Gestetner LANier nieow savin

G104 SERVICE MANUAL

002111MIU
RICOH GROUP COMPANIES

Gestetner
 LANIER
 RICOM
 5 5VII

RICOH GROUP COMPANIES

Gestetner LANIER RTCOM SaVIח

G104
SERVICE MANUAL

It is the reader's responsibility when discussing the information contained within this document to maintain a level of confidentiality that is in the best interest of Ricoh Corporation and its member companies.

NO PART OF THIS DOCUMENT MAY BE REPRODUCED IN ANY FASHION AND DISTRIBUTED WITHOUT THE PRIOR PERMISSION OF RICOH CORPORATION.

All product names, domain names or product illustrations, including desktop images, used in this document are trademarks, registered trademarks or the property of their respective companies.
They are used throughout this book in an informational or editorial fashion only and for the benefit of such companies. No such use, or the use of any trade name, or web site is intended to convey endorsement or other affiliation with Ricoh products.

WARNING

The Service Manual contains information regarding service techniques, procedures, processes and spare parts of office equipment distributed by Ricoh Corporation. Users of this manual should be either service trained or certified by successfully completing a Ricoh Technical Training Program.

Untrained and uncertified users utilizing information contained in this service manual to repair or modify Ricoh equipment risk personal injury, damage to property or loss of warranty protection.

Ricoh Corporation

LEGEND

PRODUCT CODE	COMPANY			
	GESTETNER	LANIER	RICOH	SAVIN
G104	P7425dn	LP126cn	Aficio CL4000DN	CLP26DN

DOCUMENTATION HISTORY

REV. NO.	DATE	COMMENTS
$*$	$11 / 2004$	Original Printing

G104

TABLE OF CONTENTS

INSTALLATION

1. INSTALLATION 1-1
1.1 INSTALLATION REQUIREMENTS 1-1
1.1.1 ENVIRONMENT 1-1
1.1.2 MACHINE LEVEL 1-1
1.1.3 MACHINE SPACE REQUIREMENT 1-2
1.1.4 POWER REQUIREMENTS 1-2
1.2 MACHINE INSTALLATION 1-3
1.2.1 UNPACKING 1-3
1.2.2 INSTALLING THE TONER BOTTLE 1-5
1.2.3 LOADING PAPER 1-7
1.2.4 CONNECTING THE POWER CORD 1-9
1.2.5 SELECTING THE PANEL DISPLAY LANGUAGE 1-10
1.2.6 PRINTING THE TEST PAGE 1-10
1.3 OPTIONAL UNIT INSTALLATION. 1-11
1.4 METER CHARGE 1-12
1.5 TRAY HEATER 1-13
PREVENTIVE MAINTENANCE
2. PREVENTIVE MAINTENANCE 2-1
2.1 USER REPLACEABLE ITEMS 2-1
2.2 SERVICE MAINTENANCE 2-2
2.2.1 RECOMMENDED CLEANING PROCEDURE 2-2
REPLACEMENT AND ADJUSTMENT
3. REPLACEMENT AND ADJUSTMENT 3-1
3.1 SPECIAL TOOLS AND LUBRICANTS 3-1
3.1.1 TOOLS 3-1
3.2 ELECTRICAL COMPONENTS 3-2
3.2.1 ELECTRICAL BOARD UNIT 3-2
3.2.2 IOB (INPUT/OUTPUT BOARD) 3-4
3.2.3 CONTROLLER BOARD 3-4
3.2.4 PSU (POWER SUPPLY UNIT) BOARD 3-5
3.2.5 HIGH VOLTAGE POWER SUPPLY BOARD 1 3-5
3.2.6 EGB (ENGINE BOARD) AND HIGH VOLTAGE POWER SUPPLY BOARD 2 3-6
3.2.7 LCD PANEL. 3-6
3.3 LASER OPTICS 3-7
3.3.1 CAUTION DECAL LOCATIONS 3-7
3.3.2 LD UNIT 3-8
Color registration adjustment 3-8
3.3.3 LDB 3-10
3.3.4 POLYGON MIRROR MOTOR 3-10
3.3.5 LASER SYNCHRONIZING DETECTOR BOARDS 3-11
3.3.6 LDU SHUTTER MOTOR UNIT AND SENSOR 3-11
3.4 PAPER FEED 3-12
3.4.1 PAPER FEED ROLLER 3-12
3.4.2 PAPER FRICTION PAD 3-13
3.4.3 BY-PASS PAPER SIZE SENSOR 3-13
3.4.4 BY-PASS FEED ROLLER, FRICTION PAD 3-14
3.4.5 REGISTRATION SENSOR 3-15
3.4.6 OPAPER VOLUME SENSOR, END SENSOR AND PAPER WIDTH SENSOR 3-15
3.4.6 PAPER VOLUME SENSOR, END SENSOR AND PAPER WIDTH SENSOR 3-16
3.4.7 PAPER SIZE SENSOR AND TEMPERATURE/ HUMIDITY SENSOR 3-17
3.4.8 PAPER FEED MOTOR 3-18
3.4.9 PAPER REGISTRATION CLUTCH, PAPER FEED CLUTCH AND BY-PASS CLUTCH 3-19
3.5 DEVELOPMENT 3-20
3.5.1 COLOR DEVELOPMENT MOTOR, COLOR OPC MOTOR AND BLACK OPC/DEVELOPMENT MOTOR 3-20
3.5.2 DEVELOPMENT CLUTCH 3-20
3.5.3 TRANSFER BELT CONTACT MOTOR 3-21
3.5.4 TONER SUPPLY MOTOR. 3-21
3.5.5 TRANSFER ROLLER CONTACT MOTOR 3-22
3.5.6 ID SENSORS 3-23
3.6 DRIVE 3-23
3.6.1 DRIVE UNIT 3-23
3.7 DUPLEX 3-24
3.7.1 DUPLEX JAM SENSOR 3-24
3.7.2 INVERTER SENSOR 3-24
3.7.3 DUPLEX MOTOR AND INVERTER MOTOR 3-25
3.8 FUSING 3-26
3.8.1 FUSING UNIT 3-26
3.8.2 THERMISTOR AND THERMOSTAT. 3-26
3.8.3 FUSING LAMP 3-27
3.8.4 FUSING EXIT SENSOR AND PAPER EXIT SENSOR 3-28
3.8.5 FUSING REGISTRATION SENSOR 3-28
Fan Direction 3-29
3.9 ADJUSTMENTS 3-30
3.9.1 GAMMA ADJUSTMENT 3-30

TROUBLESHOOTING

4. TROUBLESHOOTING 4-1
4.1 PROCESS CONTROL RESULT 4-1
4.2 SERVICE CALL CONDITIONS 4-2
4.2.1 SUMMARY 4-2
4.2.2 SC CODE DESCRIPTIONS 4-3
Engine SC 4-3
Controller Error 4-14
4.3 TROUBLESHOOTING GUIDE 4-21
4.3.1 BLANK PRINT 4-21
4.3.2 ALL-BLACK PRINT 4-21
4.3.3 MISSING CMY COLOR 4-22
4.3.4 LIGHT PRINT 4-22
4.3.5 REPEATED SPOTS OR LINES ON PRINTS 4-23
4.3.6 DARK VERTICAL LINE IN PRINT 4-23
4.3.7 WHITE HORIZONTAL LINES OR BANDS 4-24
4.3.8 MISSING PARTS OF IMAGES 4-24
4.3.9 DIRTY BACKGROUND 4-24
4.3.10 PARTIAL CMY COLOR DOTS 4-24
4.3.11 DARK IRREGULAR STREAKS ON PRINTS 4-24
4.3.12 CMY COLOR IRREGULAR STREAKS 4-25
4.3.13 GHOSTING 4-25
4.3.14 UNFUSED OR PARTIALLY FUSED PRINTS 4-25
4.3.15 IMAGE SKEW 4-25
4.3.16 BACKGROUND STAIN 4-26
4.3.17 NO PRINTING ON PAPER EDGE 4-26
4.3.18 IMAGE NOT CENTERED WHEN IT SHOULD BE 4-26
4.4 ELECTRICAL COMPONENT DEFECTS 4-27
4.4.1 SENSORS 4-27
4.5 BLOWN FUSE CONDITIONS 4-29
Power supply unit 4-29
IOB 4-29
4.6 LEDS 4-29
SERVICE TABLES
5. SERVICE TABLES 5-1
5.1 SERVICE PROGRAM MODE 5-1
5.1.1 SERVICE MODE OPERATION 5-1
Entering the Service Mode 5-1
Accessing the Required Program 5-2
Inputting a Value or Setting for a Service Program 5-2
Exiting Service Mode 5-2
5.1.2 REMARKS 5-3
Display on the Control Panel Screen 5-3
Others 5-4
5.2 SERVICE MODE TABLE 5-5
5.2.1 CONTROLLER SERVICE MODE 5-5
5.2.2 BIT SWITCH PROGRAMMING 5-9
5.2.3 ENGINE SERVICE MODE 5-10
SP1-XXX (Feed) 5-10
SP2-XXX (Drum) 5-21
SP3-XXX (Process) 5-47
SP5-XXX (Mode) 5-57
SP7-XXX (Data Log) 5-71
SP8-XXX (Data Log 2) 5-82
SP9-XXX 5-92
5.2.4 INPUT CHECK TABLE 5-96
5.2.5 OUTPUT CHECK TABLE 5-98
5.3 FIRMWARE UPDATE 5-100
5.3.1 TYPE OF FIRMWARE 5-100
5.3.2 PRECAUTIONS 5-100
Handling SD Cards 5-100
Upload or Download 5-100
Network Connection 5-100
5.3.3 FILE ARRANGEMENT 5-101
How the Program Works 5-101
Example 5-101
5.3.4 UPDATING 5-102
Procedure 5-102
Error Handling 5-103
Power Failure 5-103
5.3.5 NVRAM DATA UPLOAD/DOWNLOAD 5-104
Uploading NVRAM Data 5-104
Downloading NVRAM Data 5-105
5.3.6 ERROR CODE TABLE 5-106
5.4 SD CARD APPLI MOVE 5-107
5.4.1 OVERVIEW 5-107
5.4.2 MOVE EXEC 5-108
5.4.3 UNDO EXEC 5-109
Keeping the SD card 5-109
DETAILED SECTION DESCRIPTIONS
6. DETAILED SECTION DESCRIPTIONS 6-1
6.1 OVERVIEW 6-1
6.1.1 COMPONENT LAYOUT 6-1
6.1.2 PAPER PATH 6-2
6.1.3 DRIVE LAYOUT 6-3
6.1.4 BOARD STRUCTURE 6-4
Descriptions 6-5
6.1.5 PRINTING PROCESS 6-6
6.2 PROCESS CONTROL 6-8
6.2.1 OVERVIEW 6-8
6.2.2 POTENTIAL CONTROL 6-9
Overview 6-9
Process Control Self-check 6-9
6.2.3 PROCESS CONTROL SELF-CHECK PROCEDURE 6-11
Step 1: VSG Adjustment 6-11
Step 2: ID Sensor Solid Pattern Generation 6-11
Step 3: Sensor Pattern Detection 6-11
Step 4: Toner Amount Calculation 6-11
Step 5: VD, VB, VL Selection and VREF Adjustment 6-12
6.2.4 TONER SUPPLY CONTROL 6-12
Toner Supply Control Modes 6-12
Low Image Coverage 6-13
6.2.5 TONER NEAR END/TONER END DETECTION 6-14
Introduction 6-14
Toner Near End Detection 6-15
Toner End Detection 6-15
Toner End Recovery 6-15
6.2.6 DEVELOPER INITIALIZATION 6-16
6.3 PAPER FEED 6-17
6.3.1 OVERVIEW 6-17
6.3.2 PAPER FEED DRIVE 6-18
6.3.3 PAPER TRAY 6-19
Paper Lift 6-19
Paper Size Detection 6-20
Paper Size Detection 6-20
Paper Near End/End Detection 6-21
Near-end detection 6-21
End detection 6-21
Paper width sensor 6-21
By-pass Tray Feed and Size Detection 6-22
6.3.4 DUPLEX 6-23
Drive 6-24
Interleaving 6-25
6.4 LASER EXPOSURE 6-26
6.4.1 OVERVIEW 6-26
6.4.2 OPTICAL PATH 6-27
6.4.3 LASER SYNCHRONIZING DETECTOR 6-28
Overview 6-28
Main Scan Start Detection 6-28
6.4.4 LD SAFETY SWITCH 6-29
6.4.5 AUTOMATIC LINE POSITION ADJUSTMENT 6-30
Overview 6-30
Summary of Each Adjustment 6-31
Main Scan Skew Adjustment 6-34
LDU Shutter 6-35
6.5 PHOTOCONDUCTOR UNIT 6-36
6.5.1 OVERVIEW 6-36
6.5.2 DRIVE AND DRIVE GEAR POSITION SENSOR 6-37
Mechanism 6-37
Initialization Process and SC Codes 6-38
6.5.3 DRUM CHARGE AND QUENCHING 6-39
6.5.4 DRUM CLEANING 6-40
6.5.5 WASTE TONER COLLECTION 6-41
6.5.6 WASTE TONER BOTTLE FULL DETECTION AND SET DETECTION 6-42
6.5.7 PCU DETECTION (DEVELOPMENT UNIT DETECTION) 6-43
Unit Set Detection Pins 6-43
New Unit Detection 6-43
Error Message 6-44
6.6 DEVELOPMENT 6-45
6.6.1 OVERVIEW 6-45
6.6.2 DRIVE 6-46
6.6.3 DEVELOPER MIXING 6-47
6.6.4 DEVELOPMENT BIAS 6-48
6.6.5 TONER SUPPLY MECHANISM 6-49
Overview 6-49
Toner Near End Detection 6-49
6.6.6 TONER BOTTLE DETECTION 6-49
6.7 IMAGE TRANSFER 6-50
6.7.1 OVERVIEW 6-50
Transfer Unit Detection and New Unit Detection 6-51
Transfer belt unit detection 6-51
New transfer belt unit detection 6-51
6.7.2 TRANSFER BELT DRIVE AND TRANSFER BELT ROLLER VOLTAGE 6-52
Transfer belt contact 6-53
Transfer belt cleaning 6-54
6.7.3 TRANSFER ROLLER UNIT. 6-55
Transfer from the belt 6-55
Image transfer 6-55
Discharge 6-56
Transfer roller contact 6-57
6.8 FUSING 6-58
6.8.1 OVERVIEW 6-58
6.8.2 FUSING TEMPERATURE CONTROL 6-59
Machine ready temperature: [B] 6-60
Print ready temperature: [C] 6-60
Target printing temperature: [D] 6-60
First print temperature: [G] 6-60
Corrections for Small Paper Sizes (less than A5) 6-61
Overheat Protection 6-61
6.8.3 DRIVE 6-62
6.9 CONTROLLER 6-63
6.9.1 OVERVIEW 6-63
6.9.2 BOARD LAYOUT 6-65

SPECIFICATIONS

1. GENERAL SPECIFICATIONS 7-1
2. SUPPORTED PAPER SIZES 7-3
3. SOFTWARE ACCESSORIES 7-4
3.1 PRINTER DRIVERS 7-4
3.2 UTILITY SOFTWARE 7-4
4. MACHINE CONFIGURATION 7-5
5. OPTIONAL EQUIPMENT 7-6

PAPER FEED UNIT TYPE 4000 (G392)

SEE SECTION G392 FOR DETAILED TABLE OF CONTENTS

©IMPORTANT SAFETY NOTICES

PREVENTION OF PHYSICAL INJURY

1. Before disassembling or assembling parts of the printer and peripherals, make sure that the printer power cord is unplugged.
2. The wall outlet should be near the printer and easily accessible.
3. If any adjustment or operation check has to be made with exterior covers off or open while the main switch is turned on, keep hands away from electrified or mechanically driven components.
4. The printer drives some of its components when it completes the warm-up period. Be careful to keep hands away from the mechanical and electrical components as the printer starts operation.
5. The inside and the metal parts of the fusing unit become extremely hot while the printer is operating. Be careful to avoid touching those components with your bare hands.

HEALTH SAFETY CONDITIONS

Toner and developer are non-toxic, but if you get either of them in your eyes by accident, it may cause temporary eye discomfort. Immediately wash eyes with plenty of water. If unsuccessful, get medical attention.

OBSERVANCE OF ELECTRICAL SAFETY STANDARDS
The printer and its peripherals must be serviced by a customer service representative who has completed the training course on those models.

LITHIUM BATTERIES

Incorrect replacement of lithium battery(s) on the EGB may pose risk of explosion. Replace only with the same type or with an equivalent type recommended by the manufacturer. Discard used batteries in accordance with the manufacturer's instructions.

SAFETY AND ECOLOGICAL NOTES FOR DISPOSAL

1. Do not incinerate toner bottles or used toner. Toner dust may ignite suddenly when exposed to an open flame.
2. Dispose of used toner, the maintenance unit which includes developer or the organic photoconductor in accordance with local regulations. (These are non-toxic supplies.)
3. Dispose of replaced parts in accordance with local regulations.
4. When keeping used lithium batteries in order to dispose of them later, do not put more than 100 batteries per sealed box. Storing larger numbers or not sealing them apart may lead to chemical reactions and heat build-up.

LASER SAFETY

The Center for Devices and Radiological Health (CDRH) prohibits the repair of laser-based optical units in the field. The optical housing unit can only be repaired in a factory or at a location with the requisite equipment. The laser subsystem is replaceable in the field by a qualified Customer Engineer. The laser chassis is not repairable in the field. Customer engineers are therefore directed to return all chassis and laser subsystems to the factory or service depot when replacement of the optical subsystem is required.

```
WARNING
Use of controls, or adjustment, or performance of procedures other than
those specified in this manual may result in hazardous radiation exposure.
```

$\boxed{\varrho}$ WARNING
WARNING: Turn off the main switch before attempting any of the
procedures in the Laser Optics Housing Unit section. Laser
beams can seriously damage your eyes.

CAUTION MARKING:

Trademarks

Microsoft ${ }^{\circledR}$, Windows ${ }^{\circledR}$, and MS-DOS ${ }^{\circledR}$ are registered trademarks of Microsoft Corporation in the United States and /or other countries.
PostScript ${ }^{\circledR}$ is a registered trademark of Adobe Systems, Incorporated.
PCL ${ }^{\circledR}$ is a registered trademark of Hewlett-Packard Company.
Ethernet ${ }^{\circledR}$ is a registered trademark of Xerox Corporation.
PowerPC ${ }^{\circledR}$ is a registered trademark of International Business Machines Corporation.
Other product names used herein are for identification purposes only and may be trademarks of their respective companies. We disclaim any and all rights involved with those marks.

Symbols and Abbreviations

This manual uses the symbols and abbreviations shown below.

Symbol	Meaning
	Refer to section number
(3)	Clip ring
S	Screw
S忥	Connector
Clamp	
SEF	Short Edge Feed
LEF	Long Edge Feed

Short Edge Feed (SEF)

Long Edge Feed (LEF)

INSTALLATION

1. INSTALLATION

1.1 INSTALLATION REQUIREMENTS

1.1.1 ENVIRONMENT

1. Temperature Range: $10^{\circ} \mathrm{C}$ to $32^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.$ to $\left.89.6^{\circ} \mathrm{F}\right)$
2. Humidity Range: 15% to 80% RH
3. Ambient Illumination: Less than 2,000 lux (do not expose to direct sunlight)
4. Ventilation: 3 times/hr/person
5. Do not put the machine in areas that get sudden temperature changes. This includes:
1) Areas directly exposed to cool air from an air conditioner.
2) Areas directly exposed to heat from a heater.
6. Do not put the machine in areas that get exposed to corrosive gas.
7. Do not install the machine at locations over $2,500 \mathrm{~m}(8,125 \mathrm{ft}$.) above sea level.
8. Put the machine on a strong, level bottom. (Inclination on any side must be no more than 5 mm .)
9. Do not put the machine in areas with strong vibrations.

1.1.2 MACHINE LEVEL

Front to back: Within $5 \mathrm{~mm}\left(0.2^{\prime \prime}\right)$ of level
Right to left: Within 5 mm (0.2") of level

1.1.3 MACHINE SPACE REQUIREMENT

Put the machine near the power source with these clearances:
Left side: Over 50 cm (19.7")
Rear: Over 10 cm (4")
Right side: Over 10 cm (4")
Front: Over 70 cm (27.6")

1.1.4 POWER REQUIREMENTS

\triangle CAUTION

1. Make sure that the plug is tightly in the outlet.
2. Avoid multi-wiring.
3. Make sure that you ground the machine.
4. Input voltage level: $120 \mathrm{~V}, 60 \mathrm{~Hz}$: More than 11 A (for North America) 220 V to $240 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$: More than 6 A (for Europe/ Asia)
5. Permitted voltage fluctuation: $\pm 10 \%$
6. Do not set anything on the power cord.

1.2 MACHINE INSTALLATION

1.2.1 UNPACKING

1. Open the left cover $[A]$ of the printer.

2. Turn the green levers
counterclockwise (1). Then slowly open the drum positioning plate (2).

3. Remove the end of the tape from the printer.
4. Slowly pull out the eight pieces of tape protruding from PCU in a horizontal direction.
5. Close the drum positioning plate. Push the green lever (1) to lock the drum positioning plate. Then turn it clockwise (2).

6. Close the left cover.
7. Open the top cover by grasping the handles on the left and right sides.

8. Remove the clip that prevents damage to the mouth of the toner hopper (one clip for each of the four toner hoppers).

9. Close the top cover.
10. Put labels " 1 " on the front of the paper tray.
11. Attach the supplied sticker (stating you cannot use paper for an ink-jet printer with this printer) at the front of the machine.

1.2.2 INSTALLING THE TONER BOTTLE

1. Open the top cover [A].

2. Remove the toner bottles from the box.

3. Shake the toner bottle up and down seven or eight times.

4. Remove the tape from the toner bottle.

5. Install the yellow toner bottle first. Hold the toner bottle in the horizontal position (1) with the locking lever on the top side. Install the toner bottle bottom first. Then move the locking lever to the triangular mark position (2).

6. Turn the fixing lever to adjust it to the position of the circular mark. Continue to press the fixing lever toward the printer until it rotates smoothly into its position.
NOTE: Do not insert and remove toner bottles again and again. This causes toner leakage.
7. Do the same procedures again to insert the other three bottles: cyan (C),
 magenta (M), and black (K).
8. Close the top cover.

NOTE: Do not turn off the power
switch at the time "Loading
Toner..." shows on the display.
This prevents malfunction.

1.2.3 LOADING PAPER

CAUTION: Be careful not to pull the paper tray with too much force when you remove it from the machine. This can let the tray fall and cause personal injury.

1. Pull the paper tray [A] out of the printer until it stops. Then tilt slightly, and pull it out. Put it on a flat surface.
NOTE: You cannot pull tray 1 out if the by-pass tray is open.

2. Adjust the green clips of the side guide and the end guide to the paper size you want.

3. Move the green switch on the front of the tray to match the type of paper you want to load. Move the switch to the left when you load thick paper of 75 $\mathrm{g} / \mathrm{m}^{2}$ or more.

4. Arrange and load a stack of new paper into the tray with the print side up. Make sure that there is no gap between the paper and the paper guides. Adjust the paper guides to close gaps if necessary.

5. Lift the front of the paper tray. Then slowly move the paper tray to the rear until it stops. Set the tray firmly in place to avoid paper jams.

1.2.4 CONNECTING THE POWER CORD

\triangle CAUTION

1. Do not touch the plug with wet hands. This causes electrical shock.
2. When you pull the plug out of the socket, grip the plug, not the cord, to avoid damaging the cord and causing a fire or an electric shock.

NOTE: 1) Make sure to firmly connect the power plug to the socket outlet.
2) The printer must be off when you connect or disconnect the power cord.

1. Make sure that the power switch is turned off.
2. Plug in the power cord.

3. Turn the power switch on.

NOTE: It can take a few minutes after the main power comes on before you can use the machine.

1.2.5 SELECTING THE PANEL DISPLAY LANGUAGE

NOTE: 1) You can select one of these languages (the default is English): English, German, French, Italian, Dutch, Swedish, Norwegian, Danish, Spanish, Finnish, Portuguese, Czech, Polish or Hungarian.
2) You do not have to do this procedure if you use English. Do this procedure if you want to use a different language.

1. Turn on the printer.

NOTE: "Ready" shows on the panel display after the machine warms up.
2. Press the Menu key.

NOTE: "Menu" shows on the panel display.
3. Press the " \boldsymbol{A} " or " $\boldsymbol{\nabla}$ " key to show "Language."
4. Press the Enter key. "Language: 活English" shows on the panel display.
5. Press the " $\boldsymbol{\Delta}$ " or " $\boldsymbol{\nabla}$ " key to get the language you want.
6. Press the Enter key. "Menu" shows on the panel display.
7. Press the On Line key. "Ready" shows on the panel display.

1.2.6 PRINTING A TEST PAGE

NOTE: You can check if the printer works correctly by printing a test page such as the configuration page. However, you cannot check the connection between the printer and the computer by printing the test page.

1. Turn on the printer.

NOTE: "Ready" shows on the panel display after the machine warms up.
2. Press the Menu key.
3. Press the " \boldsymbol{A} " or " $\boldsymbol{\nabla}$ " key to get "List/Test Print."
4. Press the Enter key. "List/Test Print Config. Page" shows on the panel display.
5. Make sure that "Config. Page" is on the display. Then press the Enter key.
6. The test printing starts shortly after.
7. Press the "On Line" key. "Ready" shows on the panel display.
8. Turn off the printer's power switch.

1.3 OPTIONAL UNIT INSTALLATION

These options are available for this machine. Refer to the Operating Instructions for how to install these options:

- Paper Tray Unit (G392).
- Hard disk for G104 (G395)
- IEEE802.11b interface (Wireless LAN: G813)
- IEEE1394 interface (B581)
- IEEE 1284 interface (B679)
- Bluetooth interface (B736)
- 128 MB DIMM (B584)
- 256 MB DIMM (G818)
- NVRAM (User account enhancement: G395)

METER CHARGE

1.4 METER CHARGE

Change these SP modes settings if the customer has a service contract. The settings depend on the contract type.

Item	SP No.	Function	Default
Meter charge	SP 59301	Specifies whether the meter charge mode is enabled or disabled. Meter charge mode enabled: - The Counter menu shows immediately after the Menu key is pressed. - The counter type selected by the counting method (SP5-045-1) can be displayed with the Counter menu. - The counter values can also be printed with the Counter menu. - The PM warning is not shown when the replacement time arrives. Meter charge mode disabled: - The Counter menu is not shown.	Off
Counting method	SP 50451	Specifies whether the counting method used in meter charge mode is based on developments or prints.	Prints
Fax No. Setting	SP 58122	Programs the service station fax number. The number is printed on the counter list when the meter charge mode is selected. This lets the user fax the counter data to the service station.	

NOTE: 1) The default setting for this machine is meter-charge mode off.
2) You cannot reset the meter-charge counter.

1.5 TRAY HEATER

1. Electrical boards unit [A]
2. Rear cover [B]
3. Rear cover piece [C] for the power supply connector
4. Decal [D]
5. Decal [E]

6. Harness $[F]($ 烏 $) \times 2$, 冼 $\times 3$)
7. Tray heater switch [G]
 NOTE: You can adjust the tray heater switch setting as the below table shows with SP5953-001.

SP5953-001	Tray heater switch	When the Main Power turns on	When the printer is in energy saver mode
$0:$ Off	On	No power supply	Power supply
	Off	No power supply	No power supply
1: On	On	Power supply	Power supply
	Off	No power supply	No power supply

PREVENTIVE MAINTENANCE

2. PREVENTIVE MAINTENANCE

2.1 USER REPLACEABLE ITEMS

The user replaces these items if the service contract requires that the user does some of the PM.

