3	D1438	L.T. R.F. Choke
R16	P2X	1 Megohm $\frac{1}{2}$ watt $\pm 10^{\circ} \mathrm{c}$	C16	C0013L	0.5 mF .200 V .	CK. 4	D2228	H.T. Filter Choke
R17	AN2X	75,000 ohm $\frac{1}{2}$ watt $\pm 10^{\prime}$ \%	C17	C0013Q	0.1 mF .200 V .	CK. 5	D1452	L.T. Filter Choke
R18	D2X	1,000 ohm $\frac{1}{2}$ watt $\pm 10^{\prime}$ c	C18	D4405W	$100 \mathrm{mmF} \pm 5 \%$	L1. L2	D1614D 2	B C Aerial Coil
			C19	D4405 W	$100 \mathrm{mmF} \pm 5 \%$	L3, L4	D2224	B C Osc. Coil
			C20	D0243Q	$50 \mathrm{mmF} . \pm 10^{\prime}$	L5, L6	D2321/1	S W Aerial oil
			C21	D4405AC	$200 \mathrm{mmF} . \pm 5^{\prime} \mathrm{c}$	L7, L8	D2320	S W Osc. Coil
			C22	D0243P	$100 \mathrm{mmF} . \pm 10 \%$	TC. 1	D2395	Trimmer Condenser
			C23	D0243P	$100 \mathrm{mmF} . \pm 10 \%$	TC. 2	D2395	Trimmer Condenser
			C24	D4405W	$100 \mathrm{mmF} \pm 5 \%$	TC. 3	D2395	Trimmer Condenser
			C25	D0243H	$0.002 \mathrm{mF} . \pm 10 \%$	IC. 4	D2395	Trimmer Condenser
			C26	D0243L	$500 \mathrm{mmF} . \pm 10 \%$			Dial Lamps, 6.3V.0.25A.
			C27	D0243CY	$200 \mathrm{mmF} . \pm 10 \%$			S.C.
			C28	C0014AX	$16 \mathrm{mF} .350 \text { P.V. }$	VIB.	D2259	Vibrator Cartridge
			C29	D0243L	$500 \mathrm{mmF} . \pm 10 \%$			V5124A
			C30	C0013M	0.05 mF .200 V .		C0371	Dual-Wave Dial Glass
			C31	C0013E	$0.1 \mathrm{mF}$.400 V .		D2335	Dial Pointer
			C32	C0013N	0.01 mF .600 V .			Dial Cord, White, No. 1,
			C33	C0013AK	0.005 mF .600 V .			2 ft . bins.
			C34	C0013Q	0.1 mF .200 V .			Dial Wire (Cored and
			C35	C0013Q	0.1 mF .200 V .			Braided), 6ft. bins.
			C36	C0014AV	$500 \mathrm{mF} .12 \mathrm{P.V}$.		D0873	Dial Cord Spring
			C37	C0013AP	$\begin{gathered} 0.005 \mathrm{mF} .2000 \mathrm{~V} . \\ \pm 10 \% \end{gathered}$		D2394	Dial Cord Lug, H238 Control Knob
			C38	C0014AV	$500 \mathrm{mF} .12 \mathrm{P} . \mathrm{V}$.			5 Amp. Fuse Wire, 38
			C39	C0014BA	16 mF .350 P.V.			SWG. T. Cu.
			C40	C0013Q	0.1 mF .200 V .		D2420	1 Oin. Permag. Speaker
			C41	C0013E	0.1 mF .400 V .		D2419	bin. Permag. Speaker
			C42	C0013Q	0.1 mF. 200 V .			
			C43	C0014V	500 mF .12 P.V.			

CIRCUIT DIAGRAM OF MODELS 268 AND 328, INCORPORATING CHASSIS TYPE A557DM.

RECEIVER ALIGNMENT PROCEDURE

In any case where a component replacement has been made in either the tuned I.F. or R.F. circuits of a receiver, all circuits must be re-aligned, and even if only one coil has been serviced, the whole of the re-alignment should be done in the order given. An output meter should always be connected across the voice coil terminals of the speaker to indicate when the circuits are tuned to resonance. In carrying out the following operations, it is important that the input to the receiver from the signal generator should be kept low and progressively reduced as the circuits are brought into line, so that the output meter reading does not exceed about 0.5 volt.

I.F. ALIGNMENT

1. Rotate the volume control fully clockwise, set Tone Monitor switch to "Normal," and the wave-change switch to "Broadcast" (centre) position and fully enmesh the tuning condenser vanes. Connect the output leads of signal generator to the cap of the 1C7G converter valve, through a 0.1 mF . condenser; do not remove grid lead of the converter valve.
2. Tune signal generator to exactly 457.5 Kc s.
3. Adjust the I.F. transformer trimmer screws for maximum reading on output meter. commencing with the third I.F. transformer and following with the second and first.
4. Continue this alignment on each transformer in turn until no greater output can be obtained. It is necessary to repeat this procedure twice to ensure good alignment.
NOTE: If trimmer screws are screwed too kar $=$ in, it may be possible to obtain a false peak due to coupling effects between the iron cores. Start alignment of each individual transformer by first screwing its core well out, and then advancing core into the coil until resonance is obtained.

R.F. ALIGNMENT (BROADCAST)

1. With controls set as for I.F. alignment, connect signal generator output leads in series with a 200 mmF . condenser to the derial and earth terminals of the receiver.
2. Check that when the gang condenser is fully meshed the pointer coincides with the setting line, marked " S," on the extreme
right of the dial scale. If necessary, the pointer may be adjusted to this position by loosening the cord securing screw provided.
3. Tune signal generator to $600 \mathrm{Kc} / \mathrm{s}$.
4. Rotate tuning knob until the pointer is exactly over $600 \mathrm{Kc} / \mathrm{s}$ calibration mark and adjust the oscillator padder screw for maximum response.
5. Rotate tuning knob until the pointer coincides with the $1500 \mathrm{Ke} / \mathrm{s}$ calibration mark and adjust the oscillator trimmer and aerial trimmer in turn for maximum response.
6. Repeat operations (3) to (5) inclusive for proper alignment.

R.F. ALIGNMENT (SHORT-WAVE)

1. Set wave-change switch to "Short-Wave" (clockwise) position. Remove the 200 mmF . condenser from the output lead of the signal generator and replace with a 400 ohm non-inductive resistor; connect to the aerial terminal as before.
2. Rotate tuning knob until the pointer coincides with the 17 metres calibration mark.
3. Tune signal generator to 17 metres (17.65 Mc s.).
4. Adjust S-W oscillator trimmer for maximum output. Two settings will be found at which this trimmer will peak; care must be taken that the setting finally selected is that which gives the lower capacity. Failure to select the correct position of the two will cause serious tracking error and loss of sensitivity.
5. Adjust S-W aerial trimmer for maximum output whilst "rocking" the gang condenser slightly to obtain the true resonance point.
6. Note that the signal is still tuned in correctly on the dial: if not, readjust S-W oscillator trimmer slightly until dial reads correctly, and repeat operation (5).

ADDITIONAL DATA

Any further service information desired may be obtained by addressing a enquiry to the "Service Department, The Graptitpone Co. Ltd., 2 Parramatta Road, Homebush. N.S.W."
(The Company reserves the right to make any modification without notice).