Item	Remarks
PCU	$50 \mathrm{~K}(\mathrm{YMC}, \mathrm{BK})$
Transfer Belt Unit	100 K
Waste Toner Bottle	50 K
Maintenance Kit - Fusing Unit - Transfer Roller - Paper Feed Roller $\times 3$ - Friction Pad $\times 3$ - Dust Filter $\times 2$	

Chart: Letter, 5\%
Mode: Continuously Printing
Environment: Recommended temperature and humidity
Yield changes depend on circumstances and print conditions
An error message shows when a maintenance counter reaches the value in the PM table when the machine's default settings are used.

It is not necessary to reset counters for each part if the technician does the PM. The machine detects new components automatically and resets the necessary counters.

2.2 SERVICE MAINTENANCE

2.2.1 RECOMMENDED CLEANING PROCEDURE

1. Turn off the main switch.
2. Remove the waste toner bottle.
3. Remove the PCUs.
4. Remove the transfer belt unit. Do not touch the transfer belt surface.
5. Remove the fusing unit.
6. Remove the standard paper tray.
7. Clean the paper path.
8. Clean all printer rollers with dry cloth only. Do not clean the transfer roller.
9. Use a blower brush to clean the laser unit windows.
10. Vacuum the interior of the printer.
11. Carefully clean the area around the transfer roller.

REPLACEMENT AND ADJUSTMENT

3. REPLACEMENT AND ADJUSTMENT

\triangle CAUTION
Turn off the main power switch and unplug the machine before you do the procedures in this section.

Important: Remove these before you do the procedures in this section:

- 4 toner bottles (cyan, magenta, yellow, and black)
- Waste toner bottle
- Standard paper tray

3.1 SPECIAL TOOLS AND LUBRICANTS

3.1.1 TOOLS

Item	Part Number	Description	Q'ty
1	G0219350	Loop Back Connector: Parallel: Bi-direct	1
2	A0299387	Digital Multimeter -FLUKE87	1
3	B6455010	SD Card	1
4	B6456700	PCMCIA Card Adapter	1
5	B6456800	USB Reader/ Writer	1
6	C4019503	20X Magnification Scope	1

3．2 ELECTRICAL COMPONENTS

3．2．1 ELECTRICAL BOARD UNIT

1．Front door
2．Top cover
3．Right cover $[A]\left(\begin{array}{c}\hat{\xi}\end{array} \times 1\right)$

4．Color development motor unit［B］

5．Side bar［C］（雨 $\times 4$ ）and 3 wire clamps
6．IOB（Input／Output Board）［D］ （央 $\times 2$ ，気 ${ }^{\|} \times 3$ ）
7．玉事［E］$\times 1$

［E］
8. Left cover [A]
9. Drum positioning plate $[B]$
10. Drum positioning plate belt [C] (${ }^{2} \times 1$)
11.

12. Electrical board unit [D] (令 $\times 4$,鳥 C 2)

3.2.2 IOB (INPUT/OUTPUT BOARD)

1. Front door
2. Top cover
3. Right cover (-3.2.1)
4. Side bar (-3.2.1)
5. IOB $[A]\left(\hat{\xi} \times 2, E_{\|}^{\|} x\right.$ all $)$

3.2.3 CONTROLLER BOARD

1. Controller unit $[A](\hat{\xi} \times 3)$
2. Controller unit cover $[B](\hat{\xi} \times 4)$
3. Controller board $[C](\hat{\beta} \times 7)$

NOTE: Remove the NVRAM from the old board. Then install it on the new board.

3.2.4 PSU (POWER SUPPLY UNIT) BOARD

1. Electrical boards unit (-3.2.1)
2. PSU board $[A]\left(\hat{\xi} \times 6, \xi^{[1} \times 5\right)$

3.2.5 HIGH VOLTAGE POWER SUPPLY BOARD 1
3. Electrical boards unit (-3.2 .1)
4. PSU board (3.2.4)
5. Electrical board unit flame $[A]\binom{(1)}{8}$
6. High voltage terminal plate $[B]\left(\begin{array}{l}(1)\end{array}\right)$
7. High voltage power supply board 1 [C] (${ }^{(1)} \times 4$, 気 $ل$ ll $\times 4$, stand offs $\times 2$)
NOTE: Make sure that each high voltage terminal is connected securely after you replace this board.

3.2.6 EGB (ENGINE BOARD) AND HIGH VOLTAGE POWER SUPPLY BOARD 2

1. Electrical board unit (-3.2 .1)

NOTE: Make sure that each high voltage terminal is connected securely after you replace this board.
2. High voltage terminal plate [C] ($\hat{\xi}^{3}$ x 1)
3. High voltage power supply board 2

NOTE: Make sure that each high voltage terminal is
 connected securely after you replace this board.
NOTE: Remove the NVRAM from the old board. Then install it on the new board.

3.2.7 LCD PANEL

1. LCD panel $[A]\left({ }_{\text {Ell }} \mathrm{x} \times 1\right)$

3.3 LASER OPTICS

\triangle WARNING
Turn off the main power switch and unplug the printer before you do the procedures in this section. Laser beams can cause serious eye injury.

3.3.1 CAUTION DECAL LOCATIONS

Caution decal is attached as shown below

WARNING

Make sure to turn off the main power switch and disconnect the power plug from the power outlet before you do any disassembly or adjustment of the laser unit. This printer uses a class 3B laser beam with a wavelength of 655 nm and an output of 7 mW . The laser can cause serious eye injury.

3.3.2 LD UNIT

1. Electrical boards unit (-3.2.1)
2. LDU [A]

NOTE: Print the SMC report with SP 5990-002 before you replace the LDU.

Color registration adjustment

NOTE: You must manually perform the color registration adjustment after you install a new LDU.
Perform these steps:
NOTE: When the polygon mirror motor or Laser Diode Board (LDB) unit is defective, only replace the defective parts. At this time, it is not necessary to do this adjustment procedure.

1. Print the SMC report with SP 59902 before you replace the LDU. (-5.1 .1) Find the values for SP 2181 1, SP 2181 11, 2181 21, and 2181 31, and make a note of them.
2. Execute SP 21112 (Pro. Position Adj > Execute) to roughly adjust the line position after you install the new LDU. "Result = OK" shows on the LCD if this is done correctly. If not, do it again until you get "OK".
3. Execute SP2111 3 (Skew Adjust. > Execute) to measure the skew values for each color. "Result = OK" shows on the LCD if this is done correctly. If not, do it again until you get "OK".
4. Check the skew values with SP 2181 and write down the values. (You can also check these values if you print the SMC report again with SP 5990 2. The values will probably be different from the values on the report that you printed in step 1.)

- SP 21811 for black skew
- SP 218111 for magenta skew
- SP 218121 for cyan skew
- SP 218131 for yellow skew

NOTE: The new skew values for magenta, cyan, yellow and black must all be the same as the original skew value for magenta that was recorded in step 1. The magenta color is used as a reference point.
5. Open the left cover
6. Adjust the skew adjustment cam [A] for each color with a screwdriver. You must adjust the skew values for each color until they are all the same as the original value for magenta that you found in step 1, before you replaced the LDU.
Example, if the new value for K (after step 4) is -300 and the old value for magenta (in step 1) is -250 , you must adjust the skew for K until it is -250 .

Adjustment Procedure:
Turn the cam as shown in the "Cam
Rotation Direction" (table below) to increase the skew value.
Turn in the opposite direction to decrease the skew value.
"Adjustment value" shows the change when you turn the cam "one click".

Color	Cam Rotation Direction	Adjustment value
Yellow	CW	$14 \mu \mathrm{~m}$
Cyan	CW	$8 \mu \mathrm{~m}$
Magenta	CCW	$7 \mu \mathrm{~m}$
Black	CCW	$10 \mu \mathrm{~m}$

NOTE: The adjustment values in the table are not exact values. These are approximate values.
CW: Clockwise, CCW: Counter-clockwise
The diagram to the right shows the effect on line skew $[B]$ when you turn the cam in a counter clockwise direction.
7. Close the left cover. Then measure the skew values again with SP 21113. (To do this, repeat step 3.) If these are close to the value for magenta that you found in step 1 (within one click in the above table), go to the next step. If not, do SP 21113 again until you get a good result.
8. Do SP 21111 to finely adjust the line position for each color. Try SP 21112 if "Result = OK" does not show.
9. When you get "Result = OK", this adjustment is completed.

3.3.3 LDB

1. LDU (-3.3.2)
2. LDB [A] (栕 x 2)

NOTE: Make sure that the spring plate $[B]$ holds the LDB unit.
[B]

3.3.4 POLYGON MIRROR MOTOR

1. LDU (3.3.2)
2. Top cover [A] (${ }^{(1)} \times 5$, tabs $\times 4$) NOTE: Do not touch the mirrors. Clean with an optics cloth if you touch the mirrors.
3. Polygon motor cover $[B]$ ($(\hat{\xi} \times 3)$, shading plate [C], sponge [D]
4. Polygon mirror motor $[E](\hat{\xi} \times 4)$,
 flat cable)

3．3．5 LASER SYNCHRONIZING DETECTOR BOARDS

1． $\operatorname{LDU}(-3.3 .2)$
2．Top cover
3．Synchronizing detector board unit ［A］（
4．Synchronizing detector board $[B]$

NOTE：Do not touch the mirrors． Clean with an optics cloth if you touch the mirrors．

3．3．6 LDU SHUTTER MOTOR UNIT AND SENSOR

1．Electrical boards unit（－3．2．1）
2．LDU（－3．3．2）
3．LDU shutter motor unit［A］（炁 $\times 2$ ，気 $x 2$ ，咆 x 1 ）

4．Remove the gear $[B]$（ $\mathbb{\&} 1$ ）．
NOTE：To do this，turn the projection［E］ of the gear to the position as shown in the diagram below．The worm gear［F］must turn to adjust the position of the projection．

5．LDU shutter sensor［C］

PAPER FEED

3.4 PAPER FEED

3.4.1 PAPER FEED ROLLER

1. Standard tray $[\mathrm{A}]$

2. Slide the side roller holder $[B]$ to the right.
3. Paper feed roller [C]

3.4.2 PAPER FRICTION PAD

1. Standard tray (-3.4.1)
2. Paper friction pad [A]

NOTE: Make sure that the paper friction pad stick is put through the spring when you reassemble it.

3.4.3 BY-PASS PAPER SIZE SENSOR

1. By-pass tray cover [A]
2. By-pass paper size sensor $[B]$ (E_{l} ll x 1)

3.4.4 BY-PASS FEED ROLLER, FRICTION PAD

1. By-pass tray cover [A]
2. By-pass tray $[B]\left(\hat{\xi} \times 2\right.$, $\left.\xi_{\|}^{\|} \times 1\right)$ and the harness cover [C]
3. By-pass feed shaft cover [D]
4. Move the holding roller left [E]
5. By-pass feed roller [F]

6. By-pass friction pad [G]
1) Pull up the edge of the by-pass friction pad (1).
2) Pull the by-pass friction pad forward. When you do this, hold down the edge where its shaft is located (2).

Reassembling the by-pass friction pad

1. Place the spring $[\mathrm{H}]$ on the projection
 [I] of the by-pass tray.
2. Hold down the by-pass friction pad after you put the spring on the projection of pad's reverse side (3).
3. Release the by-pass tray friction pad when it passes through the bushing [J].
4. Pull up the shaft of the by-pass friction pad to the busing until it clicks.

3.4.5 REGISTRATION SENSOR

[B]

1. Front Door
2. Fusing unit (-3.8.1)
3. Registration guide $[A]$

3.4.6 PAPER VOLUME SENSOR, END SENSOR AND PAPER WIDTH SENSOR

1. Standard tray (-3.4.1)
2. Front door
3. Fusing unit (-3.8.1)
4. Harness cover $[A]\left(\mathcal{S}^{2} \times 1\right)$

5. Registration guide (3.4.5)
6. Paper dust case holder [C]

7. Tray paper sensor box [D] ($(\underset{\xi}{\mathcal{E}} \times 2)$

9. Tray paper sensor box cover $[A]\left(\mathcal{F}^{(1)} \times 1,\right)$

3.4.7 PAPER SIZE SENSOR AND TEMPERATURE/ HUMIDITY SENSOR

1. Standard tray (-3.4.1)
2. Rear cover [A]
3. Paper size sensor $[B]$ (
4. Temperature/Humidity sensor [C] ($(\mathbb{\xi}$ 1, E\#N E 1)

PAPER FEED

3.4.8 PAPER FEED MOTOR

1. Front door cover (-3.4.6)
2. Right cover ($\mathcal{E}^{2} \times 1$)
3. Side bar (-3.2.1)
4. Harness guide $[A]\left(\hat{\beta} \times 1, \xi_{\|}^{\|} \times 3\right)$
5. Front support unit $[B](\hat{\xi} \times 3)$

3．4．9 PAPER REGISTRATION CLUTCH， PAPER FEED CLUTCH AND BY－PASS CLUTCH

1．Front door
2．Front door cover（－3．2．1）
3．Right cover（－3．2．1）
4．Side bar（－3．2．1）
5．Harness cover（－3．7．3）
6．Paper registration clutch $[A]$（ 33$) \times 1$ ，気 x 1 ）
7．By－pass clutch $[B]($（3）$\times 1$ ，臤 $\times 1$ ）
8．Front support unit（ -3.4 .8 ）
9．Paper feed clutch support $[C]\left(\mathcal{E}^{-1} x\right.$ 1）

10．Paper feed clutch［D］（ $⿷^{\mathbb{E} \|} \times 1$ ）

3．5 DEVELOPMENT

3．5．1 COLOR DEVELOPMENT MOTOR，COLOR OPC MOTOR AND BLACK OPC／DEVELOPMENT MOTOR

1．Front door
2．Right cover（－3．2．1）
3．Color development motor $[A](\hat{\xi} \times 4, \quad[C]$鳥lll

5．Black OPC／development motor［C］ （角 $\times 4$ ，気 $\times 1$ ）

3．5．2 DEVELOPMENT CLUTCH

1．Front door
2．Top cover
3．Right cover（－3．2．1）
4．Development clutch plate $[\mathrm{A}](\hat{\xi} \times 2)$
5．Development clutch $[B]$（metal pin $\times 1$ ，玉ll E 1）

3．5．3 TRANSFER BELT CONTACT MOTOR

1．Front door
2．Top cover
3．Right cover（－3．2．1）
4．Transfer belt contact motor unit［A］ （角 $\times 2$ ，気 $\times 1$ ）

3．5．4 TONER SUPPLY MOTOR
1．Front cover
2．Top cover
3．Right cover（－3．2．1）
4．Toner supply motor unit $[A]\left(\hat{\xi^{2}} \times 2\right.$ ，玉気 x 1）
5．Toner supply motor $[B]\left(\begin{array}{l}\text { 为 }\end{array} \times 2\right)$

［B］

3.5.5 TRANSFER ROLLER CONTACT MOTOR

1. Front door
2. Left cover
3. Front door support unit $[\mathrm{A}]\left(\hat{\xi^{3}} \times 2\right.$, $\left.(3) \times 1\right)$

4. Inner cover $[B](\hat{\xi} \times 2)$
[B]

5. Transfer roller contact motor unit [C] (堅 $\times 2$, 氟 $\mathrm{H} \times 1$)
6. Transfer roller contact motor [D] ($(\hat{\xi} \times 2)$

3．5．6 ID SENSORS

1．Front door
2．Fusing unit（－3．8．1）
3．ID sensor cover $[A]\left(\mathcal{E}^{2} \times 1\right)$
4．ID sensor bracket $[B](\hat{\xi} \times 3$ ，気 $\mathrm{ll} \times 1)$ NOTE：Do SP 21114 to adjust the ID sensors after you replace the ID sensor．

3．6 DRIVE

3．6．1 DRIVE UNIT

1．Top cover
2．Front door
3．Left cover
4．Transfer belt unit
5．PCU $x 4$
6．Toner bottle $\times 4$
7．Toner supply motor unit $x 4$（－3．5．4）
NOTE：Clean the toner hopper and toner transport path before you remove the toner supply motor unit．If not，toner scattering can occur．
8．Right cover（－3．2．1）
9．Top frame $[A](\hat{\beta} \times 5)$
10．Fusing unit fan $[B]$（ $\left.⿷^{〔 l l}\right) \times 1$ ）
11．Harness guide $[C](\hat{\xi} \times 2)$
12．Drive unit［D］（

3.7 DUPLEX

3.7.1 DUPLEX JAM SENSOR

1. Front door cover (-3.4 .6)
2. Duplex jam sensor $1[A]\left(\mathrm{E}_{\mathrm{U}}^{\mathrm{V}} \mathrm{x} 1\right)$
3. Duplex jam sensor $2[B](E$ 島 x 1)

3.7.2 INVERTER SENSOR

1. Front door
2. Duplex paper guide plate $[A](\hat{\xi} x$ 6)
3. Inverter sensor board $[B]$
4. Inverter sensor [C] ($\mathrm{E}^{\boldsymbol{U}} \mathrm{Cl} \times 1$)

3.7.3 DUPLEX MOTOR AND INVERTER MOTOR

1. Front door
2. Front door cover (-3.4.6)
3. Duplex paper guide plate $[A](\hat{\xi} \times 6)$
4. Harness cover $[B]\left(\mathcal{E}^{2} \times 2\right)$

5. Harness [D]
6. Harness cover [E]
7. Duplex roller unit $[F]\left(\mathcal{S}^{3} \times 4\right)$

3.8 FUSING

\triangle CAUTION
1. Make sure that the fusing unit is cool before you touch it. The fusing unit can be very hot.

2. Make sure to restore the insulators, shields, etc after you service the fusing unit.

3.8.1 FUSING UNIT

1. Front door
2. Fusing unit $[A]$

3.8.2 THERMISTOR AND THERMOSTAT

1. Front door
2. Fusing unit (-3.8.1)
3. Fusing unit upper cover $[A](\hat{E} \times 4)$
4. Fusing unit lower cover $[B](\hat{G} \times 6)$

5. Fusing supporter right $[\mathrm{A}](\hat{\xi} \times 2)$ and left plate $[B]\left(\tilde{\xi}^{3} \times 2\right)$

6. Thermostat [D] $\times 2(\underset{\xi}{(1)} \times 3)$

NOTE: Do not recycle a thermostat that is already opened. Safety is not guaranteed if you do this.

3.8.3 FUSING LAMP

1. Fusing unit
2. Fusing unit upper and lower cover (-3.8.2)
3. Fusing supporter right and left plate (-3.8.2)
4. Fusing lamp supporter right $[A]$
(
5. Fusing lamp [C] (

FUSING

3.8.4 FUSING EXIT SENSOR AND PAPER EXIT SENSOR

1. Front door
2. Paper exit unit (
3. Sensor board $[A]\left({ }^{2} \times 1\right.$, 姚 $\times 2$)
4. Fusing exit senor $[B]$
5. Paper exit sensor [C]

3.8.5 FUSING REGISTRATION SENSOR

1. Front door
2. Paper guide $[A]\left(\mathcal{E}^{2} \times 2\right.$, 気 $\times 1$)
3. Fusing registration sensor $[B]$

Fan Direction

NOTE: You must reinstall the cooling fans in the original orientations. Do not reinstall the cooling fans opposite to the original orientations, or the air will blow in the wrong directions.

3.9 ADJUSTMENTS

3.9.1 GAMMA ADJUSTMENT

NOTE: Clean and/or replace related parts first to solve any color quality problems. Perform these procedures if adjustments are necessary:

Summary

To adjust the printer gamma:

- Select the print mode you want to calibrate
- Print a color calibration test sheet
- Make the gradation scales on the printout smooth from the lowest to the highest density. Adjust the CMY gradation scale at the top of the chart by balancing the density of the C, M, and Y gradation scales - the CMY gray scale should change smoothly from minimum to maximum. There should be no coloration.

Example:

You can adjust 15 points for each color: (example [A]) between 0 (lowest density) [B] and 255 (highest density) [C]. For each point, you can adjust the density within 0 and 255.

The gradation scales marked 'Default' are printed according to the default gamma settings in the flash ROM in the controller. The gamma adjustment changes the densities at the adjustable points in the gradation scale. The gradation scale marked "Current" shows the current settings.

Compare the "Current" gradation scale with the 'Default' at the time you perform the adjustment procedure. Select the density for each of the 15 adjustable points, excluding points 0 and 255 , from the 'Default' gradation scale.
The NVRAM holds three sets of controller gamma settings:

- Those saved this time: Controller SP 1101 ToneCtlSet - Tone (Current)
- Those saved in the previous adjustment: Controller SP 1101 ToneCtISet Tone (Prev)
- The factory settings: Controller SP 1101 ToneCtISet - Tone (Factory).

Adjustment Procedure

1. Enter the controller service mode. (-5.1.1)
2. Use the down arrow key to select Controller SP 1102 "ToneCtlSet". Then press the Enter key.
3. Use the up/down key to select the mode you want to calibrate, Then press the Escape key until you get back to the controller service mode menu.
4. Use the down arrow key to select Controller SP 1103 "PrnColorSheet". Then press the Enter key.
5. Use the up/down key to select Controller SP 1103001 "ToneCtlSheet" (normally this is displayed by default). Then press the Enter key.
6. Press the Enter key to print out the "color calibration test sheet". When "Execute?" shows.
7. Press the Escape key 2 times to exit from the menu. (You return to Controller SP 1103 "PrnColorSheet" in the controller service menu.)
8. Use the down arrow key to select Controller SP 1104 "ToneCtIValue". Then press the enter key.
9. Use the up/down arrow key to select the setting you want to adjust. Then press the enter key. The three digits in the display (example '016') indicate a position on the color calibration test sheet.

Operation Panel Display	Color Calibration Test Sheet
Set Black 1	Default Value 16
Set Black 2	Default Value 32
Set Black 3	Default Value 48
$:$	$:$
$:$	$:$
Set Black 13	Default Value 208
Set Black 14	Default Value 224
Set Black 15	Default Value 240
Set Cyan 1~15	See Set Black 1~15
Set Magenta 1~15	See Set Black 1~15
Set Yellow 1~15	See Set Black 1~15

Adjust the color density at each of the 15 points for each of the four colors.
NOTE: 1) Execute these to decide what density value to input:
2) Look at the color adjustment sheet.
3) Look at the gradation scale entitled 'Default' for the color you want to adjust.
4) Go along the scale until you reach the density you want to input.
5) Read off the value on the scale and store it in the machine.
a) Use the up/down key to move the cursor along the three-digit display. Then press the Enter key.
b) Use the up/down key to change the digit at the cursor. Then press the Enter key.
c) Press the Escape key to exit from the menu.
6) Execute the same for all 15 points.
10. When the density setting is complete for all colors, print out a color adjustment sheet again and make sure that the gradation scale for each printed color is smooth and that the CMY gradation scale is gray. Do the adjustment again if there is an anomaly (normally, repeat this procedure 3 to 5 times).
11. Execute these when the adjustment results are satisfactory:

1) Use Controller SP 1105 "ToneCtISave" in the controller service menu, to store the new settings in the controller.
2) Reset the controller (press the [Reset] key when the machine is off line") to use the new settings.

NOTE: You must reset the controller to keep the new settings in the controller NVRAM.

TROUBLESHOOTING

4. TROUBLESHOOTING

4.1 PROCESS CONTROL RESULT

The table below lists the process control results shown in SP 3821.

Number	Result	Notes
10	Success	No error
21	ID sensor correction error	SC 400
22	ID sensor: LED adjustment error	SC 418
31	Charge bias correction error	SC 300 to 307
51	High Vmin (Bk), High K2 (Color) error	SP3145 NOTE
52	Low K2 (Color) error	SP3146 NOTE
53	High K5 error	SP3147 NOTE
54	Low K5 error	SP3147 NOTE
55	High development gamma	$\gamma>5.0$, NOTE
56	Low development gamma	$\gamma<0.5$, NOTE
57	Development bias adjustment error	Vk >150V ©NOTE
58	Development bias adjustment error	Vk <-150V NNOTE
90	No process control	-
99	Not successful	Interrupt during the process control (e.g. Door open)

NOTE: This error code does not usually occur. Although an error code may be displayed, if no problem is observed with image density and/or development gamma, nothing needs to be done. If an image problem such as low image density is observed, check the following points: Transfer belt / PCU / ID sensor / Toner Bottle
The 8 numbers on the LCD in SP 3821 indicate the process control result for each color.

There are two numbers for each color. The numbers are shown from left to right on the display as follows: Black, Magenta, Cyan, Yellow.
For example, if process control for each color is successful:
10101010
10 (Black), 10 (Magenta), 10 (Cyan), 10 (Yellow)
If a problem is detected during process control:
10515110
10 (Black), 51 (Magenta), 51 (Cyan), 10 (Yellow)

SERVICE CALL CONDITIONS

4.2 SERVICE CALL CONDITIONS

4.2.1 SUMMARY

1. All SCs are logged.
2. If a PCB is suspected to be the cause of a problem, first disconnect, then reconnect the connectors before you replace them.
3. If a motor is suspected to be the cause of a problem, first check the mechanical load before you replace motors or sensors due to a motor lock.

There are 4 levels of service call conditions.

Level	Definition	Reset Procedure
A	To prevent damage to the machine, the main machine cannot be operated until a service representative has reset the SC.	Execute SP 5810, and then turn the main power switch off and on.
B	SCs that disable only the features that use the defective item. Although these SCs are not shown to the user under normal conditions, they are displayed on the operation panel only when the defective feature is selected.	Turn the operation switch or main switch off and on.
C	The SC history is updated. The machine can be operated as usual.	The SC will not be displayed. Only the SC history is updated.
D	Turning the main switch off then on resets SCs displayed on the operation panel. These are redisplayed if the error occurs again.	Turn the operation switch off and on.

4.2.2 SC CODE DESCRIPTIONS

NOTE: If the EGB or controller board is replaced, remove the NVRAM from the old board and install it on the new one.

- The SC level is indicated under SC number in the table below.
- The symbol " \bullet " that is in the "Possible Cause/Required Action" column indicates the possible cause.
- The figure " 1 ,etc." that is in the "Possible Cause/Required Action" column indicates the required action.

Engine SC

$\underset{\text { [Level] }}{\mathbf{S C}}$	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 195 \\ & {[\mathrm{D}]} \end{aligned}$	Incorrect serial number	
	When checking the registered product number, it does not match the printer's product number.	- Registered product number does not match the printer's product number. 1. Try again to input the correct product number with SP5811-001.
$\begin{aligned} & 202 \\ & \text { [D] } \end{aligned}$	Polygon motor error: Time out with the polygon motor activated	
	After the polygon motor turns on or changes the speed, the SCRDY_N is not active within 10 seconds.	- Disconnected cable from the polygon motor drive board or defective connection - Defective polygon motor or drive board
$\begin{gathered} \hline 203 \\ {[\mathrm{D}]} \end{gathered}$	Polygon motor error: Time out with the polygon motor inactivated	
	After the polygon motor turns off or changes the speed, the SCRDY_N is not inactive within 10 seconds.	- Disconnected cable from the polygon motor drive board or defective connection - Defective polygon motor or drive board
$\begin{gathered} 204 \\ {[D]} \end{gathered}$	Polygon motor error: XSCRDY signal error	
	PMRDY_N signal consecutively detects that the polygon motor is an inactive state while LDB unit scans.	- Disconnected cable from the polygon motor drive board or defective connection - Defective polygon motor or drive board 1. Check the connectors. 2. Replace the polygon motor. 3. Replace the polygon motor drive board.
205	Polygon motor error: XSCRDY signal not stable	
[D]	PMRDY_N signal consecutively detects that the polygon motor is an inactive state while the polygon motor turns on or changes the speed.	- Disconnected cable from the polygon motor drive board or defective connection - Defective polygon motor or drive board. 1. Check the connectors. 2. Replace the polygon motor. 3. Replace the polygon motor drive board.

$\overline{\text { SC }}$	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 210 \\ & {[C]} \end{aligned}$	Trailing edge laser detection error: $[\mathrm{K}]$	
	The laser synchronizing detection signal for LDB [K] of the trailing edge is not detected for one second after the LDB unit turned on when detecting the main scan magnification.	- Disconnected cable from the laser synchronizing detection unit or defective connection - Defective laser synchronizing detector - Defective LDB - Defective EGB 1. Check the connectors. 2. Replace the laser-synchronizing detector. 3. Replace the LDB. 4. Replace the EGB.
$\begin{aligned} & 211 \\ & {[\mathrm{C}]} \end{aligned}$	Trailing edge laser detection error: $[\mathrm{Y}]$	
	The laser synchronizing detection signal for LDB [Y] of the trailing edge is not detected for one second after the LDB unit turned on when detecting the main scan magnification.	Same as SC 210
$\begin{aligned} & 212 \\ & {[\mathrm{C}]} \end{aligned}$	Trailing edge laser detection error: [M]	
	The laser synchronizing detection signal for LDB [M] of the trailing edge is not detected for one second after the LDB unit turned on when detecting the main scan magnification.	Same as SC 210
$\begin{aligned} & 213 \\ & \text { [C] } \end{aligned}$	Trailing edge laser detection error: [C]	
	The laser synchronizing detection signal for LDB [C] of the trailing edge is not detected for one second after the LDB unit turned on when detecting the main scan magnification.	Same as SC 210
$\begin{gathered} 220 \\ \text { [D] } \end{gathered}$	Laser Synchronizing Detection Error: LDB of the leading edge [K]	
	The laser synchronizing detection signal for LDB [K] of the leading edge is not output for two seconds after LDB unit turns on while the polygon motor is rotating normally.	- Disconnected cable from the laser synchronizing detection unit or defective connection - Defective laser synchronizing detector - Defective LDB - Defective EGB 1. Check the connectors. 2. Replace the laser-synchronizing detector. 3. Replace the LDB. 4. Replace the EGB.

$\underset{\text { [Level] }}{\mathbf{S C}}$	Item	
	Symptom	Possible Cause/Required Action
$\begin{gathered} 222 \\ {[\mathrm{D}]} \end{gathered}$	Leading edge laser detection error: [Y]	
	The laser synchronizing detection signal for LDB [Y] of the leading edge is not output for two seconds after LDB unit turns on while the polygon motor is rotating normally.	Same as SC 221
$\begin{gathered} 224 \\ {[\mathrm{D}]} \end{gathered}$	Leading edge laser detection error: [M]	
	The laser synchronizing detection signal for LDB [M] of the leading edge is not output for two seconds after LDB unit turns on while the polygon motor is rotating normally.	Same as SC 221
$\begin{gathered} \hline 226 \\ \text { [D] } \end{gathered}$	Leading edge laser detection error: [C]	
	The laser synchronizing detection signal for LDB [C] of the leading edge is not output for two seconds after LDB unit turns on while the polygon motor is rotating normally.	Same as SC 221
$\begin{aligned} & 230 \\ & \text { [C] } \end{aligned}$	FGATE: On error [K]	
	The PFGATE ON signal does not assert within 5 seconds after processing the image in normal job or MUSIC for $[K]$ starts.	- Defective connection between the controller board and EGB - Defective cable between the EGB and LDB 1. Check the connectors. 2. Replace the LDB. 3. Replace the EGB.
$\begin{aligned} & 231 \\ & \text { [C] } \end{aligned}$	FGATE: Off error [K]	
	1. The PFGATE ON signal still asserts within 5 seconds after processing the image in normal job or MUSIC for $[\mathrm{K}]$ ends. 2. The PFGATE ON signal still asserts when the next job starts.	- Defective connection between the controller board and EGB - Defective cable between the EGB and LDB 1. Check the connectors. 2. Replace the LDB. 3. Replace the EGB.
232	FGATE: On error [Y]	
[C]	The PFGATE register of GAVD does not assert within 5 seconds after processing the image in normal job or MUSIC for [Y] started.	Same as SC 230

$\underset{\text { [Level] }}{-7}$	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 233 \\ & \text { [C] } \end{aligned}$	FGATE: Off error [Y]	
	1. The PFGATE ON signal still asserts within 5 seconds after processing the image in normal job or MUSIC for $[K]$ ends. 2. The PFGATE ON signal still asserts when the next job starts.	Same as SC 231
$\begin{aligned} & 234 \\ & \text { [C] } \end{aligned}$	FGATE: On error [M]	
	The PFGATE register of GAVD does not assert within 5 seconds after processing the image in normal job or MUSIC for [M] started.	Same as SC 230
$\begin{aligned} & 235 \\ & \text { [C] } \end{aligned}$	FGATE: Off error [M]	
	1. The PFGATE ON signal still asserts within 5 seconds after processing the image in normal job or MUSIC for [M] ends. 2. The PFGATE ON signal still asserts when the next job starts.	Same as SC 231
$\begin{aligned} & \hline 236 \\ & \text { [C] } \end{aligned}$	FGATE: On error [C]	
	The PFGATE register of GAVD does not assert within 5 seconds after processing the image in normal job or MUSIC for [C] started.	Same as SC 230
$\begin{aligned} & 237 \\ & \text { [C] } \end{aligned}$	FGATE: Off error [C]	
	1. The PFGATE ON signal still asserts within 5 seconds after processing the image in normal job or MUSIC for [C] ends. 2. The PFGATE ON signal still asserts when the next job starts.	Same as SC 231
240	LDB error [K]	
[D]	The EGB detects LDB error a few times consecutively when LDB unit turns on after LDB initialisation.	- Defective LDB 1. Replace the LDB.

SC [Level]	Item	
	Symptom	Possible Cause/Required Action
$\begin{gathered} 241 \\ {[D]} \end{gathered}$	LDB error [Y]	
	The EGB detects LDB error a few times consecutively when LDB unit turns on after LDB initialisation.	Same as SC240
$\begin{gathered} \hline 242 \\ {[\mathrm{D}]} \end{gathered}$	LDB error [M]	
	The EGB detects LDB error a few times consecutively when LDB unit turns on after LDB initialisation.	Same as SC240
$\begin{gathered} \hline 243 \\ {[D]} \end{gathered}$	LDB error [C]	
	The EGB detects LDB error a few times consecutively when LDB unit turns on after LDB initialisation.	Same as SC240
$\begin{gathered} \hline 270 \\ {[\mathrm{D}]} \end{gathered}$	LDU shutter error	
	Sensor output does not change even if 1 second passes after the LDU shutter motor is on.	- Sensor defective or LDU shutter motor defective 1. Replace the LDU shutter sensor or shutter motor.
$\begin{gathered} \hline 300 \\ {[\mathrm{D}]} \end{gathered}$	High voltage power board: Charge voltage output error [K]	
	The measured voltage is not proper when EGB measures the charge output for each color.	- Defective charge roller - Defective connectors - Disconnected harness - Defective high voltage power 1 1. Check the connectors. 2. Replace the PCU for black. 3. Replace the drum positioning plate. 4. Replace the high voltage power 1.
$\begin{aligned} & \hline 301 \\ & {[\mathrm{D}]} \end{aligned}$	High voltage power board: Charge voltage output error [M]	
	The measured voltage is not proper when EGB measures the charge output for each color.	- Defective charge roller - Defective connectors - Disconnected harness - Defective high voltage power 1 1. Check the connectors. 2. Replace the PCU for magenta. 3. Replace the drum positioning plate. 4. Replace the high voltage power 1.
$\begin{aligned} & 302 \\ & {[D]} \end{aligned}$	High voltage power board: Charge voltage output error [C]	
	The measured voltage is not proper when EGB measures the charge output for each color.	- Defective charge roller - Defective connectors - Disconnected harness - Defective high voltage power 1 1. Check the connectors. 2. Replace the PCU for cyan. 3. Replace the drum positioning plate. 4. Replace the high voltage power 1.

$\begin{aligned} & \hline \text { SC } \\ & {[\text { Level] }} \end{aligned}$	Item		
	Symptom	Possible Cause/Required Action	
$\begin{aligned} & 303 \\ & \text { [D] } \end{aligned}$	High voltage power board: Charge voltage output error [Y]		
	The measured voltage is not proper when EGB measures the charge output for each color.	- Defective charge roller - Defective connectors - Disconnected harness - Defective high voltage power 1 1. Check the connectors. 2. Replace the PCU for yellow. 3. Replace the drum positioning plate. 4. Replace the high voltage power 1.	
$\begin{aligned} & 304 \\ & \text { [D] } \end{aligned}$	Charge AC bias error [K]		
	The charge current less than $200 \mu \mathrm{~A}$ is detected.	- Defective charge roller - Defective connectors - Disconnected harness - Defective high voltage power 1 1. Check the connectors. 2. Replace the PCU for black. 3. Replace the drum positioning plate. 4. Replace the high voltage power 1.	
$\begin{aligned} & 305 \\ & \text { [D] } \end{aligned}$	Charge AC bias error [M]		
	The charge current less than $200 \mu \mathrm{~A}$ is detected.	- Defective charge roller - Defective connectors - Disconnected harness - Defective high voltage power 1 1. Check the connectors. 2. Replace the PCU for magenta. 3. Replace the drum positioning plate. 4. Replace the high voltage power 1.	
$\begin{aligned} & \hline 306 \\ & \text { [D] } \end{aligned}$	Charge AC bias error [C]		
	The charge current less than $200 \mu \mathrm{~A}$ is detected.	- Defective charge roller - Defective connectors - Disconnected harness - Defective high voltage power 1 1. Check the connectors. 2. Replace the PCU for cyan. 3. Replace the drum positioning plate. 4. Replace the high voltage power 1.	
307	Charge AC bias error [Y]		
[D]	The charge current less than $200 \mu \mathrm{~A}$ is detected.	- Defective charge roller - Defective connectors - Disconnected harness - Defective high voltage power 1 1. Check the connectors. 2. Replace the PCU for yellow. 3. Replace the drum positioning plate. 4. Replace the high voltage power 1.	
104		4-8	SM

SC [Level]	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 325 \\ & \text { [D] } \end{aligned}$	Color development motor error	
	1. LOCK signal is not detected for more than two seconds while the motor START signal is on. 2. LOCK signal is not cancelled within two seconds after the motor is off.	- Color development motor slip due to the increase of the load torque 1. Adjust the load torque properly by replacing or cleaning the development unit. 2. Replace or repair the development motor if the load torque is normal.
$\begin{aligned} & \hline 360 \\ & \text { [D] } \end{aligned}$	TD sensor: Output maximum error [K]	
	Vt is more than the maximum value (4.5) for three times consecutively.	- Defective connector connection - Increasing toner density 1. Replace the PCU.
$\begin{gathered} \hline 361 \\ \text { [D] } \end{gathered}$	TD sensor: Output maximum error [M]	
	Same as SC 360	
$\begin{aligned} & 362 \\ & \text { [D] } \end{aligned}$	TD sensor: Output maximum error [C]	
	Same as SC 360	
363	TD sensor: Output maximum error [Y]	
	Same as SC 360	
$\begin{aligned} & 364 \\ & {[\mathrm{D}]} \end{aligned}$	TD sensor: Output minimum error [K]	
	Vt is less than the minimum value (0.5) for three times consecutively.	- Defective connector connection - Decreasing toner density 1. Replace the PCU.
$\begin{aligned} & \hline 365 \\ & \text { [D] } \\ & \hline \end{aligned}$	TD sensor Output minimum error [M]	
	Same as SC 364	
$\begin{aligned} & 366 \\ & \text { [D] } \\ & \hline \end{aligned}$	TD sensor: Output minimum error [C]	
	Same as SC 364	
$\begin{aligned} & \hline 367 \\ & \text { [D] } \end{aligned}$	TD sensor: Output minimum error [Y]	
	Same as SC 364	
$\begin{aligned} & 368 \\ & {[\mathrm{D}]} \end{aligned}$	TD sensor: Initial control voltage error [K]	
	1. Vt is less than 1 V even though the control power voltage is adjusted to the maximum. 2. Vt is more than 1 V even though the control power voltage is adjusted to the minimum.	- Defective connector connection - Defective TD sensor - The toner density in the developer is different from the initial condition. 1. Replace the PCU.
$\begin{aligned} & 369 \\ & \text { [D] } \\ & \hline \end{aligned}$	TD sensor: Initial control voltage error [M]	
	Same as SC 368	
$\begin{aligned} & 370 \\ & \text { [D] } \\ & \hline \end{aligned}$	TD sensor: Initial control voltage error [C]	
	Same as SC 368	
$\begin{aligned} & 371 \\ & \text { [D] } \end{aligned}$	TD sensor: Initial control voltage error [Y]	
	Same as SC 368	

$\underset{[\text { Level] }}{\mathbf{S C}}$	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 372 \\ & {[D]} \end{aligned}$	TD sensor: Initial adjustment error [K]	
	Vt is $\operatorname{not}(\mathrm{A} \pm 0.2)$ when initial setting for TD sensor is executed. $\mathrm{A}=\mathrm{SP} 3011-001 \text { for }[\mathrm{K}]$	- Defective connector connection - Defective TD sensor - The toner density in the developer is different from the initial condition. 1. Replace the PCU.
$\begin{aligned} & 373 \\ & {[\mathrm{D}]} \end{aligned}$	TD sensor: Initial adjustment error [M]	
	Vt is $\operatorname{not}(\mathrm{A} \pm 0.2)$ when initial setting for TD sensor is executed. A = SP3011-002 for [M]	Same as 372
$\begin{aligned} & 374 \\ & {[\mathrm{D}]} \end{aligned}$	TD sensor: Initial adjustment error [C]: same as 372	
	Vt is $\operatorname{not}(\mathrm{A} \pm 0.2)$ when initial setting for TD sensor is executed. $\mathrm{A}=\mathrm{SP} 3011-003 \text { for }[\mathrm{C}]$	Same as 372
$\begin{aligned} & 375 \\ & \text { [D] } \end{aligned}$	TD sensor: Initial adjustment error [Y]: same as 372	
	Vt is $\operatorname{not}(\mathrm{A} \pm 0.2)$ when initial setting for TD sensor is executed. A = SP3011-004 for [Y]	Same as 372
$\begin{aligned} & \hline 380 \\ & \text { [C] } \end{aligned}$	Drum gear position sensor error	
	When receiving the input signal of drum gear position sensor is not correctly done, SC380 is logged.	- Unclean or defective drum gear position sensor 1 Clean the drum gear position sensor. 2 Replace the drive unit.
$\begin{gathered} 396 \\ {[D]} \end{gathered}$	Drum motor error [K]	
	The LOCK signal is not detected for 2 seconds more while the start signal of the drum motor for black PCU is output.	- OPC motor slip due to the excessive load 1. Clean the PCU. 2. Check the cable from the Black OPC/ Development motor. Replace it if necessary. 3. Replace the EGB. 4. Replace the Black OPC/ Development motor.
$\begin{aligned} & 397 \\ & {[\mathrm{D}]} \end{aligned}$	Drum motor error [CMY]	
	The LOCK signal is not detected for 2 seconds more while the start signal of the drum motor for color PCU is output.	Same as SC 396
$\begin{gathered} 400 \\ {[\mathrm{D}]} \end{gathered}$	ID sensor correction error	
	Regular Vsp is not $(4 \pm 0.5$ V) when ID sensor correction is executed.	- Defective ID sensors - Dirty ID sensors or transfer belt - ID sensor life is over. 1. Replace the ID sensors.
$\begin{gathered} 418 \\ {[\mathrm{D}]} \end{gathered}$	ID sensor: LED adjustment error	
	LED PWM adjustment is not [A] for three times consecutively. $[\mathrm{A}]=50<[\mathrm{A}]<400$	- Defective ID sensors - Dirty ID sensors or transfer belt - ID sensor life is over. 1. Replace the ID sensors.

$\underset{\text { [Level] }}{\text { SC }}$	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 442 \\ & {[D]} \end{aligned}$	Transfer belt contact error	
	The transfer belt contact sensor does not detect the movement of actuator at the sensor while the polygon motor rotates.	- Dirty transfer belt contact sensor - Defective transfer belt contact motor - Disconnected connector of transfer belt contact sensor or motor - Disconnected cable 1. Replace the transfer belt contact sensor. 2. Replace the transfer belt contact motor.
$\begin{gathered} \hline 452 \\ {[\mathrm{D}]} \end{gathered}$	Transfer roller contact error	
	The transfer roller contact sensor does not detect the movement of actuator at the sensor while the polygon motor rotates.	- Defective transfer roller contact sensor - Defective transfer roller contact motor - Defective IOB 1. Replace the transfer roller contact sensor. 2. Replace the transfer roller contact motor. 3. Replace the IOB.
$\begin{gathered} 490 \\ \text { [D] } \end{gathered}$	High Voltage Power 1: High voltage output error	
	Error signal is detected for 10 times consecutively.	- One of the DC bias outputs for each PCU is shorted or one of the transfer belt bias outputs for [Y$],[\mathrm{M}]$ and $[\mathrm{C}]$. - Power leaking - Defective connection - Disconnected cable - Defective PCU - Defective High Voltage Power 1 1. Replace the High Voltage Power 1. 2. Reset the cables and components. 3. Replace the PCU.
$\begin{gathered} 491 \\ \text { [D] } \end{gathered}$	High Voltage Power 2: High voltage output error	
	Error signal is detected for 10 times consecutively.	- One of the separation bias output, development bias output and transfer belt cleaning bias output is shorted or one of the transfer belt bias output for $[K]$ and transfer roller bias output is shorted. - Power leaking - Defective connection - Defective PCU - Defective High Voltage Power 2 1. Replace the High Voltage Power 2. 2. Reset the cables and components. 3. Replace the PCU.
531	Paper feed / Fusing motor error	
[D]	1. LOCK signal is not detected for more than two seconds while the motor START signal is on. 2. LOCK signal is not cancelled within two seconds after the motor is off.	- Defective paper feed/ fusing motor 1. Replace the paper feed/fusing motor.

$\underset{[\text { Level] }}{-2 \mathrm{SC}}$	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 532 \\ & {[\mathrm{D}]} \end{aligned}$	Fan motor error	
	The fan motor "On" signal is not detected for the components below after the drum motor for black is set to "On". - PSU fan - Fusing unit fan - Polygon motor fan - Drive unit fan - Exit paper fan	- Defective fan motor 1. If the error occurs again, one of the fans is defective. Remove the covers, find the defective fan and replace it.
$\begin{aligned} & 541 \\ & {[\mathrm{~A}]} \end{aligned}$	Thermistor error	
	The thermistor output is less than $0^{\circ} \mathrm{C}$ for six seconds.	- Disconnected thermistor - Defective connector connection
$\begin{aligned} & 542 \\ & {[\mathrm{~A}]} \end{aligned}$	Print ready temperature error	
	1. The heating roller temperature increase that is less than 67 degrees for 9 seconds is detected five times consecutively. 2. The fusing temperature does not reach the print ready temperature within 15 seconds after the fusing lamp was controlled.	- Defective thermistor - Thermistor coming off - Incorrect power supply input at the main power socket - Defective fusing lamp
$\begin{aligned} & 543 \\ & {[\mathrm{~A}]} \end{aligned}$	High temperature detection: Software	
	The thermistor detects $230^{\circ} \mathrm{C}$ for 0.2 seconds.	- Defective thermistor - Defective I/O board - Defective EGB
$\begin{gathered} 544 \\ {[\mathrm{~A}]} \end{gathered}$	High temperature detection: Hard	
	The thermistor detects $250^{\circ} \mathrm{C}$.	- Defective thermistor - Defective I/O board - Defective EGB - Defective fusing unit, PSU, or EGB 1. Replace the fusing unit. 2. Replace the PSU.
545	Heating lamp error	
[A]	The fusing lamp is fullpowered for 8 seconds after the heating roller reaches the print ready temperature.	- Deformed thermistor - Thermistor coming off - Defective fusing lamp

$\begin{aligned} & \hline \text { SC } \\ & {[\text { Level }]} \end{aligned}$	Item	
	Symptom	Possible Cause/Required Action
$\begin{gathered} 547 \\ {[\mathrm{D}]} \end{gathered}$	Zero cross error	
	1. The zero cross signal is detected three times even though the heater relay is off when turning on the main power. 2. The zero cross signal is not detected for three seconds even though the heater relay is on after turning on the main power or closing the front door. 3. The detection error occurs twice or more in the ten zero cross signal detections. This error is defined when the detected zero cross signal is less than 17 for 200 ms .	- Defective fusing lamp relay - Defective fusing lamp relay circuit - Unstable power supply 1. Check the power supply source. 2. Replace the PSU.
$\begin{gathered} 557 \\ {[\mathrm{C}]} \end{gathered}$	Zero cross frequency error	
	The detection error occurs ten times in a row in ten zero cross signal detections. This error is defined when the detected zero cross signal is more than 28 for 200 ms . This SC is only logged. In this case, the power frequency is defined as 60 Hz .	- Noise (High frequency) 1. Check the power supply source.
$\begin{gathered} \hline 670 \\ {[\mathrm{D}]} \end{gathered}$	Engine start-up error	
	The ready signal from the engine board is not detected.	- Defective engine board. 1. Replace the engine board.
$\begin{gathered} \hline 687 \\ {[\mathrm{D}]} \end{gathered}$	Controller board command error	
	A command from the controller board is not received.	- Loose connection - Defective controller board - Defective EGB 1. Check the connection of the controller board. 2. Replace the controller board. 3. Replace the EGB
$\begin{gathered} \hline 690 \\ \text { [D] } \end{gathered}$	EGB data error	
	The data transfer in the EGB is interrupted by some incident (e.g. cover open etc.) during the data transfer.	- Defective EGB 1. Replace the EGB.

SERVICE CALL CONDITIONS

Controller Error

The following table shows the controller error codes. These codes show at the following times if an error occurs:

- Power-on
- After the power-on self diagnostic test

Important: Always try turning the main switch off and on to check if the problem persists.

SC	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 818 \\ & {[D]} \end{aligned}$	[00FF] Watch-dog error	
	While the system program is running, other processes do not operate at all.	- Defective controller 1. Replace the controller if it occurs frequently.
$\begin{aligned} & 819 \\ & \text { [D] } \end{aligned}$	[0696e] Kernel stop: Process error	
	System completely down	- Defective RAM DIMM - Defective SD card in slot 1 - Defective controller - Software error 1. Check and/or replace the RAM DIMM. 2. Check and/or replace the SD card in slot 1. 3. Replace the controller. 4. See NOTE at the end of the SC table.
	[0766d] Kernel stop: VM full error	
	Unexpected system memory size	- Defective RAM DIMM - Defective SD card in slot 1 - Defective controller - Software error 1. Check and/or replace the RAM DIMM. 2. Check and/or replace the SD card in slot 1. 3. Replace the controller. 4. See "NOTE" at the end of the SC table.
	[4361] Kernel stop: Cache error	
	Cache error in the CPU	- Defective CPU 1. Replace the controller board.
	[----] Kernel stop: The others	
	Error in OS	- Defective memory - Defective flash memory - Defective CPU 1. Replace the controller board.

SC	Item	
Sc	Symptom	Possible Cause/Required Action
$\begin{aligned} & 820 \\ & \text { [D] } \end{aligned}$	[0001-0015] [000A-000D] Self-diagnostic error- CPU: Detailed error code	
	During the boot monitor program and selfdiagnostic, any exception or cut-in are not supposed to happen. If these happen, it is defined as SC.	- Defective CPU device - Defective boot monitor program or self-diagnostic program 1. Replace the controller board. 2. Reinstall the system firmware.
	[00FF] Self-diagnostic error- CPU: Detailed error code	
	Cache access error in the CPU	- Defective CPU - Defective local bus 1. Turn the main switch off and on. 2. Reinstall the system program. 3. Replace the controller board.
	[0601, 0602, 0605, 0606, 0607, 0609] Self-diagnostic error- CPU: Detailed error code	
	Exceptional command does not operate even though it is executed on purpose.	- Defective CPU devices 1. Replace the controller board
	[060A-060E] Self-diagnostic error- CPU: Detailed error code	
	Cut-in command does not operate when it is executed.	- Defective CPU devices - Defective ASIC devices 1. Replace the controller board
	[0610] Self-diagnostic error- CPU: Detailed error code	
	Timer cut-in does not operate even though it is set.	- Defective CPU devices 1. Replace the controller board
	[0612] Self-diagnostic error- CPU: Detailed error code	
	Cut-in in ASIC occurs.	- Defective ASIC - Defective devices in which ASIC detects cut-in. 1. Replace the controller board.
	[06FF] Self-diagnostic error- CPU: Detailed error code	
	The pipeline clock frequency rate is different from the prescribed value.	- Defective CPU devices - Mode bit data error, which is used for initialising CPU 1. Replace the controller board
	[0702] Self-diagnostic error- CPU: Detailed error code	
	The result when the program is executed in the command cache is different from desirable value.	- Insufficient CPU cache - Insufficient memory process speed 1. Replace the controller board. 2. Replace the RAM DIMM.
	[0709, 070A] Self-diagnostic error- CPU: Detailed error code	
	Even you write the data in the only cache of memory, the data is actually written in another area of memory.	- Defective CPU devices - Incorrect SPD - Boot mode setting error 1. Replace the controller board. 2. Replace the RAM DIMM.

sc	Item	
	Symptom	Possible Cause/Required Action
	[0801, 0804, 0807, 0808, 0809, 80A] Self-diagnostic error- CPU: Detailed error code	
	An error occurs when checking the TLB.	- Defective CPU devices 1. Replace the controller board.
	[4002-4005] Self-diagnostic error- CPU: Detailed error code	
	The calculation error in the CPU occurs.	- Defective CPU 1. Replace the CPU.
$\begin{aligned} & \hline 821 \\ & {[D]} \end{aligned}$	[0B00] Self-diagnostic error - ASIC	
	ASIC and CPU timer error detected during selfdiagnostic.	- Defective controller 1. Replace the controller if the error is frequent.
	[0D05] Self-diagnostic error- ASIC	
	The CPU checks if the ASIC timer works properly compared with the CPU timer. If the ASIC timer does not function in the specified range, this SC code is displayed.	- System firmware problem - Defective RAM-DIMM - Defective controller 1. Reinstall the controller system firmware. 2. Replace the RAM-DIMM. 3. Replace the controller board.
$\begin{gathered} 822 \\ {[B]} \end{gathered}$	[3003] Self-diagnostic error- HDD: Time out error	
	When the main switch is turned on or starting the self-diagnostic, the HDD stays busy for the specified time or more.	- Loose connection - Defective HDD - Defective controller 1. Check that the HDD is properly connected to the controller. 2. Replace the HDD. 3. Replace the controller.
	[3004] Self-diagnostic error- HDD: Command error	
	When the main switch is turned on or starting the self-diagnostic, the diagnostic error from HDD occurs.	- Defective HDD 1. Replace the HDD.
$\begin{gathered} 823 \\ {[B]} \end{gathered}$	[6101] Self-diagnostic error - NIC: MAC address check sum error	
	The result of the MAC address check sum does not match the check sum stored in ROM.	- Defective controller 1. Replace the controller.
	[6104] Self-diagnostic error - NIC: PHY IC error	
	The PHY IC on the controller cannot be properly recognized.	Same as [6101]
	[6105] Self-diagnostic error - NIC: PHY IC loop back error	
	An error occurred during the loop-back test for the PHY IC on the controller.	Same as [6101]
104		4-16 SM

SC	Item	
	Symptom	Possible Cause/Required Action
$\begin{gathered} 824 \\ {[D]} \end{gathered}$	[1401] Self-diagnostic error - NVRAM	
	The controller cannot recognize the standard NVRAM installed or detects that the NVRAM is defective.	- Loose connection - Defective standard NVRAM - Defective controller 1. Check the standard NVRAM is firmly inserted into the socket. 2. Replace the NVRAM. 3. Replace the controller.
$\begin{gathered} 827 \\ {[\mathrm{D}]} \end{gathered}$	[0201] Self-diagnostic error - RAM: Verification error	
	Error detected during a write/verify check for the standard RAM (SRAM DIMM).	- Loose connection - Defective RAM DIMM - Defective controller 1. Replace the RAM DIMM. 2. Replace the controller.
$\begin{gathered} 828 \\ {[D]} \end{gathered}$	[0101] Self-diagnostic error - ROM: Check sum error 1	
	The boot monitor and OS program stored in the ROM DIMM is checked. If the check sum of the program is incorrect, this SC code is displayed.	- Defective SD card in slot 1 - Defective controller 1. Replace the SD card in slot 1. 2. Replace the controller.
	[0104] Self-diagnostic error - ROM: Check sum error 2	
	All areas of the ROM DIMM are checked. If the check sum of all programs stored in the ROM DIMM is incorrect, this SC code is displayed.	Same as [0101]
$\begin{aligned} & \hline 829 \\ & \text { [B] } \end{aligned}$	[0302] Self-diagnostic error - RAM: Composition error (Slot 0)	
	The result of checking the composition data of the RAM in Slot 0 (CN5) on the controller is incorrect.	- Not specified RAM DIMM installed - Defective RAM DIMM 1. Replace the RAM DIMM. 2. Replace the controller board.
	[0401] Self-diagnostic error - RAM: Verification error (Slot 1)	
	The data stored in the RAM in Slot 1 does not match the data when reading.	Same as SC 829 [0302]
	[0402] Self-diagnostic error - RAM: Composition error (Slot 1)	
	The result of checking the composition data of the RAM in Slot 1 (CN6) on the controller is incorrect.	Same as SC 829 [0302]
850	Network interface error	
[B]	The network is unusable.	- Defective controller 1. Replace the controller.

SC	Item	
	Symptom	Possible Cause/Required Action
851 [B]	IEEE1394 interface error	
	The 1394 interface is unusable.	- Defective IEEE1394 - Defective controller. 1. Replace the IEEE1394 interface board. 2. Replace the controller.
$\begin{gathered} 853 \\ \text { [B] } \end{gathered}$	Wireless LAN card not detected	
	The wireless LAN card is not detected before communication is established, though the wireless LAN board is detected.	- Loose connection 1. Check the connection.
$\begin{gathered} \hline 854 \\ \text { [B] } \end{gathered}$	Wireless LAN card not detected	
	The wireless LAN card is not detected after communication is established, though the wireless LAN board is detected.	- Loose connection 1. Check the connection.
$\begin{aligned} & 855 \\ & {[B]} \end{aligned}$	Wireless LAN card error	
	An error is detected in the wireless LAN card.	- Loose connection - Defective wireless LAN card 1. Check the connection. 2. Replace the wireless LAN card.
$\begin{aligned} & 856 \\ & \text { [B] } \end{aligned}$	Wireless LAN card error	
	An error is detected in the wireless LAN board.	- Defective wireless LAN board - Loose connection 1. Check the connection. 2. Replace the wireless LAN board.
$\begin{aligned} & 857 \\ & \text { [B] } \end{aligned}$	USB interface error	
	The USB interface cannot be used due to a driver error.	- Defective USB driver - Loose connection 1. Check the connection. 2. Replace the controller.
$\begin{aligned} & 860 \\ & \text { [B] } \end{aligned}$	HDD: Initialization error	
	The controller detects that the hard disk fails.	- HDD not initialized - Defective HDD 1. Reformat the HDD. (SP5832) 2. Replace the HDD.
$\begin{aligned} & 861 \\ & \text { [D] } \end{aligned}$	HDD: Reboot error	
	The HDD does not become ready within 30 seconds after the power is supplied to the HDD.	- Loose connection - Defective cables - Defective HDD - Defective controller 1. Check the connection between the HDD and controller. 2. Check and replace the cables. 3. Replace the HDD. 4. Replace the controller.

sc	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 863 \\ & \text { [D] } \end{aligned}$	HDD: Read error	
	The data stored in the HDD cannot be read correctly.	- Defective HDD - Defective controller 1. Replace the HDD. 2. Replace the controller.
$\begin{gathered} \hline 864 \\ {[\mathrm{D}]} \end{gathered}$	HDD: CRC error	
	While reading data from the HDD or storing data in the HDD, data transmission fails.	- Defective HDD 1. Replace the HDD.
$\begin{aligned} & \hline 865 \\ & \text { [D] } \end{aligned}$	HDD: Access error	
	An error is detected while operating the HDD.	- Defective HDD 1. Replace the HDD.
$\begin{gathered} \hline 866 \\ \text { [B] } \end{gathered}$	SD card authentication error	
	A correct license is not found in the SD card.	- SD-card data is corrupted. 1. Store correct data in the SD card.
$\begin{gathered} 867 \\ \text { [D] } \end{gathered}$	SD card error	
	The SD card is ejected from the slot.	- The SD card is ejected from the slot. 1. Install the SD card.
$\begin{aligned} & \hline 868 \\ & {[\mathrm{D}]} \end{aligned}$	SD card access error [243-253: File system error, 254 or blank: Device error]	
	SD card error occurs when SD card is activated.	- Defective SD card - Defective SD card controller 1. For a file system error, format the SD card on your PC. 2. For a device error, turn the mains switch off and on. 3. Replace the SD card. 4. Replace the controller.
$\begin{gathered} 870 \\ {[B]} \end{gathered}$	Address data error	
	An error is detected in the data copied to the address book over a network.	- Defective software program - Defective HDD - Incorrect path to the sever 1. Initialize the address book data (SP 584650). 2. Initialize the user information (format the hard disk with SP5832). 3. Replace the HDD.
$\begin{aligned} & \hline 900 \\ & {[\mathrm{D}]} \end{aligned}$	Electric counter error	
	Abnormal data is stored in the counters.	- Defective NVRAM - Defective controller 1. Turn the main switch off and on. 2. Check the connection between the NVRAM and controller. 3. Replace the NVRAM. 4. Replace the controller.
920	Printer function error	
[B]	The error that causes the malfunction in the software application is detected.	- Turn the main switch off/on, or install Printer Application firmware - Unexpected hardware structure (insufficient memory or hard disk space.)

SC	Item	
	Symptom	Possible Cause/Required Action
$\begin{aligned} & 921 \\ & \text { [B] } \end{aligned}$	Printer font error	
	No font is detected in the machines that have the font in the SD card when the printer application is run.	- Install the System, Printer Application, NIB, and Web System firmware.
$\begin{aligned} & \hline 990 \\ & \text { [D] } \end{aligned}$	Software performance error 1	
	The software makes an unexpected operation.	- Defective software - Defective controller - Software error 1. Reinstall the controller and/or engine main firmware. 2. See NOTE 1 at the end of the SC table.
$\begin{aligned} & \hline 991 \\ & {[C]} \end{aligned}$	Software performance error 2	
	Unexpected software error detected, which does not affect operation of the machine	The machine does not stop and the SC code is not displayed. The machine automatically recovers. However, the SC code is logged in the engine summary sheet (SMC).
$\begin{aligned} & 992 \\ & \text { [D] } \end{aligned}$	SC not defined	
	SC that is not controlled in the system occurs.	- Defective system software
$\begin{aligned} & 998 \\ & \text { [D] } \end{aligned}$	Application start error	
	No applications start within 60 seconds after the power is turned on.	- Loose connection of RAM-DIMM, SD card in slot 1 - Defective controller - Software problem 1. Check if the RAM-DIMM and SD card in slot 1 are properly connected. 2. Reinstall the controller system firmware. 3. Replace the controller.

NOTE 1: If a problem always occurs in a specific condition (for example. printer driver setting, image file), the problem may be caused by a software error. In this case, the following data and information needs to be sent back to your product specialist.

- Symptom / Possible Causes / Action taken
- Summary sheet (SP mode "1 Service/Printer SP", SP 1004 [Print Summary])
- SMC - All (SP 5990 2)
- SMC - Logging (SP 5990 4)
- Printer driver settings used when the problem occurs
- All data displayed on the screen (SC code, error code, and program address where the problem is logged.)
- Image file which causes the problem, if possible

4.3 TROUBLESHOOTING GUIDE

NOTE: When replacing the engine control board, remove the NVRAM from the original engine control board and install it on the new one.

SYMPTOM

4.3.1 BLANK PRINT

Symptom	Possible cause	Necessary actions
No image is printed.	Defective LDU	Replace the LDU.
	Defective PCU	Replace the PCU.
	Defective transfer belt unit	Replace the transfer belt unit.
	Incorrect action of transfer roller	Check the guide and the transfer roller.
	Defective high voltage supply board	Replace high voltage supply board 1 or 2.
	Defective engine board (EGB)	Replace the engine board (EGB).

4.3.2 ALL-BLACK PRINT

Symptom	Possible cause	Necessary actions
All the paper is black.	Incorrectly installed PCU	Install the PCU correctly.
	Defective PCU	Replace the PCU.
	Defective high voltage supply	
	Replace high voltage supply board 1 or 2.	
	Defective LDU	Replace the LDU.
	Defective engine board	
(EGB)	Replace the engine board (EGB).	
	Defective main board	Replace the main board.

4.3.3 MISSING CMY COLOR

Symptom	Possible cause	Necessary actions
C, M, or Y is missing.	Defective PCU	Replace the PCU.
	Loose connection between printer cartridge and engine board (EGB)	Replace the drum positioning cover. (as.2.1)
	Transfer belt not contacting PCU	Check the belt tension unit.
	Defective the color OPC motor	Replace the color OPC motor.
	Refective engine board (EGB)	Replace the engine board (EGB).

4.3.4 LIGHT PRINT

Symptom	Possible cause	Necessary actions
Printed images are too weak.	Loose connection between transfer roller and high voltage supply unit	Check the connection between the transfer roller and the high voltage supply unit.
	Dust in the laser beam path	Clean the laser beam path.
	Transfer belt not contacting PCU	Check the transfer unit.
	Defective PCU	Replace the PCU.
	Defective transfer roller	Repair the transfer roller.
	Defective fusing unit	Replace the fusing unit.
	Refective engine board (EGB)	Replace the engine board (EGB).

4.3.5 REPEATED SPOTS OR LINES ON PRINTS

Symptom	Possible cause	Necessary actions
The same spots or lines appear at regular intervals.		
At intervals of 35.0 mm (1.38 inches)	Defective charge roller	Replace the PCU.
At intervals of 35.8 mm (1.41 inches)	Defective OPC cleaning brush roller	Replace the PCU.
At intervals of 40.5 mm (1.59 inches)	Defective belt entrance roller	Replace the transfer belt unit.
At intervals of 41.1 mm (1.62 inches)	Defective belt transfer roller	Replace the transfer belt unit.
At intervals of 47.1 mm (1.86 inches)	Defective toner mixing auger	Replace the PCU.
At intervals of 56.5 mm (2.23 inches)	Defective development roller	Replace the PCU
At intervals of 72.8 mm (2.87 inches)	Defective belt tension roller	Replace the transfer belt unit.
At intervals of 82.2 mm (3.24 inches)	Defective transfer belt drive roller	Replace the transfer belt unit.
At intervals of 82.5 mm (3.25 inches)	Defective transfer roller	Replace the transfer roller.
At intervals of 94.2 mm (3.71 inches)	Defective OPC drum or pressure roller	Replace the PCU or the fusing unit
At intervals of 141.4 mm (5.57 inches)	Defective fusing belt	Replace the fusing unit.

4.3.6 DARK VERTICAL LINE IN PRINT

Symptom	Possible cause	Necessary actions
A dark line appears. The line is parallel to the paper feed direction.		
Of one CMY color	Defective PCU	Replace the PCU.
Of any color (not C, M, or Y)	Dust in the laser beam path	Clean the laser beam path.
	Defective transfer belt unit	Replace the transfer belt unit.
	Defective fusing unit	Replace the fusing unit.

4.3.7 WHITE HORIZONTAL LINES OR BANDS

Symptom	Possible cause	Necessary actions
White lines or bands appear in images of all toner colors.	Defective PCU	Replace the PCU.
	Defective transfer belt unit	Replace the transfer belt unit.
	Defective transfer roller	Replace the transfer roller.

4.3.8 MISSING PARTS OF IMAGES

Symptom	Possible cause	Necessary actions
Some parts of images are missing.	Defective PCU	Replace the PCU.
	Defective transfer belt unit	Replace the transfer belt unit.
	Defective transfer roller	Replace the transfer roller.
	Defective fusing unit	Replace the fusing unit.

4.3.9 DIRTY BACKGROUND

Symptom	Possible cause	Necessary actions
Backgrounds are too dense. Of one CMYK color	Defective PCU Of more than one CMYK colorDefective high voltage supply board	Replace the PCU. Replace the high voltage supply board (1 or 2).

4.3.10 PARTIAL CMY COLOR DOTS

Symptom	Possible cause	Necessary actions
Unexpected dots of the same color appear at irregular intervals.	Defective PCU	Replace the PCU.
	Defective transfer belt unit	Replace the transfer belt unit.
	Refective fusing unit	Replace the fusing unit.

4.3.11 DARK IRREGULAR STREAKS ON PRINTS

Symptom	Possible cause		
Unexpected streaks appear at irregular intervals.	Defective transfer belt		Replace the transfer belt
:---			
unit.	.		

4.3.12 CMY COLOR IRREGULAR STREAKS

Symptom	Possible cause	Necessary actions
Unexpected streaks of the same color appear at irregular intervals.	Defective PCU	Replace the PCU.
	Defective transfer belt unit	Replace the transfer belt unit.

4.3.13 GHOSTING

Symptom	Possible cause	Necessary actions
The same or similar image appears two or more times. They get weaker and weaker.	Defective PCU	Replace the PCU.
	Defective transfer unit	Replace the transfer unit.

4.3.14 UNFUSED OR PARTIALLY FUSED PRINTS

Symptom	Possible cause	Necessary actions
Some parts of images are not fused very well.	Non-standard paper in use	Use recommended paper.
	Incorrect media type mode	Select an appropriate media mode.
	Defective fusing unit	Replace the fusing unit.

4.3.15 IMAGE SKEW

Symptom	Possible cause	Necessary actions
Images are skewed	Incorrect installation of paper	Install the paper correctly.
	Incorrect paper guide position	Adjust the paper guide correctly.
	Defective registration roller	Repair the paper feed unit.
	Incorrect action of transfer roller	Check the transfer roller.
	Defective engine board (EGB)	Replace the engine board (EGB).
	Unclean separation pad	Clean the separation pad.
	Defective spring	Replace the spring for the friction pad.

4.3.16 BACKSIDE STAIN

Symptom	Possible cause	Necessary actions
The reverse side of the paper is not clean.	Unclean transfer roller	Clean the transfer roller.
	Unclean paper path	Clean the paper path.
	Unclean registration roller	Clean the registration roller.
	Unclean fusing unit exit	Clean the fusing unit exit.
	Defective fusing unit	Replace the fusing unit.

4.3.17 NO PRINTING ON PAPER EDGE

Symptom	Possible cause	Necessary actions
Images are not printed in the areas around the paper edges.	Defective PCU	Replace the PCU.
	Defective toner cartridge	Replace the toner cartridge.
	Defective transfer belt unit	Replace the transfer belt unit.
	Transfer belt not contacting PCU	Check the transfer unit.

4.3.18 IMAGE NOT CENTERED WHEN IT SHOULD BE

Symptom	Possible cause	Necessary actions
Images do not come to the center.	Incorrect installation of paper	Install the paper correctly.
	Adjust the paper guide correctly.	
	Incorrect margin setting	Adjust the margin setting.
	Defective engine control board	Replace the engine control board.

4.4 ELECTRICAL COMPONENT DEFECTS

4.4.1 SENSORS

No.	Sensor Name/ Sensor Board Name	Active	CN No.I Pin No.	Condition	Symptom
1	Color Drum Gear Position Sensor	H	CN222/2	Open	SC380
				Shorted	
2	Black Drum Gear Position Sensor	H	CN222/5	Open	SC380
3	Toner End Sensor (K) Toner End Sensor (M) Toner End Sensor (C) Toner End Sensor (Y)	L	$\begin{gathered} \text { CN222/8 } \\ \text { CN230/13 } \\ \text { CN230/26 } \\ \text { CN230/29 } \\ \hline \end{gathered}$	Open	Toner end cannot be detected.
				Shorted	Toner end is detected even if the there is enough toner.
4	Transfer Belt Contact Sensor	H	CN222/11	Open	SC442
				Shorted	
5	Transfer Roller Contact Sensor	L	CN222/14	Open	SC452
				Shorted	
6	TD Sensor (K) TD Sensor (M) TD Sensor (C) TD Sensor (Y)	A	$\begin{gathered} \hline \text { CN222/20 } \\ \text { CN225/4 } \\ \text { CN230/4 } \\ \text { CN230/20 } \\ \hline \end{gathered}$	Open	$\begin{array}{\|l\|} \hline \text { SC368 (K) } \\ \text { SC369 (M) } \\ \text { SC370 (C) } \\ \text { SC371 (Y) } \\ \hline \end{array}$
				Shorted	
8	Transfer Belt Rotation	L	CN222/27	Open	Automatic line position adjustment error: Transfer belt unit speed cannot be detected, causing the image skew.
				Shorted	
10	Front Door Sensor	H	CN206/1	Open	"Close Front/Left Cover" is displayed.
				Shorted	The front cover open cannot be detected.
11	Waste Toner Overflow Sensor	H	CN230/10	Open	Waste Toner near full is indicated.
				Shorted	Waste toner full cannot be detected even if the waste toner bottle is full.
12	Left Cover Sensor	H	C230/15	Open	"Close Front/Left Cover" is displayed.
				Shorted	The left cover open cannot be detected.
				Open	Printed image is wrong such
13	Sensor	A	CN231/3	Shorted	as rough image, dirty background or weak image.
14	Paper Size Sensor	L	CN214/17 CN214/15 CN214/14 CN214/13	Open	Paper size error
				Shorted	
15	Fusing Entrance Sensor	L	CN213/6	Open	Paper jam is not detected even if there is a paper
				Shorted	Paper jam is detected even if the there is no paper.
16	Duplex Jam Sensor 1	L	CN213/1	Open	Paper jam is not detected even if there is a paper
				Shorted	Paper jam is detected even if the there is no paper.

ELECTRICAL COMPONENT DEFECTS

No.	Sensor Name/ Sensor Board Name	Active	CN No.I Pin No.	Condition	Symptom
17	Duplex Jam Sensor 2	L	CN213/3	Open	Paper jam is not detected even if there is a paper
				Short	Paper jam is detected even if the there is no paper.
18	By-pass Paper Detection Sensor	L	CN211/22	Open	Paper is not detected on the by-pass tray
				Shorted	Paper is detected even if there is no paper on the by-pass tray.
19	By-pass Paper Size Sensor	L	$\begin{aligned} & \text { CN211/17 } \\ & \text { CN211/16 } \\ & \text { CN211/20 } \\ & \text { CN211/19 } \end{aligned}$	Open	Paper size error
				Shorted	
20	Inverter Sensor	L	CN211/2	Open	Paper jam Z
				Shorted	
21	Fusing Exit Sensor	L	CN210/13	Open	Paper Jam A
				Shorted	
22	Paper Overflow Sensor	L	CN210/10	Open	The paper overflow message is not displayed even when a paper overflow condition exists, causing paper jam.
				Shorted	The paper overflow message is displayed.
23	Paper Exit Sensor	L	CN210/7	Open	Paper Jam A
				Shorted	
24	ID Sensors	A	CN209	Open	SC400/418
				Shorted	
25	Fusing Thermistor	A	CN209/1	Open	SC541
				Shorted	
26	Fusing Set Sensor	L	$\begin{aligned} & \hline \text { CN209/3 } \\ & \text { CN209/4 } \end{aligned}$	Open	"Reset Fusing Unit correctly" is displayed.
				Shorted	
27	Top Cover Sensor	H	CN208/2	Open	"Close Top Cover" is displayed.
				Shorted	The top cover open cannot be detected.
28	LDU Shutter Sensor	H	CN207/17	Open	SC270
				Shorted	
29	Registration Sensor	L	CN207/14	Open	Paper Jam A
				Shorted	
30	Paper Width Sensor	H	CN207/11	Open	Always, small paper is detects, causing printing speed down.
				Shorted	Small paper size does not detect.
31	Paper Height Sensor 1/2	H	CN207/5	Open	Remaining paper volume is wrong on Web Image Monitor.
			CN207/8	Shorted	
32	Paper End Sensor	H	CN2072	Open	The paper end detects even if paper is placed in the paper tray.
				Shorted	The paper end does not detect even if there is no paper in the paper tray, causing paper jam.

4.5 BLOWN FUSE CONDITIONS

Power supply unit

Fuse	Rating		Symptom when turning on the main switch	
	$\mathbf{1 1 5 V}$	$\mathbf{2 2 0 V}-\mathbf{2 4 0 V}$		
FU1	$15 \mathrm{~A} / 125 \mathrm{~V}$	$8 \mathrm{~A} / 250 \mathrm{~V}$	No response.	
FU2	$8 \mathrm{~A} / 125 \mathrm{~V}$	$4 \mathrm{~A} / 250 \mathrm{~V}$	No response.	
FU3	$1 \mathrm{~A} / 250 \mathrm{~V}$	$1 \mathrm{~A} / 250 \mathrm{~V}$	Tray Heater does not turn on.	
FU4	$4 \mathrm{~A} / 250 \mathrm{~V}$	$4 \mathrm{~A} / 250 \mathrm{~V}$	No display.	
FU5	$6.3 \mathrm{~A} / 250 \mathrm{~V}$	$6.3 \mathrm{~A} / 250 \mathrm{~V}$	SC270 is displayed.	
FU6	$6.3 \mathrm{~A} / 250 \mathrm{~V}$	$6.3 \mathrm{~A} / 250 \mathrm{~V}$	SC270 is displayed.	

IOB

Fuse	Rating	Symptom when turning on the main switch
FU897	3.15 A	Optional Paper Tray Unit dose not work.
FU898	2.0 A	Toners are not supplied.
FU899	1.6 A	SC270 is displayed.

4.6 LEDS

No LEDs are used for this model (except for the Network Interface).

SERVICE TABLES

5. SERVICE TABLES

5.1 SERVICE PROGRAM MODE

\triangle CAUTION
 Before accessing the service menu, do the following:
 Confirm that there is no print data in the printer buffer (the Data In LED must not be lit or blinking).
 If there is some data in the buffer, wait until all data has been printed.

5.1.1 SERVICE MODE OPERATION

NOTE: The Service Program Mode is for use by technical professionals only, so that they can properly maintain product quality. If this mode is used by anyone other than the technical professional for any reason, data might be deleted or settings might be changed. In such case, product quality cannot be guaranteed.

Entering the Service Mode

There are two ways to enter the service mode.
Method 1: Turn the machine on while pressing the "On Line" key and "Escape" key together until "SYSTEMver x.xx/ 1. Service" shows on the display.
NOTE: If you switch the machine off, any jobs stored on the hard disk using the sample print and protected print features will be deleted.
Check first with the user tools to see if there are any jobs stored with these features (Menu key - Sample Print, or Protected Print). If so, you may use method 2 to enter service mode.

Method 2: Press the "Up/Down arrow" keys together for about 5 seconds, then press the "Enter" key.
The "SYSTEMver x.xx/ 1. Service" appears on the display.
NOTE: The machine automatically goes off line when you enter the service mode.

Accessing the Required Program

Use the "Up/Down arrow" keys to scroll through the menu listing.

1. Service Menu: Controller service modes - Bit Switch 1001 through 1107 (-5.2.2)
2. Engine Maintenance: Engine service modes

- (Feed) - SP1 001 through SP1 917
- (Drum) - SP2 101 through SP2 930
- (Process) - SP3 001 through SP3 821
- (Mode) - SP5 024 through SP5 990
- (Data Log) - SP7 002 through SP7 936
- (Data Log 2) - SP8 001 through SP8 941
- (Etc.) - SP9 001 through SP9 914

3. End: Exit service mode

To select an item, press the "Enter" key. Then the sub-menu will appear.
Scroll through the sub menu items using the "Up/Down arrow" keys.
To go back to a higher level, press the "Escape" key.

Inputting a Value or Setting for a Service Program

Enter the required program mode as explained above. The setting appearing on the display is the current setting.
Select the required setting using the "Up/Down arrow" keys, then press the "Enter" key. The previous value remains if the "Enter" key is not pressed.

Exiting Service Mode

Select "3. End" from the service mode main menu, then press the "Enter" key.
NOTE: To make some settings effective, turn the main switch off and on after exiting service mode.

5.1.2 REMARKS

Display on the Control Panel Screen

Since the maximum number of characters which can be displayed on the control panel screen is limited (14 or 16 characters), the description of SP modes displayed on the screen needs to be abbreviated. The following are the major abbreviations used for the SP modes for which the full description is over 14 or 16 characters.

Paper Type

N: Plain paper 1, N2 or Normal 2: Plain paper 2 (plain \& recycled)
TC: Thick paper, Thick 1: Thick paper 1, Thick 2: Thick paper 2
TN: Thin paper
SP: Special paper

Color Mode [Color]

[K]: Black in B\&W mode
[Y], [M], or [C]: Yellow, Magenta, or Cyan in Full Color mode
[YMC]: Only for Yellow, Magenta, and Cyan
[FC], [CI]: Full Color mode
[FC, K], [FC, Y], [FC, M], or [FC, C]: Black, Yellow, Magenta, or Cyan in full color mode

Process Speed

LS: Low speed $x x$
RS: Regular speed xxx
HS: High speed xxx
As shown in the following table, the process speed (mm / s) depends on the print mode (B\&W or Color), resolution, and/or type of paper selected. Some SP mode settings depend on the process speed.

Mode	Resolution $(\mathbf{d p i})$	Line speed $(\mathbf{m m} / \mathbf{s})$	Print speed $(\mathbf{p p m})$
B/W	600×600 $1,200 \times 600$	155	25
	$1,200 \times 1,200$	77.5	12.5
	600×600 $1,200 \times 600$	155	25
	$1,200 \times 1,200$	77.5	12.5
OHP/Thick	600×600 $1,200 \times 600$ $1,200 \times 1,200$	77.5	12.5

Count Unit

R: Rotation
S: Sheet

Environment

LL: Low temperature and Low humidity
ML: Medium temperature and Low humidity
MM: Medium temperature and Medium humidity
MH: Medium temperature and High humidity
HH : High temperature and High humidity

Others

The following symbols are used in the SP mode tables.
FA: Factory setting
(Data may be adjusted from the default setting at the factory. Refer to the factory setting sheets enclosed, which is located underneath the jammed paper removal decal.)

DFU: Design/Factory Use only
Do not touch the SP mode in the field.
" P " in the right hand side of the mode number column means that this SP mode relates to the Printer Controller. If " P " is not in the column, this SP mode relates to the Printer Engine.

A sharp (\#) to the right hand side of the mode number column means that the main switch must be turned off and on to effect the setting change.

An asterisk (${ }^{*}$) to the right hand side of the mode number column means that this mode is stored in the NVRAM (Engine and Printer Controller). If you do a RAM clear, this SP mode will be reset to the default value. "EGB", "CTL" and "NV" indicate which NVRAM contains the data.

- EGB: NVRAM on the EGB board
- CTL: NVRAM on the controller board
- NV: NVRAM on the NVRAM expansion board (user account enhancement kit)
The settings of each SP mode are explained in the right-hand column of the SP table in the following manner.
[Adjustable range / Default setting / Step] Alphanumeric
NOTE: If "Alphanumeric" is written to the right of the bracket as shown above, the setting of the SP mode is displayed on the screen using alphanumeric characters instead of only numbers. However, the settings in the bracket in the SP mode table are explained by using only the numbers.

5.2 SERVICE MODE TABLE

5.2.1 CONTROLLER SERVICE MODE

1001	[Bit Switch]		
1001001	Bit Switch 1	*CTL	Adjusts bit switch settings. DFU
1001002	Bit Switch 2	*CTL	Bit 0 to 2: Not used. Do not change settings. Bit 3: Changing print language (PCL <-> PS) 0: Enabled 1: Disabled (No change) Bit 4 to 7: Not used. Do not change settings.
1001003	Bit Switch 3	*CTL	Bit 0: PostScript3 Euro glyph 0 : Disabled 1: Enabled (Even if there is no Euro Glyph in ROM, it is possible to load the Euro Glyph data.) Bit 1: Not used. Do not change setting. Bit 2:PCL5e/5c (HP4000/HP8000) The left space command is set to " 0 ", the machine is changed to " 1 " 0 : Disabled 1: Enabled Bit 3: PCL5e/GL2: pen \# of PW 0: Normal 1: Patch Bit 4: Tray selecting 0 : Select tray is determined auto tray selecting 1: Like HP/SV Bit 5 to 7: Not used. Do not change settings.
1001004	Bit Switch 4	*CTL	Adjusts bit switch settings. DFU
1001005	Bit Switch 5	*CTL	Bit 0 to 2: Not used. Do not change settings. Bit 3: Enabled the "\%\%" command of the PostScript detection condition for the auto print language selection function. 0 : Enabled 1: Disabled Bit 4 to 7: Not used. Do not change settings.
1001006	Bit Switch 6	*CTL	Adjusts bit switch settings. DFU
1001007	Bit Switch 7	${ }^{*} \mathrm{CTL}$	
1001008	Bit Switch 8	${ }^{*} \mathrm{CTL}$	
1001009	Bit Switch 9	*CTL	
1001010	Bit Switch A	*CTL	
1001011	Bit Switch B	*CTL	
1001012	Bit Switch C	*CTL	
1001013	Bit Switch D	*CTL	
1001014	Bit Switch E	*CTL	

SERVICE MODE TABLE

1001015	Bit Switch F	${ }^{*}$ CTL	
1001016	Bit Switch G	${ }^{*}$ CTL	

1003	[Clear Setting]	
1003001	Init. System	Initializes settings in the System menu of the user mode.
1003003	Delete Program	

1004	[Print Summary]		
1004001	Print Summary 1		Prints the service summary sheet (a summary of all the controller settings).
1004002	Print Summary 2		Prints the service summary sheet (a summary of all the controller settings and debug information).

1005	$[$ Disp. Version $]$
	Displays the version of the controller firmware.

1101	[ToneCtISet]		
1101001	Tone (Factory)	*CTL	Recalls a set of gamma settings. This can be
1101002	Tone (Prev.)	"CTL	either a) the factory setting, b) the previous
1101003	Tone (Current)	"CTL	setting, or c) the current setting.

1102	[ToneCtISet $]$	${ }^{*}$ CTL
	Sets the printing mode (resolution) for the printer gamma adjustment. The	
	asterisk (*) shows which mode is set.	
	\bullet *1200x1200Photo	$\bullet 600 \times 600 \mathrm{Text} \quad \bullet 1200 \times 600$ Text
	\bullet •600x600Photo	$\bullet 1200 \times 600$ Photo

1103	[PrnColorSheet $]$	
1103001	ToneCtISheet	
1103002	ColorChart	
Prints the test page to check the color balance		
before and after the gamma adjustment.		

$\begin{array}{\|l\|} \hline 1104 \\ \hline 1104001 \\ \hline \end{array}$	[ToneCtIValue]		
	Adjusts the printer gamma for the mode selected in the Mode Selection menu.		
	Set Black 1	${ }^{*} \mathrm{CTL}$	[0 to $255 / 16$ / 1/step]
1104021	Set Cyan 1	${ }^{*} \mathrm{CTL}$	
1104041	Set Magenta 1	*CTL	
1104061	Set Yellow 1	*CTL	
1104002	Set Black 2	*CTL	[0 to 255 / 32 / 1/step]
1104022	Set Cyan 2	${ }^{*} \mathrm{CTL}$	
1104042	Set Magenta 2	${ }^{*} \mathrm{CTL}$	
1104062	Set Yellow 2	*CTL	
1104003	Set Black 3	*CTL	[0 to 255/48/1/step]
1104023	Set Cyan 3	${ }^{*} \mathrm{CTL}$	
1104043	Set Magenta 3	${ }^{*} \mathrm{CTL}$	
1104063	Set Yellow 3	*CTL	
1104004	Set Black 4	*CTL	[0 to 255 / 64 / 1/step]
1104024	Set Cyan 4	*CTL	
1104044	Set Magenta 4	*CTL	
1104064	Set Yellow 4	*CTL	
1104005	Set Black 5	*CTL	[0 to 255/80/1/step]
1104025	Set Cyan 5	${ }^{*} \mathrm{CTL}$	
1104045	Set Magenta 5	${ }^{*} \mathrm{CTL}$	
1104065	Set Yellow 5	*CTL	
1104006	Set Black 6	*CTL	[0 to 255 / $\underline{\text { 96 / }}$ / $/$ step]
1104026	Set Cyan 6	*CTL	
1104046	Set Magenta 6	*CTL	
1104066	Set Yellow 6	*CTL	
1104007	Set Black 7	*CTL	[0 to 255 / 112 / 1/step]
1104027	Set Cyan 7	${ }^{*} \mathrm{CTL}$	
1104047	Set Magenta 7	${ }^{*} \mathrm{CTL}$	
1104067	Set Yellow 7	${ }^{*} \mathrm{CTL}$	
1104008	Set Black 8	*CTL	[0 to 255/128/1/step]
1104028	Set Cyan 8	*CTL	
1104048	Set Magenta 8	*CTL	
1104068	Set Yellow 8	${ }^{*} \mathrm{CTL}$	
1104009	Set Black 9	*CTL	[0 to 255 / 144 / 1/step]
1104029	Set Cyan 9	*CTL	
1104049	Set Magenta 9	*CTL	
1104069	Set Yellow 9	*CTL	
1104010	Set Black 10	${ }^{*} \mathrm{CTL}$	[0 to 255/160/1/step]
1104030	Set Cyan 10	${ }^{*} \mathrm{CTL}$	
1104050	Set Magenta 10	${ }^{*} \mathrm{CTL}$	
1104070	Set Yellow 10	*CTL	
1104011	Set Black 11	*CTL	[0 to 255 / 176 / 1/step]
1104031	Set Cyan 11	${ }^{*} \mathrm{CTL}$	
1104051	Set Magenta 11	*CTL	
1104071	Set Yellow 11	${ }^{*} \mathrm{CTL}$	
1104012	Set Black 12	*CTL	[0 to 255 / 192 / 1/step]
1104032	Set Cyan 12	*CTL	
1104052	Set Magenta 12	*CTL	

SERVICE MODE TABLE

1104072	Set Yellow 12	*CTL	
1104013	Set Black 13	${ }^{*} \mathrm{CTL}$	[0 to 255 / 208 / 1/step]
1104033	Set Cyan 13	${ }^{*} \mathrm{CTL}$	
1104053	Set Magenta 13	${ }^{*} \mathrm{CTL}$	
1104073	Set Yellow 13	${ }^{*} \mathrm{CTL}$	
1104014	Set Black 14	${ }^{*} \mathrm{CTL}$	[0 to 255 / 224 / 1/step]
1104034	Set Cyan 14	${ }^{*} \mathrm{CTL}$	
1104054	Set Magenta 14	${ }^{*} \mathrm{CTL}$	
1104074	Set Yellow 14	*CTL	
1104015	Set Black 15	${ }^{*} \mathrm{CTL}$	[0 to 255 / 240 / 1/step]
1104035	Set Cyan 15	${ }^{*} \mathrm{CTL}$	
1104055	Set Magenta 15	${ }^{*} \mathrm{CTL}$	
1104075	Set Yellow 15	${ }^{*} \mathrm{CTL}$	

1105 [ToneCtISave]
Saves the print gamma (adjusted with the Gamma Adj.) as the new Current Setting. Before the machine stores the new "current setting", it moves the data stored as the "current setting" to the "previous setting" memory-storage location.

1106	[Toner Limit]		
	Adjusts the maximum toner amount for image development.		
1106001	TonerLimitPhot	${ }^{*}$ CTL	[100 to 400 / 260 / 1 \%/step]
1106002	TonerLimitText	${ }^{*}$ CTL	[100 to 400 / 200 / 1 \%/step]

	[FactoryTestPrt]
	Prints the test page to check the color balance before transportation $(600 \times 600$ 2 bit $).$ DFU

1108	[Ext. Toner Sav	
1108001	Mode 1: Text	DFU
1108002	Mode 2: Text	
1108003	Mode 1: Image	
1108004	Mode 2: Image	
1108005	Mode 1: Line	
1108006	Mode 2: Line	
1108007	Mode 1: paint	
1108008	Mode 2: Paint	

5.2.2 BIT SWITCH PROGRAMMING

Do not change the bit switches unless you are told to do this by the manufacturer.

1. Start the SP mode. The "Service" menu is shown.
2. Press the enter key two times.
3. To select a bit switch, press the up arrow key or the down arrow key.
4. Push the enter key.
5. Set the value with these keys:

- [Up] [Down]:Moves the cursor to one of the adjacent bits.
- [Escape]: Goes out of the program without saving changes.
- [Enter]: Goes out of the program and saves changes.

NOTE: The digit at the left [A] is bit 7 and the digit at the right $[B]$ is bit 0 .

Sw\#1 00000000
bit0
6. Push the escape key one or more times until the menu "Service" is shown.
7. Select "End" and push the enter key.

5.2.3 ENGINE SERVICE MODE

SP1-XXX (Feed)

1001	[Lead Edge Reg.] Leading Edge Registration (Tray or By-pass, Paper Type, Process Speed) Paper Type ->N: Plain paper 1, N2 or Normal 2: Plain paper 2, Thick2: Thick paper 2 (see the Specifications table for details on these paper weights) Process Speed: LS: Low speed, RS: Regular speed		
	Adjusts the leading edge registration. This SP changes the registration clutch operation timing for each mode. + value sets the registration start timing earlier. -value sets the registration start timing later. NOTE: The value of the normal paper in RS is the standard value. The values of papers other than normal are added to the value of the normal paper in RS.		
1001001	Tray 1: Normal: LS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001002	Tray 1: Normal: RS	*EGB	[-10.0 to $10.0 / \mathbf{- 3 . 0} / 0.1 \mathrm{~mm} / \mathrm{step}]$
1001003	Tray 1: Thick	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]
1001004	Tray 1: OHP	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001005	Tray 2: Normal: LS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001006	Tray 2: Normal: RS	*EGB	[-10.0 to $10.0 / \mathbf{- 3 . 0} / 0.1 \mathrm{~mm} /$ step]
1001007	Tray 2: Thick	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]
1001008	Tray 2: OHP	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001009	Tray 3: Normal: LS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} / \mathrm{step}]$
1001010	Tray 3: Normal: RS	*EGB	[-10.0 to $10.0 / \mathbf{- 3 . 0} / 0.1 \mathrm{~mm} /$ step]
1001011	Tray 3: Thick	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]
1001012	Tray 3: OHP	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001013	By-pass: N: LS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} / \mathrm{step}]$
1001014	By-pass: N: RS	*EGB	[-10.0 to $10.0 / \mathbf{- 3 . 0} / 0.1 \mathrm{~mm} /$ step]
1001015	By-pass: Thick	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]
1001016	By-pass: OHP	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001017	Duplex: Normal: LS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001018	Duplex: Normal: RS	*EGB	[-10.0 to $10.0 /-3.0 / 0.1 \mathrm{~mm} / \mathrm{step}]$
1001019	Duplex: Thick	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]
1001020	Duplex: N2: LS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]
1001021	Duplex: N2: RS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]
1001022	Tray 1: Normal 2: LS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]
1001023	Tray 1: Normal 2: RS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]
1001024	Tray 1: Thick 2	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]
1001025	Tray 1: Thin: LS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001026	Tray 1: Thin: RS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001027	Tray 1: Special	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} / \mathrm{step}]$
1001028	Tray 2: Normal 2: LS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]
1001029	Tray 2: Normal 2: RS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]
1001030	Tray 2: Thick 2	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} / \mathrm{step}]$
1001031	Tray 2: Thin: LS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001032	Tray 2: Thin: RS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001033	Tray 2: Special	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]
1001034	Tray 3: Normal 2: LS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} / \mathrm{step}]$
1001035	Tray 3: Normal 2: RS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]

1001036	Tray 3: Thick 2	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]
1001037	Tray 3: Thin: LS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001038	Tray 3: Thin: RS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001039	Tray 3: Special	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]
1001040	By-pass: N2: LS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]
1001041	By-pass: N2: RS	*EGB	[-10.0 to $10.0 / 1.0 / 0.1 \mathrm{~mm} /$ step]
1001042	By-pass: Thick 2	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]
1001043	By-pass: Thin: LS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001044	By-pass: Thin: RS	*EGB	[-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1001045	By-pass: Special	*EGB	[-10.0 to $10.0 / 1.5 / 0.1 \mathrm{~mm} /$ step]

1002	[S-to-S Reg.] Side-to-Side Registration		
1002001	By-pass	*EGB	Adjusts the side-to-side registration for each mode. This SP changes the laser main scan start position. [-10.0 to $10.0 / 0.0 / 0.1 \mathrm{~mm} /$ step]
1002002	Tray 1	*EGB	
1002003	Tray 2	*EGB	
1002004	Tray 3	*EGB	
1002005	Duplex	*EGB	

1003	[Paper Buckle] Paper Buckle (Tray or By-pass, Paper Type, Process Speed) Paper Type ->N: Plain paper 1, N2 or Normal 2: Plain paper 2, Thick2: Thick paper 2 (see the Specifications table for details on these paper weights) Process Speed-> LS: Low speed, RS: Regular speed	
1003001	Tray 1: Normal: LS	"EGB
1030 Adjusts the amount of paper buckle at the		
registration roller for each mode. This SP		
changes the paper feed timing.		
[-10.0 to 10.0 / 0.0 / 0.1 mm/step]		

1003026	Tray 1: Thin: RS	*EGB
1003027	Tray 1: Special	*EGB
1003028	Tray 2: Normal 2: LS	*EGB
1003029	Tray 2: Normal 2: RS	*EGB
1003030	Tray 2: Thick 2	*EGB
1003031	Tray 2: Thin: LS	*EGB
1003032	Tray 2: Thin: RS	*EGB
1003033	Tray 2: Special	*EGB
1003034	Tray 3: Normal 2: LS	*EGB
1003035	Tray 3: Normal 2: RS	*EGB
1003036	Tray 3: Thick 2	*EGB
1003037	Tray 3: Thin: LS	*EGB
1003038	Tray 3: Thin: RS	*EGB
1003039	Tray 3: Special	*EGB
1003040	By-pass: N2: LS	*EGB
1003041	By-pass: N2: RS	*EGB
1003042	By-pass: Thick 2	*EGB
1003043	By-pass: Thin: LS	*EGB
1003044	By-pass: Thin: RS	*EGB
1003045	By-pass: Special	*EGB

| 1004 | [Mt Speed] Drive Motor Speed
 (Unit, Process Speed, Paper Type)
 Paper Type ->N: Plain paper 1, N2 or Normal 2: Plain paper 2, Thick2: Thick
 paper 2 (see the Specifications table for details on these paper weights)
 Process Speed-> LS: Low speed, RS: Regular speed
 CW: Clockwise, CCW: Counterclockwise | |
| :--- | :--- | :--- | :--- |
| | PFU: Optional paper tray unit | |

1004019	Reverse: LS: CCW	*EGB	Adjusts the inverter motor speed. [-4.00 to 4.00 / 0.0 / 0.01\%/step]
1004020	Reverse: RS: CCW	*EGB	
1004021	DEV / OPC [K]: LS: N2	*EGB	Adjusts the black development and OPC motor speed. [-4.00 to $4.00 /-1.35 / 0.01 \% /$ step]
1004022	DEV / OPC [K]: RS: N2	*EGB	
1004023	DEV [CMY]: LS: N2	*EGB	Adjusts the color development motor speed. [-4.00 to 4.00 / 0.0 / 0.01 \%/step]
1004024	DEV [CMY]: RS: N2	*EGB	
1004025	OPC [CMY]: LS: N2	*EGB	Adjusts the color OPC motor speed. [-4.00 to $4.00 /-1.35 / 0.01 \% /$ step]
1004026	OPC [CMY]: RS: N2	*EGB	
1004027	Fusing: LS: N2	*EGB	Adjusts the paper exit and fusing motor speed. [-4.00 to 4.00 / 0.6 / 0.01 \%/step]
1004028	Fusing: RS: N2	*EGB	
1004029	Trans. Belt: LS: N2	*EGB	Adjusts the transfer belt motor speed. [-4.00 to 4.00 / 0.0 / 0.01 \%/step]
1004030	Trans. Belt: RS: N2	*EGB	
1004031	PFU: LS: Normal 2	*EGB	Adjusts the speed of the feed motor in the optional paper tray unit.$\text { [-4.00 to } 4.00 /-1.14 / 0.01 \% / \text { step }]$
1004032	PFU: RS: Normal 2	*EGB	
1004033	Duplex: LS: Add: N2	*EGB	Adjusts the duplex motor speed. [-4.00 to 4.00 / 0.0 / 0.01\%/step]
1004034	Duplex: RS: Add: N2	*EGB	
1004035	Duplex: LS: N2	*EGB	Adjusts the duplex motor speed. [-4.00 to $4.00 /-0.36 / 0.01 \% /$ step]
1004036	Duplex: RS: N2	*EGB	
1004037	Reverse: LS: CW: N2	*EGB	Adjusts the inverter motor speed. [-4.00 to 4.00 / 0.6 / 0.01\%/step]
1004038	Reverse: RS: CW: N2	*EGB	
1004039	Rever.: LS: CCW: N2	*EGB	Adjusts the inverter motor speed. [-4.00 to 4.00 / 0.0 / 0.01\%/step]
1004040	Rever.: RS: CCW: N2	*EGB	
1004041	DEV / OPC [K]: LS: TC	*EGB	Adjusts the black development and OPC motor speed. [-4.00 to $4.00 /-1.35 / 0.01 \% /$ step]
1004042	DEV [CMY]: LS: TC	*EGB	Adjusts the color development motor speed. [-4.00 to 4.00 / 0.0 / 0.01 \%/step]
1004043	OPC [CMY]: LS: TC	*EGB	Adjusts the color OPC motor speed. [-4.00 to $4.00 /-1.35 / 0.01 \% /$ step]
1004044	Fusing: LS: Thick	*EGB	Adjusts the paper exit and fusing motor speed. [-4.00 to 4.00 / 0.6 / 0.01\%/step]
1004045	Trans. Belt: LS: TC	*EGB	Adjusts the transfer belt motor speed. [-4.00 to 4.00 / 0.0 / 0.01 \%/step]
1004046	PFU: LS: Thick	*EGB	Adjusts the speed of the feed motor in the optional paper tray unit. [-4.00 to $4.00 /-1.14 / 0.01 \% /$ step]
1004047	Duplex: LS: Add: TC	*EGB	Adjusts the duplex motor speed. [-4.00 to 4.00 / 0.0 / 0.01 \%/step]
1004048	Duplex: LS: Thick	*EGB	Adjusts the duplex motor speed. [-4.00 to $4.00 /-0.36 / 0.01 \% /$ step $]$
1004049	Reverse: LS: CW: TC	*EGB	Adjusts the inverter motor speed. [-4.00 to 4.00 / 0.6 / 0.01\%/step]
1004050	Rever.: LS: CCW: TC	*EGB	Adjusts the inverter motor speed. [-4.00 to 4.00 / $0.0 / 0.01 \% /$ step]

SERVICE MODE TABLE

1004051	DEV / OPC [K] LS:TC2	*EGB	Adjusts the black development and OPC motor speed. [-4.00 to $4.00 /-1.35 / 0.01 \% /$ step]
1004052	DEV [CMY]: LS: TC2	*EGB	Adjusts the color development motor speed. [-4.00 to $4.00 / 0.0 / 0.01 \% /$ step]
1004053	OPC [CMY]: LS: TC2	*EGB	Adjusts the color OPC motor speed. [-4.00 to $4.00 /-1.35 / 0.01 \% /$ step $]$
1004054	Fusing: LS: TC 2	*EGB	Adjusts the paper exit and fusing motor speed. [-4.00 to 4.00 / 0.6 / $0.01 \% /$ step]
1004055	T. Belt: LS: TC 2	*EGB	Adjusts the transfer belt motor speed. [-4.00 to $4.00 / \mathbf{0 . 0} / 0.01 \% /$ step]
1004056	PFU: LS: Thick 2	*EGB	Adjusts the speed of the feed motor in the optional paper tray unit. [-4.00 to $4.00 /-1.14 / 0.01 \% /$ step]
1004057	Duplex: LS: Thick 2	*EGB	Adjusts the duplex motor speed. [-4.00 to $4.00 /-0.36 / 0.01 \% /$ step]
1004058	DEV / OPC [K]: LS: SP	*EGB	Adjusts the black development and OPC motor speed. [-4.00 to $4.00 /-1.35 / 0.01 \% /$ step]
1004059	DEV [CMY]: LS: SP	*EGB	Adjusts the color development motor speed. [-4.00 to $4.00 / 0.0 / 0.01 \% /$ step]
1004060	OPC [CMY]: LS: SP	*EGB	Adjusts the color OPC motor speed. [-4.00 to $4.00 /-1.35 / 0.01 \% /$ step]
1004061	Fusing: LS: SP	*EGB	Adjusts the paper exit and fusing motor speed. [-4.00 to 4.00 / 0.6 / $0.01 \% /$ step]
1004062	Trans. Belt: LS: SP	*EGB	Adjusts the transfer belt motor speed. [-4.00 to $4.00 / 0.0 / 0.01 \% /$ step]
1004063	PFU: LS: SP	*EGB	Adjusts the speed of the feed motor in the optional paper tray unit. [-4.00 to $4.00 /-1.14 / 0.01 \% /$ step]
1004064	Duplex: LS: SP	*EGB	Adjusts the duplex motor speed. [-4.00 to $4.00 /-0.36 / 0.01 \% /$ step]
1004065	DEV / OPC [K]: LS: TN	*EGB	Adjusts the black development and OPC
1004066	DEV / OPC [K]: RS: TN	*EGB	motor speed. [-4.00 to 4.00 / - $\mathbf{1 . 3 5}$ / $0.01 \% /$ step]
1004067	DEV [CMY]: LS: Thin	*EGB	Adjusts the color development motor speed.
1004068	DEV [CMY]: RS: Thin	*EGB	[-4.00 to $4.00 / 0.0 / 0.01 \% /$ step]
1004069	OPC [CMY]: LS: Thin	*EGB	Adjusts the color OPC motor speed.
1004070	OPC [CMY]: RS: Thin	*EGB	[-4.00 to 4.00 / -1.35 / 0.01\%/step]
1004071	Fusing: LS: Thin	*EGB	Adjusts the paper exit and fusing motor
1004072	Fusing: RS: Thin	*EGB	speed. [-4.00 to 4.00 / 1.4 / 0.01\%/step]
1004073	Trans. Belt: LS: TN	*EGB	Adjusts the transfer belt motor speed.
1004074	Trans. Belt: RS: TN	*EGB	[-4.00 to 4.00 / 0.0 / 0.01\%/step]
1004075	PFU: LS: Thin	*EGB	Adjusts the speed of the feed motor in the
1004076	PFU: RS: Thin	*EGB	optional paper tray unit. [-4.00 to $4.00 /-0.36 / 0.01 \% / s t e p]$
1004077	Duplex: LS: Thin	*EGB	Adjusts the duplex motor speed.
1004078	Duplex: RS: Thin	*EGB	[-4.00 to 4.00 / -0.36 / 0.01\%/step]

1004079	$\begin{aligned} & \hline \hline \text { DEV / OPC [K]: LS: } \\ & \text { OHP } \end{aligned}$	*EGB	Adjusts the black development and OPC motor speed. [-4.00 to 4.00 / -1.35 / $0.01 \% /$ step]
1004080	DEV [CMY]: LS: OHP	*EGB	Adjusts the color development motor speed. [-4.00 to $4.00 / 0.0 / 0.01 \% /$ step]
1004081	OPC [CMY]: LS: OHP	*EGB	Adjusts the color OPC motor speed. [-4.00 to $4.00 /-1.35 / 0.01 \% /$ step]
1004082	Fusing: LS: OHP	*EGB	Adjusts the paper exit and fusing motor speed. [-4.00 to 4.00 / 0.6 / 0.01\%/step]
1004083	T.Belt: LS: OHP	*EGB	Adjusts the transfer belt motor speed. [-4.00 to $4.00 / 0.0 / 0.01 \% /$ step]
1004084	PFU: LS: OHP	*EGB	Adjusts the speed of the feed motor in the optional paper tray unit. [-4.00 to $4.00 /-1.14$ / 0.01\%/step]
1004085	Duplex: LS: OHP	*EGB	Adjusts the duplex motor speed. [-4.00 to $4.00 /-0.36 / 0.01 \% /$ step]

1006	[Phase Adjust.] Phase Adjustment		
1006001	Angle	*EGB	Adjusts the phase angle between the K drum and the CMY drums. [-180 to $180 / 0 / 1 \%$ step] DFU

1105	[Fusing Temp.] Fusing Temperature (Paper Type, Mode, Color, Process Speed) Paper Type -> N: Plain paper 1, N2: Plain paper 2, TC: Thick, TN: Thin, SP: Special, OHP Mode -> Simple [one-sided] or Duplex Color -> K: Black only, FC: Full color Process Speed -> LS: Low speed, RS: Regular speed Reload: Print ready, between jobs		
	Adjusts the fusing unit temperature for each mode.		
1105022	Reload Temp.	*EGB	[100 to $200 / 160 / 1^{\circ} \mathrm{C} /$ step]
1105025	TC1: Simple: [K]	*EGB	[120 to $180 / 160 / 1^{\circ} \mathrm{C} /$ step]
1105026	TC1: Duplex: [K]	*EGB	
1105027	TC1: Simple: [FC]	*EGB	
1105028	TC1: Duplex: [FC]	*EGB	
1105029	TC2: Simple: [K]	*EGB	
1105031	TC2: Simple: [FC]	*EGB	
1105033	N : Simple: [K]: LS	*EGB	[120 to $180 / 145 / 1^{\circ} \mathrm{C} /$ step]
1105034	N : Simple: [K]: RS	*EGB	[120 to $180 / 160 / 1^{\circ} \mathrm{C} /$ step]
1105035	N : Duplex: [K]: LS	*EGB	[120 to $180 / 145 / 1^{\circ} \mathrm{C} /$ step]
1105036	N: Duplex: [K]: RS	*EGB	[120 to $180 / 160 / 1^{\circ} \mathrm{C} /$ step]
1105037	N: Simple: [FC]: LS	*EGB	[120 to $180 / 145 / 1^{\circ} \mathrm{C} /$ step]
1105039	N : Simple: [FC]: RS	*EGB	[120 to $180 / 160 / 1^{\circ} \mathrm{C} /$ step]
1105040	N: Duplex: [FC]: LS	*EGB	[120 to $180 / 145 / 1^{\circ} \mathrm{C} /$ step]
1105042	N: Duplex: [FC]: RS	*EGB	[120 to $180 / 160 / 1^{\circ} \mathrm{C} /$ step]
1105043	Check Temp. Time	*EGB	[0 to 10 / 2.0 / 0.1 sec/step]
	Adjusts the rotation time before checking the fusing unit temperature. If the main switch is turned on and off for a short time, it might be possible that the checked temperature is high even though the whole of the fusing unit is not high enough for printing condition.		
1105049	N2: Simple: [K]: LS	*EGB	[120 to $180 / 150 / 1^{\circ} \mathrm{C} /$ step]
1105050	N2: Simple: [K]: RS	*EGB	[120 to $180 / 165 / 1^{\circ} \mathrm{C} /$ step]
1105051	N2: Duplex: [K]: LS	*EGB	[120 to $180 / 150 / 1^{\circ} \mathrm{C} /$ step]
1105052	N2: Duplex: [K]: RS	*EGB	[120 to $180 / 165 / 1^{\circ} \mathrm{C} /$ step]
1105053	N2: Simple: [FC] LS	*EGB	[120 to $180 / 150 / 1^{\circ} \mathrm{C} /$ step]
1105054	N2: Simple: [FC] RS	*EGB	[120 to $180 / 165 / 1^{\circ} \mathrm{C} /$ step]
1105055	N2: Duplex: [FC] LS	*EGB	[120 to $180 / 150 / 1^{\circ} \mathrm{C} /$ step]
1105056	N2: Duplex: [FC] RS	*EGB	[120 to $180 / 165 / 1^{\circ} \mathrm{C} /$ step]
1105057	TN: Simple: [K]: LS	*EGB	[120 to $180 / 135 / 1^{\circ} \mathrm{C} /$ step]
1105058	TN: Simple: [K]: RS	*EGB	[120 to $180 / 150 / 1^{\circ} \mathrm{C} /$ step]
1105059	TN: Duplex: [K]: LS	*EGB	[120 to $180 / 135 / 1^{\circ} \mathrm{C} /$ step]
1105060	TN: Duplex: [K] RS	*EGB	[120 to $180 / 150 / 1^{\circ} \mathrm{C} /$ step]
1105061	TN: Simple: [FC] LS	*EGB	[120 to $180 / 135 / 1^{\circ} \mathrm{C} /$ step]
1105062	TN: Simple: [FC] RS	*EGB	[120 to $180 / 150 / 1^{\circ} \mathrm{C} /$ step]
1105063	TN: Duplex: [FC] LS	*EGB	[120 to $180 / 135 / 1^{\circ} \mathrm{C} /$ step]
1105064	TN: Duplex: [FC] RS	*EGB	[120 to $180 / 150 / 1^{\circ} \mathrm{C} /$ step]
1105065	SP1: Simple: [K] LS	*EGB	[120 to $180 / 165 / 1^{\circ} \mathrm{C} /$ step]
1105067	SP1: Duplex: [K] LS	*EGB	[120 to $180 / 165 / 1^{\circ} \mathrm{C} /$ step]

1105069	SP1: Simp.: [FC] LS	${ }^{*}$ EGB	[120 to $180 / 165 / 1^{\circ} \mathrm{C} /$ step]
1105071	SP1: Dupl.: [FC] LS	${ }^{*}$ EGB	$\left[120\right.$ to $180 / 165 / 1^{\circ} \mathrm{C} /$ step]
1105089	OHP: [K]: LS	${ }^{*}$ EGB	$\left[120\right.$ to $180 / 160 / 1^{\circ} \mathrm{C} /$ step $]$
1105090	OHP: [FC]: LS	${ }^{*}$ EGB	$\left[120\right.$ to $180 / 160 / 1^{\circ} \mathrm{C} /$ step] $]$

1106	[Fusing Temp.] Fusing Temperature H. Roller: Heat Roller		
1106002	H. Roller Temp.	Displays the heating roller temperature at this time. [0 to $230 / 0 / 1^{\circ} \mathrm{C} /$ step $]$	

1911	[Print Speed Ctl] Print Speed Control for small paper sizes (A5 or smaller) (Sheets of paper, Interval time or Temperature, Process Speed) Simple [one-sided] or Duplex Process Speed -> LS: Low speed, RS: Regular speed See section 6 for more about these SPs.		
1911001	PPM Down: RS: S	*EGB	The print speed (PPM) is reduced after the machine has printed this number of pages continuously. [0 to 99 / 15 / 1 sheet/step]
1911002	PPM Down: LS: S	*EGB	
1911003	PPM Down Inter.	*EGB	The print speed goes back to the normal speed after this interval. [0 to 255 / $30 / 1$ sec/step]
1911004	S-size Temp. 1	*EGB	The temperature is decreased by this amount to prevent overheating the fusing unit for small size paper. [0 to $200 / 2 / 1^{\circ} \mathrm{C} /$ step]
1911006	S-size Temp. 2	*EGB	[0 to $200 / 5 / 1^{\circ} \mathrm{C} / \mathrm{step}$]
1911008	S-size Temp. 3	*EGB	
1911014	S-size Temp.: S1	*EGB	These SPs control when the above temperature reductions are done. [0 to 255 / 30 / 1 sheet/step]
1911016	S-size Temp.: S2	*EGB	[0 to $255 / 20 / 1$ sheet/step]
1911018	S-size Temp.: S3	*EGB	[0 to $255 / 50 / 1$ sheet/step]
1911021	Simple Temp. 1	*EGB	Adjusts the temperature reduction for onesided printing. [0 to $200 / 2 / 1^{\circ} \mathrm{C} /$ step]
1911022	Simple Temp. 2	*EGB	[0 to $200 / 5 / 1^{\circ} \mathrm{C} /$ step]
1911023	Simple Temp.:S1	*EGB	These SPs control when the above temperature reductions are done. [0 to 500 / $100 / 1$ sheet/step]
1911024	Simple Temp.:S2	*EGB	[0 to $500 / 30 / 1$ sheet/step]
1911025	Duplex Temp. 1	*EGB	Adjusts the temperature reduction for duplex printing. [0 to $200 / 2 / 1^{\circ} \mathrm{C} /$ step]
1911026	Duplex Temp. 2	*EGB	[0 to $200 / 5 / 1^{\circ} \mathrm{C} /$ step]
1911027	Duplex Temp.: S1	*EGB	These SPs control when the above temperature reductions are done. [0 to 500 / 80 / 1 sheet/step]

1911028	Duplex Temp.: S2	*EGB	[0 to 500 / 20 / 1 sheet/step]

1912	[Fusing Rotat.] Fusing Unit Roller Rotation Control Paper Type -> TC1: Thick paper 1, TC2: Thick paper 2, OHP, SP: Special		
1912001	Rotation	*EGB	$\begin{aligned} & \hline[0 \text { or } 1 / 1 /-] \\ & 0: \text { Off 1: On. } \end{aligned}$
	When the printer is in the ready condition, the nip between the hot roller and pressure roller is in the same position. This may cause deformation of the rollers. Therefore, a temporary rotation prevents this problem. SP 1912001 turns this feature on or off. SP1912-003 and 004 control this rotation. Pre-rotation: Fusing idling		
1912002	Prerotat. Speed	*EGB	[0 to 2/2/-]
	Adjusts the speed of the fusing-unit rollers during fusing idling. 0: $1 / 3$ regular speed, 1: Low speed, 2: Regular speed		
1912003	Rotation Freque.	*EGB	[1 to 24 / 4 / 1 hour/step]
	Adjusts the frequency of the fusing-unit roller rotation if the machine is in the ready condition for a very long interval.		
1912004	Rotation Inter.	*EGB	[0 to 25 / 0.1/ $0.1 \mathrm{sec} / \mathrm{step}$]
	Adjusts the duration of the fusing-unit roller rotation		
1912005	Prerotat. Temp.	*EGB	[0 to $200 / 100 / 1^{\circ} \mathrm{C} / \mathrm{step}$]
	Fusing idling is not done if the fusing unit temperature is above this value.		
1912006	Prerotat. Inter.	*EGB	[0 to $180 / 1 / 1 \mathrm{~min} /$ step]
	Adjusts the duration of fusing idling immediately after the power is turned on.		
1912007	Ex. Rotation Time	*EGB	[0 to $10 / 5 / 1$ sec/step]
	Adjusts the time for extra rotation of the fusing unit rollers at the end of a job. If the fusing motor stops before the fusing lamp turns off, the temperature can become very high.		
1912008	Prerotat. Ext.	*EGB	[0 to 255 / 0 / $1 \mathrm{sec} /$ step]
	Adjusts the additional time for pre-rotation of the fusing rollers.		
1912010	TC1: Rotat. Ext.	*EGB	[0 to $255 / 10 / 1 \mathrm{sec} / \mathrm{step}$]
	Adjusts the additional time of the fusing roller pre-rotation for thick paper 1.		
1912011	TC2 Rotat. Ext.	*EGB	[0 to 255/15 / 1 sec/step]
	Adjusts the additional time of the fusing roller pre-rotation for thick paper 2.		
1912012	OHP: Rotat. Ext.	*EGB	[0 to 255/15 / 1 sec/step]
	Adjusts the additional time of the fusing roller pre-rotation for OHP.		
1912013	SP: Rotat. Ext.	*EGB	[0 to $255 / 15 / 1 \mathrm{sec} / \mathrm{step}$]
	Adjusts the additional time of the fusing roller pre-rotation for special paper.		

1913	[Heating Roller] Heating Roller Control		
1913002	Stand-by Temp.$\quad{ }^{*}$ EGB $\quad\left[0\right.$ to $200 / 150 / 1^{\circ} \mathrm{C} /$ step $]$		
	Adjusts the heating roller temperature when the machine is in the ready condition.		

1916	[Nip Measure] Fusing Nip Width Measurement			DFU
1916001	Nip Measure Exe.		[0 or 1/0/-] 0: Not execute, 1: Execute	
	Performs the nip width measurement.			
1916002	Prerotation Time	*EGB	[0 to $60 / 10 / 1 \mathrm{sec} /$ step]	
	Adjusts the rotation time of the fusing unit rollers before the nip measurement.			

1917	[Environ. Adapt.] Fusing Idling: Environment Correction The machine automatically adjusts the duration of fusing idling, depending on room temperature measured by the temperature/humidity sensor (Paper Type, Temperature Environment, Value of Temperature/ Rotation Time) Paper Type ->N1: Plain paper 1, N2: Plain paper 2, T1: Thick paper 1, T2: Thick paper 2, SP: Special (see the Specifications table for details on these paper weights) Temperature Environment -> H: High temperature, L: Low temperature Value of Temperature/ Time: Dec.: Decrease, Inc.: Increase		
1917003	H: Rotat. Time Dec.	*EGB	Adjusts the rotation time decrease at high temperature. [-120 to 0 / $0 / 1$ sec/step]
1917004	N1: H: Temp. Dec.	*EGB	Adjusts the temperature decrease for plain paper 1 at high temperature. $\left[-50\right.$ to $0 / 0 / 1^{\circ} \mathrm{C} /$ step $]$
1917005	N1: L: Temp. Inc.	*EGB	Adjusts the temperature increase for plain paper 1 at low temperature. [0 to $30 / 7 / 1^{\circ} \mathrm{C} /$ step]
1917006	L: Rotat. Time Inc.	*EGB	Adjusts the rotation time increase at low temperature. [0 to $120 / 0 / 1 \mathrm{sec} /$ step]
1917007	H: Standard Temp.	*EGB	Sets the threshold temperature detected as high temperature. [25 to $40 / 30 / 1^{\circ} \mathrm{C} /$ step]
1917008	L: Standard Temp.	*EGB	Sets the threshold temperature detected as low temperature. [-15 to $30 / \mathbf{1 8} / 1^{\circ} \mathrm{C} /$ step]
1917009	L: Rotation Dec.	*EGB	Adjusts the rotation time decrease at low temperature. [0 to $100 / 20 / 1$ sec/step]
1917010	N2: H: Temp. Dec.	*EGB	Adjusts the temperature decrease for plain paper 2 at high temperature. [-50 to $0 / 0 / 1 \mathrm{sec} /$ step]
1917011	N2: L: Temp. Inc.	*EGB	Adjusts the temperature increase for plain paper 2 at low temperature. [0 to $30 / 10 / 1^{\circ} \mathrm{C} /$ step]
1917012	TN: H: Temp. Dec.	*EGB	Adjusts the temperature decrease for thin paper at high temperature. [-50 to $0 / 0 / 1 \mathrm{sec} /$ step $]$
1917013	TN: L: Temp. Inc.	*EGB	Adjusts the temperature increase for thin paper at low temperature. [0 to $30 / 7 / 1^{\circ} \mathrm{C} /$ step]

1917014	TC1: H: Temp. Dec.	*EGB	Adjusts the temperature decrease for thick paper 1 at high temperature. [-50 to $0 / 0 / 1 \mathrm{sec} /$ step $]$
1917015	TC1: L: Temp. Inc.	*EGB	Adjusts the temperature increase for thick paper 1 at low temperature. [0 to $30 / 7 / 1^{\circ} \mathrm{C} /$ step]
1917016	TC2: H: Temp. Dec.	*EGB	Adjusts the temperature decrease for thick paper 2 at high temperature. [-50 to $0 / 0 / 1 \mathrm{sec} /$ step $]$
1917017	TC2: L: Temp. Inc.	*EGB	Adjusts the temperature increase for thick paper 2 at low temperature. [0 to $30 / 7 / 1^{\circ} \mathrm{C} /$ step]
1917018	OHP: H: Temp. Dec.	*EGB	Adjusts the temperature decrease for OHP at high temperature. [-50 to $0 / 0 / 1 \mathrm{sec} /$ step $]$
1917019	OHP: L: Temp. Inc.	*EGB	Adjusts the temperature increase for OHP at low temperature. [0 to $30 / 7 / 1^{\circ} \mathrm{C} /$ step]
1917020	SP: H: Temp. Dec.	*EGB	Adjusts the temperature decrease for special paper at high temperature. [-50 to $0 / 0 / 1$ sec/step]
1917021	SP: L: Temp. Inc.	*EGB	Adjusts the temperature increase for special paper at low temperature. [0 to $30 / 7 / 1^{\circ} \mathrm{C} /$ step]

SP2-XXX (Drum)

2101	[Color Regist.] Color Registration Correction ([Color], M: Main scan, S: Sub scan)		
	You can adjust these SPs if the color registration is not good after the Line Position Adjustment (also known as 'MUSIC') is done. The [K] value (-001) is the standard value in the main scan adjustment. The values other than [k] value are added to $[\mathrm{K}]$ value. So, $[\mathrm{K}]$ value normally does not need to be adjusted in the main scan adjustment.		
2101001	[K]: M Regist. Dot	*EGB	Adjusts the side edge registration by a dot for each mode. [-128 to $127 / 0 / 1 \mathrm{dot} /$ step]
2101002	[M]: M Regist. Dot	*EGB	
2101003	[C]: M Regist. Dot	*EGB	
2101004	[Y]: M Regist. Dot	*EGB	
2101005	[K]: M Reg. SubD	*EGB	Adjusts the side edge registration by $1 / 16$ dot. [-15 to 15 / 0 / 1/16dot/step]
2101006	[K-M]: M Reg. SubD	*EGB	
2101007	[K-C]: M Reg. SubD	*EGB	
2101008	[K-Y]: M Reg. SubD	*EGB	
2101013	[K-M]: S Reg. 600	*EGB	[-128 to 127 / 0 / 1 line/step]
2101014	[K-C]: S Reg. 600	*EGB	
2101015	[K-Y]: S Reg. 600	*EGB	
2101016	[K-M]: S Reg. 1200	*EGB	
2101017	[K-C]: S Reg. 1200	*EGB	
2101018	[K-Y]: S Reg. 1200	*EGB	

20203	[Trim Adjust.] Erase Margin Adjustment Lead Ed: Leading Edge, Trail. Ed: Trailing Edge, Left/Right Ed: Left/ Right Edge		
2103001	Lead Ed. Width	*EGB	Adds this value to the leading edge erase margin position in the sub scan direction. [-127 to $127 / 71 / 1$ line/step]
2103002	Trail. Ed. Width	*EGB	Adds this value to the trailing edge erase margin position in the sub scan direction. [-127 to $127 / 71 / 1$ line/step]
2103003	Left Ed. Width	*EGB	Adds this value to the left edge erase margin position in the main scan direction. [-127 to $127 / 47 / 1$ dot/step]
2103004	Right Ed. Width	*EGB	Adds this value to the right edge erase margin position in the main scan direction. [-127 to $127 / 47 / 1$ dot/step]

2104	[Magnifi. Adj.] Magnification Adjustment ([Color], Main Scan Magnification)		
2104001	[K]: M Magnifi.	*EGB	Adjusts the main scan magnification. [-1.00 to $1.00 / 0.00 / 0.01 \% /$ step]
2104002	[M]: M Magnifi.	*EGB	
2104003	[C]: M Magnifi.	*EGB	
2104004	[Y]: M Magnifi.	*EGB	

2105	[LD Power Cont.] LD Power Control ([Color], Process Speed) Process Speed -> LS: Low speed, RS: Regular speed		
2105001	[K] 0	*EGB	Adjusts the LD power. [10 to $200 / 100 / 1 \% /$ step] DFU
2105002	[M] 0	*EGB	
2105003	[C] 0	*EGB	
2105004	[Y] 0	*EGB	
2105009	[K] 0: LS	*EGB	Adjusts the LD power at low speed. [10 to $200 / 100 / 1 \% /$ step] DFU
2105010	[M] 0: LS	*EGB	
2105011	[C] 0: LS	*EGB	
2105012	[Y] 0: LS	*EGB	

| 2109 | [LD BeamPattern] LD Beam Pattern | |
| :--- | :--- | :--- | :--- |
| 2109001 | Picture Addition | Adds the picture to the LD beam pattern.
 [0 or $1 / 0 /-]$
 $0:$ Not execute, 1: Execute |
| 2109002 | Pattern Select | Selects the LD beam pattern.
 [0 to 24 / 0 / 1/step] |
| 2109004 | Color Select | Selects the color for the LD beam pattern.
 [0 to 4 / 0 / 1/step] |

2111	[Manual Execut.] Manual Execution		
2111001	Position Adjust.		Performs the line position adjustment.
2111002	Pro. Position Adj.		Performs an approximate line position adjustment.
2111003	Skew Adjust.		Performs the skew adjustment.
2111004	ID S. Adjust.		Tests the ID sensor.

$\mathbf{2 1 2 0}$	[LD Off Check]		Displays the LD off check state.

2143	[ID S. Display] ID Sensor Display The ID sensor assembly has three sensors: Left, Center, Right		
2143001	PWM: Left	*EGB	Displays the PWM value for each sensor. [0 to 512 / $0 / 1 /$ step]
2143002	PWM: Center	*EGB	
2143003	PWM: Right	*EGB	
2143004	Avg: Left	*EGB	Displays the average output from each sensor. [0.00 to 5.00 / 0.00 / 0.01 volt/step]
2143005	Avg: Center	*EGB	
2143006	Avg: Right	*EGB	
2143007	Max: Left	*EGB	Displays the maximum output from each sensor. [0.00 to $5.00 / 0.00 / 0.01 \mathrm{volt} / \mathrm{step}$]
2143008	Max: Center	*EGB	
2143009	Max: Right	*EGB	
2143010	Min: Left	*EGB	Displays the minimum output from each sensor. [0.00 to $5.00 / 0.00 / 0.01 \mathrm{volt} / \mathrm{step}$]
2143011	Min: Center	*EGB	
2143012	Min: Right	*EGB	
2143013	Max2: Left	*EGB	Displays the maximum 2 output from each sensor.
2143014	Max2: Center	*EGB	

2143015	Max2: Right	*EGB	[0.00 to $5.00 / 0.00 / 0.01$ volt/step]
2143016	Min2: Left	*EGB	Displays the maximum 2 output from each sensor.
2143017	Min2: Center	*EGB	
2143018	Min2: Right	*EGB	[0.00 to $5.00 / 0.00 / 0.01$ volt/step] $]$

2150	[Area Magni. Cor] Area Magnification Correction ([Color], Area)		
2150001	[K]: Area 1	*EGB	Adjusts the magnification correction for each area. [-127 to 127 / 0 / 1 sub-dot/step]
2150002	[K]: Area 2	*EGB	
2150003	[K]: Area 3	*EGB	
2150004	[K]: Area 4	*EGB	
2150005	[K]: Area 5	*EGB	
2150006	[K]: Area 6	*EGB	
2150007	[K]: Area 7	*EGB	
2150008	[K]: Area 8	*EGB	
2150009	[K]: Area 9	*EGB	
2150010	[K]: Area 10	*EGB	
2150011	[K]: Area 11	*EGB	
2150012	[K]: Area 12	*EGB	
2150013	[M]: Area 1	*EGB	Adjusts the magnification correction for each area. [-127 to 127 / 0 / 1 sub-dot/step]
2150014	[M]: Area 2	*EGB	
2150015	[M]: Area 3	*EGB	
2150016	[M]: Area 4	*EGB	
2150017	[M]: Area 5	*EGB	
2150018	[M]: Area 6	*EGB	
2150019	[M]: Area 7	*EGB	
2150020	[M]: Area 8	*EGB	
2150021	[M]: Area 9	*EGB	
2150022	[M]: Area 10	*EGB	
2150023	[M]: Area 11	*EGB	
2150024	[M]: Area 12	*EGB	
2150025	[C]: Area 1	*EGB	Adjusts the magnification correction for each area. [-127 to 127 / 0 / 1 sub-dot/step]
2150026	[C]: Area 2	*EGB	
2150027	[C]: Area 3	*EGB	
2150028	[C]: Area 4	*EGB	
2150029	[C]: Area 5	*EGB	
2150030	[C]: Area 6	*EGB	
2150031	[C]: Area 7	*EGB	
2150032	[C]: Area 8	*EGB	
2150033	[C]: Area 9	*EGB	
2150034	[C]: Area 10	*EGB	
2150035	[C]: Area 11	*EGB	
2150036	[C]: Area 12	*EGB	
2150037	[Y]: Area 1	*EGB	Adjusts the magnification correction for each area. [-127 to 127 / 0 / 1 sub-dot/step]
2150038	[Y]: Area 2	*EGB	
2150039	[Y]: Area 3	*EGB	
2150040	[Y]: Area 4	*EGB	
2150041	[Y]: Area 5	*EGB	

2150042	[Y]: Area 6	*EGB		
2150043	[Y]: Area 7	*EGB		
2150044	[Y]: Area 8	*EGB		
2150045	[Y]: Area 9	*EGB		
2150046	[Y]: Area 10	*EGB		
2150047	[Y]: Area 11	*EGB		
2150048	[Y]: Area 12	*EGB		

2151	[Area Width] Area Width Correction ([Color], Area)		
2151001	[K]: Area 1	*EGB	[0 to 1024 / 355 / 1 dot/step]
2151002	[K]: Area 2	*EGB	
2151003	[K]: Area 3	*EGB	[0 to 1024 / 472 / 1 dot/step]
2151004	[K]: Area 4	*EGB	
2151005	[K]: Area 5	*EGB	
2151006	[K]: Area 6	*EGB	
2151007	[K]: Area 7	*EGB	
2151008	[K]: Area 8	*EGB	
2151009	[K]: Area 9	*EGB	
2151010	[K]: Area 10	*EGB	
2151011	[K]: Area 11	*EGB	[0 to 1024 / 355 / 1 dot/step]
2151012	[K]: Area 12	*EGB	
2151013	[M]: Area 1	*EGB	[0 to 1024 / 355 / 1 dot/step]
2151014	[M]: Area 2	*EGB	
2151015	[M]: Area 3	*EGB	[0 to 1024 / 472 / 1 dot/step]
2151016	[M]: Area 4	*EGB	
2151017	[M]: Area 5	*EGB	
2151018	[M]: Area 6	*EGB	
2151019	[M]: Area 7	*EGB	
2151020	[M]: Area 8	*EGB	
2151021	[M]: Area 9	*EGB	
2151022	[M]: Area 10	*EGB	
2151023	[M]: Area 11	*EGB	[0 to 1024 / 355 / 1 dot/step]
2151024	[M]: Area 12	*EGB	
2151025	[C]: Area 1	*EGB	[0 to 1024 / 355 / 1 dot/step]
2151026	[C]: Area 2	*EGB	
2151027	[C]: Area 3	*EGB	[0 to 1024 / 472 / 1 dot/step]
2151028	[C]: Area 4	*EGB	
2151029	[C]: Area 5	*EGB	
2151030	[C]: Area 6	*EGB	
2151031	[C]: Area 7	*EGB	
2151032	[C]: Area 8	*EGB	
2151033	[C]: Area 9	*EGB	
2151034	[C]: Area 10	*EGB	
2151035	[C]: Area 11	*EGB	[0 to 1024 / 355 / 1 dot/step]
2151036	[C]: Area 12	*EGB	
2151037	[Y]: Area 1	*EGB	[0 to 1024 / 355 / 1 dot/step]
2151038	[Y]: Area 2	*EGB	

2151039	[Y]: Area 3	*EGB	[0 to 1024 / 472 / 1 dot/step]
2151040	[Y]: Area 4	*EGB	
2151041	[Y]: Area 5	*EGB	
2151042	[Y]: Area 6	*EGB	
2151043	[Y]: Area 7	*EGB	
2151044	[Y]: Area 8	*EGB	
2151045	[Y]: Area 9	*EGB	
2151046	[Y]: Area 10	*EGB	
2151047	[Y]: Area 11	*EGB	[0 to 1024 / 355 / 1 dot/step]
2151048	[Y]: Area 12	*EGB	

2152	[Area Shading] Area Shading Correction Setting ([Color], Area)		
2152006	[K]: Area 0	*EGB	[0.10 to 2.00 / 1.00 / 0.01/step]
2152007	[K]: Area 1	*EGB	
2152008	[K]: Area 2	*EGB	
2152009	[K]: Area 3	*EGB	
2152010	[K]: Area 4	*EGB	
2152011	[K]: Area 5	*EGB	
2152012	[K]: Area 6	*EGB	
2152013	[K]: Area 7	*EGB	
2152014	[K]: Area 8	*EGB	
2152015	[K]: Area 9	*EGB	
2152016	[K]: Area 10	*EGB	
2152017	[M]: Area 0	*EGB	[0.10 to 2.00 / $1.00 / 0.01 /$ step]
2152018	[M]: Area 1	*EGB	
2152019	[M]: Area 2	*EGB	
2152020	[M]: Area 3	*EGB	
2152021	[M]: Area 4	*EGB	
2152022	[M]: Area 5	*EGB	
2152023	[M]: Area 6	*EGB	
2152024	[M]: Area 7	*EGB	
2152025	[M]: Area 8	*EGB	
2152026	[M]: Area 9	*EGB	
2152027	[M]: Area 10	*EGB	
2152028	[C]: Area 0	*EGB	[0.10 to 2.00 / 1.00 / 0.01/step]
2152029	[C]: Area 1	*EGB	
2152030	[C]: Area 2	*EGB	
2152031	[C]: Area 3	*EGB	
2152032	[C]: Area 4	*EGB	
2152033	[C]: Area 5	*EGB	
2152034	[C]: Area 6	*EGB	
2152035	[C]: Area 7	*EGB	
2152036	[C]: Area 8	*EGB	
2152037	[C]: Area 9	*EGB	
2152038	[C]: Area 10	*EGB	
2152039	[Y]: Area 0	*EGB	[0.10 to $2.00 / 1.00 / 0.01 /$ step]
2152040	[Y]: Area 1	*EGB	

2153	[MUSIC Setting] Timing for Automatic Line Position Adjustment (MUSIC)		
2153001	Auto Execution	*EGB	Enables or disables the automatic line position adjustment. If this SP is 0 , the adjustment is never done. [0 or 1 / 1 /-] Alphanumeric 0: Off, 1: On
2153002	Process Control	*EGB	Enables or disables the adjustment after process control is done. [0 or 1 / 1 /-] Alphanumeric 0 : Off, 1: On
2153003	Initialization	*EGB	Enables or disables the adjustment immediately after the power is turned on or when recovering from energy save mode. [0 or 1 / 1 / -] Alphanumeric 0: Off, 1: On
2153004	Data In	*EGB	Enables or disables the adjustment immediately after the machine starts to receive print job data. The adjustment is done if one of the conditions set with SP2153-012, -013 and -015 is satisfied. [0 or 1 / 1 /-] Alphanumeric 0 : Off, 1: On
2153005	Cut In	*EGB	Enables or disables the adjustment during printing. The adjustment is done if one of the conditions set with SP2153-012, -013 and 015 is satisfied. [0 or 1 / 1 /-] Alphanumeric 0 : No, 1: Yes
2153006	Job End	*EGB	Enables or disables the adjustment after printing. [0 or 1 / 0 /-] Alphanumeric 0 : Off, 1: On
2153008	Trans. Belt Speed 2	*EGB	Enables or disables the transfer belt speed correction during the adjustment. The transfer belt speed is affected by changes in temperature. A change of the transfer belt speed during the adjustment causes color registration errors. This SP keeps the transfer belt at a constant speed. [0 or 1 / 1 /-] Alphanumeric 0 : Off, 1: On

2153010	Manual Cut In	*EGB	If this number of pages was printed after the previous adjustment was done, then the adjustment is done again. The number of sheets is counted in SP7806-003 and -004. [10 to $999 / 190 / 1$ page/step]
2153012	MUSIC Temp.	*EGB	If the room temperature changes by this amount or more after the previous adjustment was done, then the adjustment is done again. [2 to $30 / 5 / 1^{\circ} \mathrm{C} /$ step]
2153013	Passage Time	*EGB	If this amount of time has passed after the previous adjustment was done, then the adjustment is done again. [0 to $1440 / 360 / 1$ min/step]
2153015	Maginificat. Error	*EGB	Sets the threshold (magnification error) from previous MUSIC for executing MUSIC. [0 to $10 / 1 / 0.1 \% /$ step]

2181	[MUSIC Result] Result of Automatic Line Position Adjustment ([Color],Value, Unit) Value-> Skew, Bent, M. Scan Erro.: Main Scan Error, S. Scan Erro.: Sub Scan Error, M. Cor: Main Scan Correction, S. Cor: Sub Scan Correction Unit-> Dot, SubD.: Sub Dot, 600/ 1200 dpi		
	The following SPs display the result of MUSIC for each mode.		
2181001	[K]: Skew	*EGB	[-5000 to 5000 / 0 / 1 um/step]
2181002	[K]: Bent	*EGB	
2181003	[K]: M. Scan Erro.	*EGB	
2181004	[K]: S. Scan Erro.	*EGB	
2181005	[K]: M Cor.: Dot	*EGB	[-127 to 127 / 0 / 1 dot/step]
2181006	[K]: M Cor.: SubD.	*EGB	[-127 to 127 / 0 / 1 sub-dot/step]
2181007	[K]: S Cor.: 600	*EGB	[-127 to 127 / 0 / 1 line/step]
2181008	[K]: S Cor.: 1200	*EGB	[-127 to 127 / 0 / 1/step]
2181011	[M]: Skew	*EGB	[-5000 to 5000 / 0 / 1 um/step]
2181012	[M]: Bent	*EGB	
2181013	[M]: M. Scan Erro.	*EGB	
2181014	[M]: S. Scan Erro.	*EGB	
2181015	[M]: M Cor.: Dot	*EGB	[-127 to 127 / 0 / 1 dot/step]
2181016	[M]: M Cor.: SubD..	*EGB	[-15 to 15 / 0 / 1 sub-dot/step]
2181017	[M]: S Cor.: 600	*EGB	[-127 to 127 / 0 / 1 line/step]
2181018	[M]: S Cor.: 1200	*EGB	[-127 to $127 / 0$ / 1/step]
2181021	[C]: Skew	*EGB	[-5000 to 5000 / 0 / 1 um/step]
2181022	[C]: Bent	*EGB	
2181023	[C]: M. Scan Erro.	*EGB	
2181024	[C]: S. Scan Erro.	*EGB	
2181025	[C]: M Cor.: Dot	*EGB	[-127 to 127 / 0 / 1 dot/step]
2181026	[C]: M Cor.: SubD..	*EGB	[-15 to 15 / 0 / 1 sub-dot/step]
2181027	[C]: S Cor.: 600	*EGB	[-127 to 127 / 0 / 1 line/step]
2181028	[C]: S Cor.: 1200	*EGB	[-127 to 127 / 0 / 1/step]
2181031	[Y]: Skew	*EGB	[-999 to 999 / 0 / 1 um/step]
2181032	[Y]: Bent	*EGB	

SERVICE MODE TABLE

2181033	[Y]: M. Scan Erro.	*EGB	
2181034	[Y]: S. Scan Erro.	*EGB	
2181035	[Y]: M Cor.: Dot	*EGB	[-127 to $127 / 0 / 1 \mathrm{dot} /$ step]
2181036	[Y]: M Cor.: SubD..	*EGB	[-15 to 15 / 0 / 1 sub-dot/step]
2181037	[Y]: S Cor.: 600	*EGB	[-127 to $127 / 0$ / 1 line/step]
2181038	[Y]: S Cor.: 1200	*EGB	[-127 to 127 / 0 / 1/step]

2186	[MUSIC Record] Automatic Line Position Adjustment Record		
	The following SPs display the MUSIC record.		
2186001	Year	*EGB	[0 to 99 / 0 / $1 \mathrm{y} / \mathrm{step}$]
2186002	Month	*EGB	[1 to $12 / 1 / 1 \mathrm{~m} /$ step]
2186003	Date	*EGB	[1 to $31 / 1 / 1 \mathrm{~d} / \mathrm{step}$]
2186004	Time	*EGB	[0 to $23 / 0 / 1 \mathrm{~h} / \mathrm{step}$]
2186005	Minute	*EGB	[0 to 59/0/1 y/step]
2186006	Temperature	*EGB	[0 to $100 / 0 / 1^{\circ} \mathrm{C} /$ step]
2186007	Result	*EGB	[0 to 999999 / 0 / 1 /step]
2186008	Execution	*EGB	[0 to 9999 / 0 / 1 /step]
2186009	Failure	*EGB	[0 to 9999 / 0 / 1 /step]

2201	[Charge Bias: DC] Charge Roller Voltage: DC (Process Speed, [Color]) Process Speed -> LS: Low speed, RS: Regular speed	
	These SPs adjust the DC voltage of the drum charge roller. These are used only when SP3-501-001 is set to "1".	
	RS: $[\mathrm{K}]$	"EGB
[200 to 999 / $\mathbf{5 8 5} / 1$ V/step]		
	RS: $[\mathrm{M}]$	"EGB
2201003	RS: $[\mathrm{C}]$	"EGB
2201004	RS: $[\mathrm{Y}]$	"EGB
2201006	LS: $[\mathrm{K}]$	"EGB
2201007	LS: $[\mathrm{M}]$	"EGB
2201008	LS: $[\mathrm{C}]$	"EGB
2201009	LS: $[\mathrm{Y}]$	"EGB

2202	[Charge Bias: AC] Charge Roller Voltage: AC (Process Speed, [Color]) Process Speed -> LS: Low speed, RS: Regular speed		
	These SPs adjust the AC voltage of the drum charge roller. These are used only when SP2-202-011 is set to " 1 ".		
2202001	RS: [K]	*EGB	[0 to 3000 / 2000 / 1 V/step]
2202002	RS: [M]	*EGB	
2202003	RS: [C]	*EGB	
2202004	RS: [Y]	*EGB	
2202006	LS: [K]	*EGB	
2202007	LS: [M]	*EGB	
2202008	LS: [C]	*EGB	
2202009	LS: [Y]	*EGB	
2202011	Output Control	*EGB	[0 or 1/0/-] 0 : Process Control, 1: Setting

2203	[Charge Bias: AC] Charge Roller Voltage: AC/l (Process Speed, [Color]) Process Speed -> LS: Low speed, RS: Regular speed		
	These SPs adjust the AC/I bias of the drum charge roller. These are used only when SP3-501-001 is set to "1".		
2203001	RS: [K]	*EGB	[0 to 1.5 / 0.49 / $0.01 \mathrm{~mA} / \mathrm{step}$]
2203002	RS: [M]	*EGB	[0 to 1.5/0.48/0.01 mA/step]
2203003	RS: [C]	*EGB	[0 to $1.5 / 0.49 / 0.01 \mathrm{~mA} / \mathrm{step}$]
2203004	RS: [Y]	*EGB	[0 to $1.5 / 0.48 / 0.01 \mathrm{~mA} / \mathrm{step}$]

2204	[Charge Bias] Charge Roller Voltage: Corrections for humidity (Environmental correction, [Color]) For more about the humidity conditions, see SP 2304.		
2204001	Environ. : HH: [K]	*EGB	[0 to $255 / 109 / 1 \% /$ step]
2204002	Environ. : HH: [M]	*EGB	[0 to $255 / 107 / 1 \% /$ step]
2204003	Environ. : HH: [C]	*EGB	[0 to 255/104/1\%/step]
2204004	Environ. : HH: [Y]	*EGB	[0 to $255 / 106 / 1 \% /$ step]
2204006	Environ. : H : $[\mathrm{K}]$	*EGB	[0 to 255/106 / 1\%/step]
2204007	Environ. : H : $[\mathrm{M}]$	*EGB	[0 to $255 / 106 / 1 \% /$ step]
2204008	Environ. : H : [C]	*EGB	[0 to $255 / 106 / 1 \% /$ step]
2204009	Environ. : $\mathrm{H}:[\mathrm{Y}]$	*EGB	[0 to 255/104/1\%/step]
2204011	Environ. : MM: $[\mathrm{K}]$	*EGB	[0 to 255 / 101 / 1\%/step]
2204012	Environ. : MM: [M]	*EGB	
2204013	Environ. : MM: [C]	*EGB	[0 to $255 / 100$ / 1\%/step]
2204014	Environ. : MM: [Y]	*EGB	
2204016	Environ. : L: [K]	*EGB	[0 to $255 / 105 / 1 \% /$ step]
2204017	Environ. : L: [M]	*EGB	[0 to $255 / 104 / 1 \% /$ step]
2204018	Environ. : L: [C]	*EGB	[0 to $255 / 103 / 1 \% /$ step]
2204019	Environ. : L: [Y]	*EGB	[0 to $255 / 105 / 1 \% /$ step]
2204021	Environ. : LL: [K]	*EGB	[0 to $255 / 110 / 1 \% /$ step]
2204022	Environ. : LL: [M]	*EGB	[0 to 255 / 109 / 1\%/step]
2204023	Environ. : LL: [C]	*EGB	[0 to $255 / 110 / 1 \% /$ step]
2204024	Environ. : LL: [Y]	*EGB	[0 to $255 / 109 / 1 \% /$ step]

2212	[Dev. Bias: DC] Development Bias: DC (Process Speed, [Color]) Process Speed -> RS: Regular speed, LS: Low speed		
	These SPs adjust the development bias. These are used only when SP3-501001 is set to " 1 ".		
2212001	RS: [K]	*EGB	[50 to $800 / 350 / 1 \mathrm{~V} /$ step]
2212002	RS: [M]	*EGB	
2212003	RS: [C]	*EGB	
2212004	RS: [Y]	*EGB	
2212005	LS: [K]	*EGB	
2212006	LS: [M]	*EGB	
2212007	LS: [C]	*EGB	
2212008	LS: [Y]	*EGB	

2251	[Manual Toner] Forced Toner Supply	
2251001	$[\mathrm{~K}]$	
2251002	$[\mathrm{M}]$	Manually executes toner supply for each
2251003	$[\mathrm{C}]$	color.

2302	[Temp./Humidity] Temperature / Humidity Display	
2302001	Temperature	Displays the temperature. [-128 to 127 / 0 / $0.1 \mathrm{deg} / \mathrm{step}$]
2302002	Relative Humidity	Display the relative humidity. [0 to 100 / 0 / 0.1\%RH/step]
2302003	Absolute Humidity	Display the absolute humidity. [0 to $100 / 0 / 0.1 \mathrm{~g} / \mathrm{m}^{3} / \mathrm{step}$]
2302004	Current Environ.	Display the current environment. [0 to 4 / 0 / 1/step] 0 : LL, 1: ML, 2: MM, 3: MH, 4: HH

2303	[Envir. Correct.] Environment Correction	
2303001	Manual Correct.	*EGB
	Manually sets the environment. [0 to $5 / 0 / 1 /$ step] $0: \mathrm{OFF}, 1: \mathrm{LL}, 2: \mathrm{ML}, 3: \mathrm{MM}, 4: \mathrm{MH}, 5: \mathrm{HH}$	

2304	[EC Threshold] Environment Correction Threshold (Humidity, Environment) A. Humidity: Absolute Humidity		
	These SPs adjust the thresholds (absolute humidity) for each environment.		
2304001	A. Humidity: LL-MM	*EGB	$[0$ to $100 / \mathbf{5 . 0} / 0.1 \mathrm{~g} / \mathrm{m} 3 /$ step $]$
2304002	A. Humidity: ML-MM	*EGB	$[0$ to $100 / \mathbf{8 . 0} / 0.1 \mathrm{~g} / \mathrm{m} 3 /$ step $]$
2304003	A. Humidity: MM-MH	*EGB	$[0$ to $100 / \mathbf{1 6 . 0} / 0.1 \mathrm{~g} / \mathrm{m} 3 / \mathrm{step}]$
2304004	A. Humidity: MH-HH	*EGB	$[0$ to $100 / \mathbf{2 6 . 0} / 0.1 \mathrm{~g} / \mathrm{m} 3 / \mathrm{step}]$

2306	[Vd Link Corre.] Vd Link Correction		
2306001	Setting	*EGB	Sets the Vd link correction. [0 or $1 / 0 /-]$ Alphanumeric 0: Execute, 1: Not execute
2306002	Correction Coef.	*EGB	Adjusts the Vd link correction coefficient. [1.00 to $2.50 / 1.00 / 0.01 /$ step]

2314	[Trans.Belt Bias] Transfer Belt Current at Process Control		
2314011	Process Cont. [K]	*EGB	Adjusts the transfer belt current at process control for [K]. [0 to $60 / \mathbf{1 5 . 0} / 0.1 \mu \mathrm{~A} /$ step]
2314012	Process Cont. [M]	*EGB	Adjusts the transfer belt current at process control for [M, C, Y].
2314013	Process Cont. [C]	*EGB	
2314014	Process Cont. [Y]	*EGB	[0 to $60 / \mathbf{1 2 . 5 / 0 . 1 ~} \mu \mathrm{A} /$ step]

2326	[T.Roll2 Clean.] Transfer Roller Cleaning (Positive or Negative Bias, Process Speed) Process Speed -> RS: Regular speed, LS: Low speed		
2326002	Posi. Bias: RS	*EGB	Adjusts the positive voltage for transfer roller cleaning.$\text { [0 to } 2 / 2.0 / 0.1 \mathrm{KV} / \text { step] }$
2326003	Posi. Bias: LS	*EGB	
2326005	Nega. Bias: RS	*EGB	Adjusts the negative voltage for transfer roller cleaning. [0 to $60 / 60.0 / 0.1 \mathrm{~V} /$ step]
2326006	Nega. Bias: LS	*EGB	

2352	[Trans.Belt Bias] Transfer Belt Current ([Color], Process Speed) Process Speed -> RS: Regular speed	
2352001	$[\mathrm{~K}]:$ RS	Adjusts the current that is applied to the transfer belt. [0 to $60 / 15.0 / 0.1 \mu \mathrm{~A} / \mathrm{step}]$

2353	[Trans.Belt Bias] Transfer Belt Current ([Color], Process Speed) Process Speed -> LS: Low speed		
2353001	$[\mathrm{~K}]:$ LS	*EGB	Adjusts the current that is applied to the transfer belt. [0 to $60 / 6.0 / 0.1 \mu \mathrm{~A} /$ step] $]$

2357	[Trans.Belt Bias] Transfer Belt Current ([Color], Process Speed) Process Speed -> RS: Regular speed		
2357001	[FC/ K]: RS	*EGB	Adjusts the current that is applied to the transfer belt. [0 to $60 / 15.0 / 0.1 \mu \mathrm{~A} /$ step]
2357002	[FC/ M]: RS	*EGB	[0 to $60 / 12.5 / 0.1 \mu \mathrm{~A} /$ step]
2357003	[FC/ C]: RS	*EGB	
2357004	[FC/ Y]: RS	*EGB	

2358	[Trans.Belt Bias] Transfer Belt Current ([Color], Process Speed) Process Speed -> LS: Low speed		
2358001	[FC/ K]: LS	*EGB	Adjusts the current that is applied to the transfer belt. [0 to $60 / 6.0 / 0.1 \mu \mathrm{~A} /$ step]
2358002	[FC/ M]: LS	*EGB	
2358003	[FC/ C]: LS	*EGB	
2358004	[FC/ Y]: LS	*EGB	

2402	[Normal: [K]] Transfer roller current and discharge plate voltage for the image area, plain paper 1, black toner (Process Speed, Paper Side, Unit) Process Speed -> RS: Regular speed, Paper Side: 1st or 2nd Unit -> T.Roll2: Transfer roller, Separa.: Discharge plate (paper separation)		
2402007	RS: 1st: T. Roll2	*EGB	Adjusts the transfer roller current. [0 to 60 / 25.0 / $0.1-\mu \mathrm{A} /$ step]
2402008	RS: 1st: Separa.	*EGB	Adjusts the discharge plate voltage. [0 to 4 / $2.0 / 0.1$-KV/step]

2402012	RS: 2 nd: T. Roll2	*EGB	[0 to $60 / \mathbf{1 2 . 5} / 0.1-\mu \mathrm{A} /$ step $]$
2402013	RS: 2 nd: Separa.	${ }^{*}$ EGB	$[0$ to $4 / \mathbf{2 . 0} / 0.1-\mathrm{KV} /$ step $]$

2403	[Normal: [K]] Transfer roller current and discharge plate voltage for the image area, plain paper 1, black toner (Process Speed, Paper Side) Process Speed -> LS: Low speed, Paper Side: 1st or 2nd		
2403007	LS: 1st: T. Roll2	*EGB	Adjusts the transfer roller current. [0 to $60 / 15.0 / 0.1-\mu \mathrm{A} /$ step]
2403008	LS: 1st: Separa.	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / 0.1 -KV/step]
2403012	LS: 2nd: T. Roll2	*EGB	[0 to $60 / 10.0 / 0.1-\mu \mathrm{A} /$ step]
2403013	LS: 2nd: Separa.	*EGB	[0 to $4 / 2.0 / 0.1-\mathrm{KV} / \mathrm{step}$]

2407	[Normal: [FC]] Transfer roller current and discharge plate voltage for the image area, plain paper 1, CMY toner (Process Speed, Paper Side) Process Speed -> RS: Regular speed, Paper Side: 1st or $2^{\text {nd }}$		
2407013	RS: 1st: T. Roll2	*EGB	Adjusts the transfer roller current. [0 to $60 / 20.0 / 0.1-\mu \mathrm{A} /$ step]
2407014	RS: 1st: Separa.	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / 0.1 -KV/step]
2407021	RS: 2nd: T. Roll2	*EGB	[0 to $60 / 32.5 / 0.1-\mu \mathrm{A} /$ step]
2407022	RS: 2nd: Separa.	*EGB	[0 to 4 / 2.0 / $0.1-\mathrm{KV} / \mathrm{step}$]

$\left.$| 2408 | [Normal: [FC] Transfer roller current and discharge plate voltage for the image
 area, plain paper 1, CMY toner
 (Process Speed, Paper Side) Process Speed -> LS: Low speed,
 Paper Side: 1st or 2nd | | |
| :--- | :--- | :--- | :---: |
| 2408013 | LS: 1st: T. Roll2 | *EGB | | | Adjusts the transfer roller current. |
| :--- |
| [0 to 60 / 17.5 / 0.1-uA/step] | \right\rvert\,

2421	[Normal:[K]:LE] Transfer roller current and discharge plate voltage for the leading edge area, plain paper 1, black toner Paper Side: 1 st or $2^{\text {nd }}$ Unit -> T.Roll2: Transfer roller, Separation: Discharge plate (paper separation)		
2421003	Separation	*EGB	[0 to $400 / 100 / 5 \% /$ step]
2421007	T.Roll2: 1st	*EGB	
2421012	T.Roll2: 2nd	*EGB	

2422	[Switch Timing] Switch timing from leading edge to normal, plain paper 1 (Paper Type, Edge) Paper Type -> N: Normal LE: Leading Edge		
2422002	T. Roll 2: N: LE	*EGB	[0 to $200 / 10 / 1 \mathrm{~mm} / \mathrm{step}]$
2422003	Separation: N: LE	*EGB	[0 to $200 / \mathbf{2 5 / 1 \mathrm { mm } / \mathrm { step }]}$

\left.| 2423 | [Normal: [K]: TE] Transfer roller current and discharge plate voltage for the | |
| :--- | :--- | :--- |
| trailing edge area, plain paper 1, black toner | | |
| Paper side: 1st or 2nd | | |
| Unit -> T.Roll2: Transfer roller, Separation: Discharge plate (paper separation) | | |$\right]$| 2423003 | Separation |
| :--- | :--- |

2424	[Switch Timing] Switch timing from normal to trailing edge, plain paper 1 (Paper Type, Edge) Paper Type -> N: Normal, Edge ->TE: Trailing Edge		
2424002	T. Roll 2: N: TE	*EGB	[0 to $200 / 10 / 1 \mathrm{~mm} / \mathrm{step}]$
2424003	Separation: N: TE	*EGB	[0 to $200 / \mathbf{3 0} / 1 \mathrm{~mm} / \mathrm{step}]$

2426	[Normal: [FC]: LE] Transfer roller current and discharge plate voltage for the leading edge area, plain paper 1, CMY toner Paper side: 1st or 2nd		
2426003	Separation	*EGB	[0 to 400 / 100 / 5\%/step]
2426007	T. Roll 2: 1st	*EGB	
2426012	T. Roll 2: 2nd	*EGB	

2428	[Normal: [FC]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, plain paper 1, CMY toner	
2428003	Separation	*EGB
[0 to 400/100/5\%/step]		
2428007	T. Roll 2: 1st	*EGB
2428012	T. Roll 2: 2nd	*EGB

2432	[Normal2: [K]] Transfer roller current and discharge plate voltage for the image area, plain paper 2, black toner (Process Speed, Paper Side, Unit) Process Speed -> RS: Regular speed, Paper Side: 1st or 2nd Unit -> T.Roll2: Transfer roller, Separa.: Discharge plate (paper separation)		
2432007	RS: 1st: T. Roll 2	*EGB	Adjusts the transfer roller current. [0 to 60 / $20.0 / 0.1-\mu \mathrm{A} /$ step]
2432008	RS: 1st: Separa.	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / $0.1-\mathrm{KV} /$ step]
2432012	RS: 2nd: T. Roll 2	*EGB	[0 to $60 / 10.0 / 0.1-\mu \mathrm{A} /$ step]
2432013	RS: 2nd: Separa.	*EGB	[0 to 4 / 2.0 / 0.1-KV/step]

2433	[Normal2: [K]] Transfer roller current and discharge plate voltage for the image area, plain paper 2, black toner (Process Speed, Paper Side) Process Speed -> LS: Low speed, Paper Side: 1st or 2nd		
2433007	LS: 1st: T. Roll 2	*EGB	Adjusts the transfer roller current. [0 to $60 / 10.0 / 0.1-\mu \mathrm{A} /$ step]
2433008	LS: 1st: Separa.	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / $0.1-\mathrm{KV} /$ step]
2433012	LS: 2nd: T. Roll 2	*EGB	[0 to $60 / 7.5 / 0.1-\mu \mathrm{A} /$ step]
2433013	LS: 2nd: Separa.	*EGB	[0 to $4 / 2.0$ / $0.1-\mathrm{KV} / \mathrm{step}$]

2437	[Normal2: [FC]] Transfer roller current and discharge plate voltage for the image area, plain paper 2, CMY toner (Process Speed, Paper Side) RS: Regular Speed, Paper Side: 1st or 2nd		
2437013	RS: 1st: T. Roll 2	*EGB	Adjusts the transfer roller current. [0 to $60 / 20.0 / 0.1-\mu \mathrm{A} /$ step]
2437014	RS: 1st: Separa.	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / 0.1 -KV/step]
2437021	RS: 2nd: T. Roll 2	*EGB	[0 to $60 / 20.0 / 0.1-\mu \mathrm{A} /$ step]
2437022	RS: 2nd: Separa.	*EGB	[0 to $4 / 2.0$ / $0.1-\mathrm{KV} / \mathrm{step}$]

2438	[Normal2: [FC]] Transfer roller current and discharge plate voltage for the image area, plain paper 2, CMY toner (Process Speed, Paper Side) LS: Low Speed, Paper Side: 1st or 2nd		
2438013	LS: 1st: T. Roll 2	*EGB	Adjusts the transfer roller current. [0 to $60 / \mathbf{1 0 . 0} / 0.1-\mu A /$ step]
2438014	LS: 1st: Separa.	*EGB	Adjusts the discharge plate voltage. [0 to 4/2.0 $\mathbf{0 . 1 - K V / s t e p] ~}$
2438021	LS: 2nd: T. Roll 2	*EGB	$[0$ to $60 / \mathbf{1 5 . 0 / 0 . 1 - \mu A / s t e p] ~}$
2438022	LS: 2nd: Separa.	*EGB	$[0$ to 4/2.0/0.1-KV/step] $]$

2451	[Normal2:[K]:LE] Transfer roller current and discharge plate voltage for the leading edge area, plain paper 2, black toner Paper Side: 1st or 2nd Unit -> T.Roll2: Transfer roller, Separation: Discharge plate (paper separation)		
2451003	Separation	*EGB	[0 to $400 / 100 / 5 \% /$ step]
2451007	Trans.Roll2: 1st	*EGB	
2451012	Trans.Roll2: 2nd	*EGB	

2452	[Switch Timing] Switch timing from leading edge to normal, plain paper 2 (Paper Type, Edge) Paper Type -> N: Normal, LE: Leading Edge		
2452002	T. Roll 2: N2: LE	*EGB	[0 to $200 / \mathbf{1 0} / 1 \mathrm{~mm} /$ step]
2452003	Separation: N2: LE	*EGB	[0 to $200 / \mathbf{2 5 / 1 \mathbf { m m } / \mathrm { step }]}$

2453	[Normal2: [K]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, plain paper 2, black toner Paper side: 1st or 2nd Unit -> T.Roll2: Transfer roller, Separation: Discharge plate (paper separation)	
2453003	Separation	*EGB
[0 to $400 / \mathbf{1 0 0} / 5 \% /$ step]		
2453007	T. Roll 2: 1st	*EGB
2453012	T. Roll 2: 2nd	*EGB

2454	[Switch Timing] Switch timing from normal to trailing edge, plain paper 2 (Paper Type, Edge) Paper Type -> N: Normal, TE: Trailing Edge		
2454002	T. Roll 2: N2: TE	*EGB	[0 to $200 / \mathbf{1 0} / 1 \mathrm{~mm} / \mathrm{step}]$
2454003	Separation: N2: TE	*EGB	[0 to $200 / \mathbf{3 0} / 1 \mathrm{~mm} / \mathrm{step}]$

2456	[Normal2:[FC]:LE] Transfer roller current and discharge plate voltage for the leading edge area, plain paper 2, CMY toner Paper Side: 1st or 2nd		
2456003	Separation	*EGB	[0 to 400/100/5\%/step]
2456007	T. Roll 2: 1st	*EGB	
2456012	T. Roll 2: 2nd	*EGB	

2458	[Normal2:[FC]:TE] Transfer roller current and discharge plate voltage for the trailing edge area, plain paper 2, CMY toner Paper Side: 1st or 2nd		
2458003	Separation	*EGB	[0 to $\mathbf{4 0 0 / 1 0 0 / 5 \% / \text { step] }}$
2458007	T. Roll 2: 1st	*EGB	
2458012	T. Roll 2: 2nd	*EGB	

2501	[Thick: [K]] Transfer roller current and discharge plate voltage for the image area, thick paper 1, black toner Paper Side: 1st or 2nd Unit -> T.Roll2: Transfer roller, Separa.: Discharge plate (paper separation)		
2501007	T. Roll 2: 1st	*EGB	Adjusts the transfer roller current. [0 to $60 / 7.5$ / $0.1-\mu \mathrm{A} / \mathrm{step}$]
2501008	Separation: 1st	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / $0.1-\mathrm{KV} /$ step]
2501012	T. Roll 2: 2nd	*EGB	[0 to $60 / 7.5 / 0.1-\mu \mathrm{A} / \mathrm{step}]$
2501013	Separation: 2nd	*EGB	[0 to $4 / 2.0 / 0.1-\mathrm{KV} /$ step]

2506	[Thick: [FC]] Transfer roller current and discharge plate voltage for the image area, thick paper 1, CMY toner Paper Side: 1st or $2^{\text {nd }}$		
2506013	T. Roll 2: 1st	*EGB	Adjusts the transfer roller current. [0 to $60 / 10.0 / 0.1-\mu \mathrm{A} /$ step]
2506014	Separation: 1st	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / $0.1-\mathrm{KV} /$ step]
2506021	T. Roll 2: 2nd	*EGB	[0 to $60 / 15.0 / 0.1-\mu \mathrm{A} /$ step]
2506022	Separation: 2nd	*EGB	[0 to $4 / 2.0 / 0.1-\mathrm{KV} / \mathrm{step}$]

2521	[Thick: [K]: LE] Transfer roller current and discharge plate voltage for the leading edge area, thick paper 1, black toner Paper Side: 1st or $2^{\text {nd }}$		
2521003	Separation	*EGB	[0 to $400 / 100 / 5 \% /$ step]
2521007	T. Roll 2: 1st	*EGB	
2521012	T. Roll 2: 2nd	*EGB	

2522	[Switch Timing] Switch timing from leading edge to normal, thick paper 1 (Paper Type, Edge) Paper Type -> TC: Thick, LE: Leading Edge		
2522002	T. Roll 2: Thick: LE	*EGB	[0 to $200 / \mathbf{1 0} / 1 \mathrm{~mm} / \mathrm{step}]$
2522003	Separation: TC: LE	*EGB	[0 to $200 / \mathbf{2 5} / 1 \mathrm{~mm} /$ step]

2523	[Thick: [K]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, thick paper 1, black toner Paper Side: 1 st or 2nd		
2523003	Separation	*EGB	[0 to $\mathbf{4 0 0 / 1 0 0 / 5 \% / \text { step] }}$
2523007	T. Roll 2: 1 st	*EGB	
2523012	T. Roll 2: 2 nd	*EGB	

2524	[Switch Timing] Switch timing from normal to trailing edge, thick paper 1 (Paper Type, Edge) Paper Type -> TC: Thick, TE: Trailing Edge		
2524002	T. Roll 2: Thick: TE	*EGB	[0 to $200 / \mathbf{1 0} / 1 \mathrm{~mm} /$ step]
2524003	Separation: TC: TE	*EGB	[0 to $200 / \mathbf{3 0} / 1 \mathrm{~mm} /$ step]

2526	[Thick: [FC]: LE] Transfer roller current and discharge plate voltage for the leading edge area, thick paper 1, CMY toner Paper Side: 1st or 2nd		
2526003	Separation	*EGB	[0 to $\mathbf{~ 4 0 0 / \mathbf { 1 0 0 } / 5 \% / \text { step] }}$
2526007	T. Roll 2: 1st	*EGB	
2526012	T. Roll 2: 2nd	*EGB	

2528	[Thick: [FC]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, thick paper 1, CMY toner Paper Side: 1st or 2nd		
2528003	Separation	*EGB	[0 to $400 / 100 / 5 \% /$ step]
2528007	T. Roll 2: 1st	*EGB	
2528012	T. Roll 2: 2nd	*EGB	

2531	[Thick2: [K]] Transfer roller current and discharge plate voltage for the image area, thick paper 2, black toner Unit -> T.Roll2: Transfer roller, Separa.: Discharge plate (paper separation)		
2531007	Transfer Roller 2	*EGB	Adjusts the transfer roller current. [0 to $60 / \mathbf{7 . 5} / 0.1-\mu \mathrm{A} /$ step]
2531008	Separation	*EGB	Adjusts the discharge plate voltage. [0 to 4/2.0 $/ 0.1-\mathrm{KV} /$ step]

area, thick paper 2, CMY toner			

2551	[Thick2: [K]: LE] Transfer roller current and discharge plate voltage for the leading edge area, thick paper 2, black toner		
2551003	Separation	*EGB	[0 to $400 / 100 / 5 \% /$ step]
2551007	Transfer Roller2	*EGB	

2052	[Switch Timing] Switch timing from leading edge to normal, thick paper 2 (Paper Type, Edge) Paper Type -> TC2: Thick 2, LE: Leading Edge		
2552002	T. Roll 2: TC2: LE	*EGB	[0 to $200 / \mathbf{1 0} / 1 \mathrm{~mm} / \mathrm{step}]$
2552003	Separa.: TC2: LE	*EGB	[0 to $200 / \mathbf{3 0} / 1 \mathrm{~mm} / \mathrm{step}]$

2553	[Thick2: [K]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, thick paper 2, black toner		
2553003	Separation	*EGB	[0 to $400 / 100 / 5 \% /$ step]
2553007	Transfer Roller2	*EGB	

2554	[Switch Timing] Switch timing from normal to trailing edge, thick paper 2 (Paper Type, Edge) Paper Type -> TC2: Thick 2, TE: Trailing Edge			
2554002	T. Roll 2: TC2: TE	*EGB	[0 to $200 / \mathbf{1 0} / 1 \mathrm{~mm} / \mathrm{step}]$	
2554003	Separa.: TC2: TE	*EGB	[0 to $200 / \mathbf{3 0} / 1 \mathrm{~mm} / \mathrm{step}]$	

2556	[Thick2: [FC]: LE] Transfer roller current and discharge plate voltage for the leading edge area, thick paper 2, CMY toner		
2556003	Separation	*EGB	
2556007	Transfer Roller2	" 0 to $400 / \mathbf{1 0 0} / 5 \% /$ step]	

2558	[Thick2: [FC]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, thick paper 2, CMY toner		
2558003	Separation	*EGB	[0 to $\mathbf{4 0 0} / \mathbf{1 0 0 / 5 \% / \text { step] }}$
2558007	Transfer Roller2	*EGB	

2601	[OHP: [K]] Transfer roller current and discharge plate voltage for the image area, OHP, black toner Unit -> T.Roll2: Transfer roller, Separa.: Discharge plate (paper separation)		
2601002	Transfer Roller2	*EGB	Adjusts the transfer roller current. [0 to $60 / 15.0 / 0.1-\mu \mathrm{A} /$ step]
2601003	Separation	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / $0.1-\mathrm{KV} /$ step]

2606	[OHP: [FC]] Transfer roller current and discharge plate voltage for the image area, OHP, CMY toner		
2606005	Transfer Roller2	*EGB	Adjusts the transfer roller current. [0 to $60 / \mathbf{1 5} / 0.1-\mu \mathrm{A} /$ step
2606006	Separation	*EGB	Adjusts the discharge plate voltage. [0 to $4 / \mathbf{2} / 0.1-\mathrm{KV} /$ step $]$

2621	[OHP: [K]: LE] Transfer roller current and discharge plate voltage for the leading edge area, OHP, black toner		
2621002	Transfer Roller2	*EGB	
262 [0 to $\mathbf{4 0 0 / 1 0 0 / 5 \% / \text { step] }}$			

2622	[Switch Timing] Switch timing from leading edge to normal, OHP (Paper Type, Edge) Paper Type -> OHP, LE: Leading Edge		
2622002	T. Roll 2: OHP: LE	*EGB	[0 to $200 / \mathbf{1 0} / 1 \mathrm{~mm} / \mathrm{step}]$
2622003	Separa.: OHP: LE	*EGB	[0 to $200 / \mathbf{2 5} / 1 \mathrm{~mm} / \mathrm{step}]$

2623	[OHP: [K]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, OHP, black toner			
2623002	Transfer Roller2	*EGB	[0 to $\mathbf{4 0 0 / 1 0 0 / 5 \% / \text { step }]}$	
2623003	Separation	*EGB		

2624	[Switch Timing] Switch timing from normal to trailing edge, OHP (Paper Type, Edge) Paper Type -> OHP, TE: Trailing Edge		
2624002	T. Roll 2: OHP: TE	*EGB	[0 to $200 / 10 / 1 \mathrm{~mm} / \mathrm{step}$]
2624003	Separa.: OHP: TE	*EGB	[0 to $200 / 30 / 1 \mathrm{~mm} / \mathrm{step}$]

2626	[OHP: [FC]: LE] Transfer roller current and discharge plate voltage for the leading edge area, OHP, CMY toner		
2626002	Transfer Roller2	*EGB	[0 to 400 / $100 / 5 \% /$ step]
2626003	Separation	*EGB	

2628	[OHP: [FC]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, OHP, CMY toner		
2628002	Transfer Roller2	*EGB	[0 to $\mathbf{4 0 0 / 1 0 0 / 5 \% / \text { /sep }]}$
2628003	Separation	*EGB	

2631	[Thin: [K]] Transfer roller current and discharge plate voltage for the image area, thin paper, black toner Unit -> T.Roll2: Transfer roller, Separa.: Discharge plate (paper separation)		
2631007	Transfer Roller 2	*EGB	Adjusts the transfer roller current. [0 to $60 / 30.0 / 0.1-\mu \mathrm{A} /$ step]
2631008	Separation	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / 0.1 -KV/step]

2633	[Thin: [K]] Transfer roller current and discharge plate voltage for the image area, thin paper, black toner Process Speed -> LS: Low Speed		
2633007	T.Roll 2: LS	*EGB	Adjusts the transfer roller current. [0 to $60 / 15.0 / 0.5-\mu \mathrm{A} /$ step]
2633008	Separation: LS	*EGB	Adjusts the discharge plate voltage. [0 to 4 / 2.0 / 0.1 -KV/step]

2636	[Thin: [FC]] Transfer roller current and discharge plate voltage for the image area, thin paper, CMY toner		
2636013	Transfer Roller 2	*EGB	Adjusts the transfer roller current. [0 to $60 / \mathbf{2 5 . 0} / 0.1-\mu A /$ step]
2636014	Separation	*EGB	Adjusts the discharge plate voltage. [0 to 4/2.0/0.1-KV/step]

2638	[Thin: [FC]] Transfer roller current and discharge plate voltage for the image area, thin paper, CMY toner Process Speed -> LS: Low Speed		
2638013	T.Roll 2: LS	*EGB	Adjusts the transfer roller current. [0 to $60 / \mathbf{1 7 . 5} / 0.1-\mu A /$ step]
2638014	Separation: LS	*EGB	Adjusts the discharge plate voltage. [0 to 4/2.0 / $0.1-\mathrm{KV} /$ step]

2651	[Thin: [K]: LE] Transfer roller current and discharge plate voltage for the leading edge area, thin paper, black toner		
2651003	Separation	*EGB	[0 to $\mathbf{4 0 0 / \mathbf { 2 0 0 } / 5 \% / \text { step }]}$
2651007	Transfer Roller2	*EGB	$[0$ to $\mathbf{4 0 0 / \mathbf { 1 0 0 } / 5 \% / \text { step }]}$

2652	[Switch Timing] Switch timing from leading edge to normal, thin paper (Paper Type, Edge) Paper Type -- TN: Thin, LE: Leading Edge		
2652002	T. Roll 2: Thin: LE	*EGB	[0 to $200 / \mathbf{1 0} / 1 \mathrm{~mm} / \mathrm{step}]$
2652003	Separation: TN: LE	*EGB	[0 to $200 / \mathbf{2 5} / 1 \mathrm{~mm} / \mathrm{step}]$

2653	[Thin: [K]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, thin paper, black toner		
2653003	Separation	*EGB	[0 to $\mathbf{4 0 0 / 1 0 0 / 5 \% / \text { step }]}$
2653007	Transfer Roller2	*EGB	

2654	[Switch Timing] Switch timing from normal to trailing edge, thin paper		
(Paper Type, Edge) Paper Type -> TN: Thin, TE: Trailing Edge			

2656	[Thin: [FC]: LE] Transfer roller current and discharge plate voltage for the leading edge area, thin paper, CMY toner		
2656003	Separation	*EGB	[0 to $400 / \mathbf{2 0 0 / 5 \% / \text { step }]}$
2656007	Transfer Roller2	*EGB	[0 to $\mathbf{4 0 0 / \mathbf { 1 0 0 } / 5 \% / \text { step }]}$

2658	[Thin: [FC]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, thin paper, CMY toner		
2658003	Separation	*EGB	[0 to $\mathbf{4 0 0 / \mathbf { 1 0 0 } / 5 \% / \text { step] }}$
2658007	Transfer Roller2	*EGB	

2751	[Special: [K]] Transfer roller current and discharge plate voltage for the image area, special paper, black toner Paper Side: 1st or 2nd		
2751007	T.Roll 2: 1 st	*EGB	Adjusts the transfer roller current. [0 to $60 / \mathbf{5 . 0} / 0.1-\mu \mathrm{A} /$ step]
2751008	Separation: 1st	*EGB	Adjusts the discharge plate voltage. [0 to 4/2.0 / $0.1-\mathrm{KV} /$ step]

2756	[Special: [FC]] Transfer roller current and discharge plate voltage for the image area, special paper, CMY toner Paper Side: 1st or 2nd		
2756013	T.Roll 2: 1st	*EGB	Adjusts the transfer roller current. [0 to $60 / 5.0 / 0.1-\mu A /$ step]
2756014	Separation: 1st	*EGB	Adjusts the discharge plate voltage. $[0$ to $4 / \mathbf{2 . 0} / 0.1-$ KV/step]

2771	[Special: [K]: LE] Transfer roller current and discharge plate voltage for the leading edge area, special paper, black toner Paper Side: 1st or 2nd		
2771003	Separation	*EGB	
[0 to $400 / \mathbf{1 0 0 / 5 \% / s t e p]}$			
2771007	T.Roll 2: 1st	*EGB	

2773	[Special: [K]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, special paper, black toner Paper Side: 1 st or 2nd		
2773003	Separation	*EGB	[0 to $\mathbf{4 0 0 / 1 0 0 / 5 \% / \text { step] }}$
2773007	T.Roll 2: 1 st	*EGB	

2776	[SP: [FC]: LE] Transfer roller current and discharge plate voltage for the leading edge area, special paper, CMY toner Paper Side: 1st or 2nd		
2776003	Separation	*EGB	[0 to 400 / 100 / 5\%/step]
2776007	T.Roll 2: 1st	*EGB	

2778	[SP: [FC]: TE] Transfer roller current and discharge plate voltage for the trailing edge area, special paper, CMY toner Paper Side: 1st or 2nd		
2778003	Separation	*EGB	[0 to $400 / 100 / 5 \% /$ step]
2778007	T.Roll 2: 1st	*EGB	

2901	[T2: N: Size 4] Transfer Roller Current: Correction for Humidity, Plain paper 1, Paper width between A5 and A6 (Environment, Process Speed, [Color], Paper Side) LS: Low Speed, RS: Regular Speed, Paper Side: 1st or 2nd		
2901001	LL: RS [K]: 1st	*EGB	[0 to 1275/100/5\%/step]
2901002	LL: RS [K]: 2nd	*EGB	[0 to 1275/350/5\%/step]
2901003	LL: RS [FC]: 1st	*EGB	[0 to 1275 / $130 / 5 \% /$ step]
2901004	LL: RS [FC]: 2nd	*EGB	[0 to 1275/170 / 5\%/step]
2901005	LL: LS [K]: 1st	*EGB	[0 to $1275 / 150 / 5 \% /$ step]
2901006	LL: LS [K]: 2nd	*EGB	[0 to 1275 / $280 / 5 \% /$ step]
2901007	LL: LS [FC]: 1st	*EGB	[0 to 1275 / $120 / 5 \% /$ step]
2901008	LL: LS [FC]: 2nd	*EGB	[0 to 1275 / $170 / 5 \% /$ step]
2901009	MM: RS [K]: 1st	*EGB	[0 to $1275 / 80 / 5 \% /$ step]
2901010	MM: RS [K]: 2nd	*EGB	[0 to $1275 / 480 / 5 \% /$ step]
2901011	MM: RS [FC]: 1st	*EGB	[0 to 1275/100/5\%/step]
2901012	MM: RS [FC]: 2nd	*EGB	[0 to 1275/190/5\%/step]
2901013	MM: LS [K]: 1st	*EGB	[0 to 1275/100/5\%/step]
2901014	MM: LS [K]: 2nd	*EGB	[0 to 1275/400/5\%/step]
2901015	MM: LS [FC]: 1st	*EGB	[0 to 1275/90/5\%/step]
2901016	MM: LS [FC]: 2nd	*EGB	[0 to $1275 / 180 / 5 \% /$ step]
2901017	HH: RS [K]: 1 st	*EGB	[0 to 1275 / $100 / 5 \% /$ step]
2901018	HH: RS [K]: 2nd	*EGB	[0 to 1275/220 / 5\%/step]

2901019	HH: RS [FC]: 1st	*EGB	[0 to $1275 / 110 / 5 \% /$ step]
2901020	HH: RS [FC]: 2nd	*EGB	[0 to $1275 / 170 / 5 \% /$ step]
2901021	HH: LS [K]: 1st	*EGB	[0 to $1275 / 60 / 5 \% /$ step]
2901022	HH: LS [K]: 2nd	*EGB	[0 to $1275 / 110 / 5 \% /$ step]
2901023	HH: LS [FC]: 1st	*EGB	[0 to $1275 / 70 / 5 \% /$ step]
2901024	HH: LS [FC]: 2nd	*EGB	$[0$ to $1275 / 120 / 5 \% /$ step]

2902	[T2: N: Size 5] Transfer Roller Current: Correction for Humidity, Plain paper 1, Paper width A6 or less (Environment, Process Speed, [Color], Paper Side) LS: Low Speed, RS: Regular Speed, Paper Side: 1st or 2nd			
2902001				LL: RS [K]: 1st \quad *EGB ${ }^{\text {[0 to 1275 / } 150 / 5 \% / \text { step] }}$
2902002				LL: RS [K]: 2nd \quad *EGB \quad [0 to 1275 / 400 / 5\%/step]
2902003				LL: RS [FC]: 1st \quad *EGB ${ }^{\text {[}}$ [0 to 1275 / 200 / 5\%/step]
2902004				LL: RS [FC]: 2nd \quad *EGB ${ }^{\text {[0 }}$ to 1275/190/5\%/step]
2902005				LL: LS [K]: 1st \quad *EGB [0 to 1275 / 200 / 5\%/step]
2902006				LL: LS [K]: 2nd \quad *EGB \quad [0 to 1275 / 400 / 5\%/step]
2902007				LL: LS [FC]: 1st \quad *EGB [0 to 1275 / 160 / 5\%/step]
2902008				LL: LS [FC]: 2nd \quad *EGB [0 to 1275 / 240 / 5\%/step]
2902009				MM: RS [K]: 1st \quad *EGB ${ }^{\text {[}}$ [0 to 1275 / $120 / 5 \% /$ step]
2902010				MM: RS [K]: 2nd \quad *EGB \quad [0 to 1275/480 / 5\%/step]
2902011				MM: RS [FC]: 1st \quad *EGB ${ }^{\text {[}}$ [0 to 1275 / $150 / 5 \% /$ step]
2902012				MM: RS [FC]: 2nd \quad *EGB [0 to 1275/190 / 5\%/step]
2902013				MM: LS [K]: 1st \quad *EGB \quad [0 to 1275 / 170 / 5\%/step]
2902014				MM: LS [K]: 2nd \quad *EGB [0 to 1275 / 500 / 5\%/step]
2902015				MM: LS [FC]: 1st \quad *EGB [0 to 1275/140 / 5\%/step]
2902016				MM: LS [FC]: 2nd \quad *EGB ${ }^{\text {[}}$ [0 to 1275 / 220 / 5\%/step]
2902017				HH: RS [K]: 1st \quad *EGB ${ }^{\text {[}}$ [0 to 1275/130/5\%/step]
2902018				HH: RS [K]: 2nd \quad *EGB [0 to 1275 / 220 / 5\%/step]
2902019				HH: RS [FC]: 1st \quad *EGB [0 to 1275/150/5\%/step]
2902020				HH: RS [FC]: 2nd \quad *EGB ${ }^{\text {[}}$ [to 1275 / $200 / 5 \% /$ step]
2902021				HH: LS [K]: 1st \quad *EGB [0 to 1275 / 90/5\%/step]
2902022				HH: LS [K]: 2nd \quad *EGB [0 to 1275/140 / 5\%/step]
2902023				HH: LS [FC]: 1st \quad *EGB [0 to 1275 / $110 / 5 \% /$ step]
2902024				HH: LS [FC]: 2nd \quad *EGB ${ }^{\text {a }}$ [0 to 1275 / $150 / 5 \% /$ step]

\left.| | [T2: N2: Size 4] Transfer Roller Current: Correction for Humidity, Plain paper 2 | | |
| :--- | :--- | :--- | :--- |
| | | | |
| | | | |$\right]$

2903009	MM: RS [K]: 1st	*EGB	[0 to 1275 / $100 / 5 \% /$ step]
2903010	MM: RS [K]: 2nd	*EGB	[0 to 1275 / 600 / 5\%/step]
2903011	MM: RS [FC]: 1 st	*EGB	[0 to 1275 / 100 / 5\%/step]
2903012	MM: RS [FC]: 2nd	*EGB	[0 to 1275 / 300 / 5\%/step]
2903013	MM: LS [K]: 1st	*EGB	[0 to 1275 / $150 / 5 \% /$ step]
2903014	MM: LS [K]: 2nd	*EGB	[0 to 1275 / 530 / 5\%/step]
2903015	MM: LS [FC]: 1st	*EGB	[0 to 1275 / 150 / 5\%/step]
2903016	MM: LS [FC]: 2nd	*EGB	[0 to 1275 / 270 / 5\%/step]
2903017	HH: RS [K]: 1st	*EGB	[0 to 1275 / 120 / 5\%/step]
2903018	HH: RS [K]: 2nd	*EGB	[0 to 1275 / 270 / 5\%/step]
2903019	HH: RS [FC]: 1st	*EGB	[0 to 1275 / 110 / 5\%/step]
2903020	HH: RS [FC]: 2nd	*EGB	[0 to 1275 / 220 / 5\%/step]
2903021	HH: LS [K]: 1st	*EGB	[0 to 1275 / 80/5\%/step]
2903022	HH: LS [K]: 2nd	*EGB	[0 to 1275 / $150 / 5 \% /$ step]
2903023	HH: LS [FC]: 1st	*EGB	[0 to 1275 / 90 / 5\%/step]
2903024	HH: LS [FC]: 2nd	*EGB	[0 to 1275 / 180 / 5\%/step]

	[T2: N2: Size 5] Transfer Roller Current: Correction for Humidity, Plain paper 2, Paper width A6 or less (Environment, Process Speed, [Color], Paper Side) LS:		
2904			
2904001	LL: RS Speed, RS: Regular Speed, Paper Side: 1st or 2nd		

2906	[T2: Thin: Size5] Transfer Roller Current: Correction for Humidity, Thin paper, Paper width A6 or less (Environment, Process Speed, [Color]) LS: Low Speed, RS: Regular Speed		
2906001	LL: RS [K]	*EGB	[0 to 1275 / 130 / 5\%/step]
2906002	LL: RS [FC]	*EGB	[0 to 1275 / 200 / 5\%/step]
2906003	LL: LS [K]	*EGB	[0 to 1275/200/5\%/step]
2906004	LL: LS [FC]	*EGB	[0 to $1275 / 160 / 5 \% /$ step]
2906005	MM: RS [K]	*EGB	[0 to $1275 / 100 / 5 \% /$ step]
2906006	MM: RS [FC]	*EGB	[0 to 1275 / $120 / 5 \% /$ step]
2906007	MM: LS [K]	*EGB	[0 to 1275 / 170 / 5\%/step]
2906008	MM: LS [FC]	*EGB	[0 to 1275 / $140 / 5 \% /$ step]
2906009	HH: RS [K]	*EGB	[0 to 1275 / $110 / 5 \% /$ step]
2906010	HH: RS [FC]	*EGB	[0 to 1275 / $180 / 5 \% /$ step]
2906011	HH: LS [K]	*EGB	[0 to 1275/90 / 5\%/step]
2906012	HH: LS [FC]	*EGB	[0 to 1275 / 200 / 5\%/step]

2907	[T2: TC: Size4] Transfer Roller Current: Correction for Humidity, Thick Paper 1, Paper width between A5 and A6 (Environment, Process Speed, [Color], Paper Side) LS: Low Speed, RS: Regular Speed, Paper Side: 1st or 2nd		
2907001	LL: LS [K]: 1st	*EGB	[0 to 1275 / $150 / 5 \% /$ step]
2907002	LL: LS [K]: 2nd	*EGB	[0 to 1275/270 / 5\%/step]
2907003	LL: LS [FC]: 1st	*EGB	[0 to 1275 / $150 / 5 \% /$ step]
2907004	LL: LS [FC]: 2nd	*EGB	[0 to 1275 / 270 / 5\%/step]
2907005	MM: LS [K]: 1st	*EGB	[0 to 1275 / 270 / 5\%/step]
2907006	MM: LS [K]: 2nd	*EGB	[0 to 1275 / $530 / 5 \% /$ step]
2907007	MM: LS [FC]: 1st	*EGB	[0 to 1275 / $200 / 5 \% /$ step]
2907008	MM: LS [FC]: 2nd	*EGB	[0 to 1275 / 270 / 5\%/step]
2907009	HH: LS [K]: 1st	*EGB	[0 to 1275 / 100 / 5\%/step]
2907010	HH: LS [K]: 2nd	*EGB	[0 to 1275/110/5\%/step]
2907011	HH: LS [FC]: 1st	*EGB	[0 to 1275 / $120 / 5 \% /$ step]
2907012	HH: LS [FC]: 2nd	*EGB	[0 to 1275 / 110 / 5\%/step]

\left.| | [T2: TC2: Size4] Transfer Roller Current: Correction for Humidity, Thick Paper | | |
| :--- | :--- | :--- | :--- |
| | | | |
| (Environment, Process Speed, [Color]) LS: Low Speed, RS: Regular Speed | | | |$\right]$

2910	[T2: TC2: Size5] Transfer Roller Current: Correction for Humidity, Thick paper 2, Paper width A6 or less (Environment, Process Speed, [Color]) LS: Low Speed, RS: Regular Speed		
2910001	LL: LS [K]	*EGB	[0 to 1275 / 150 / 5\%/step]
2910002	LL: LS [FC]	*EGB	[0 to 1275 / $150 / 5 \% /$ step]
2910003	MM: LS [K]	*EGB	[0 to 1275 / 270 / 5\%/step]
2910004	MM: LS [FC]	*EGB	[0 to 1275 / 200 / 5\%/step]
2910005	HH: LS [K]	*EGB	[0 to 1275 / $130 / 5 \% /$ step]
2910006	HH: LS [FC]	*EGB	[0 to 1275 / 160 / 5\%/step]

2911	[T2: SP Size4] Transfer Roller Current: Correction for Humidity, Special paper, Paper width between A5 and A6 (Environment, Process Speed, [Color]) LS: Low Speed, RS: Regular Speed		
2911001	LL: LS [K]	*EGB	[0 to $1275 / \mathbf{2 0 0} / 5 \% /$ step]
2911002	LL: LS [FC]	*EGB	[0 to $1275 / \mathbf{2 0 0} / 5 \% /$ step]
2911003	MM: LS [K]	*EGB	[0 to $1275 / \mathbf{4 0 0} / 5 \% /$ step]
2911004	MM: LS [FC]	*EGB	[0 to $1275 / \mathbf{4 0 0} / 5 \% /$ step]
2911005	HH: LS [K]	*EGB	[0 to $1275 / \mathbf{1 5 0 / 5 \% / \text { step] }}$
2911006	HH: LS [FC]	*EGB	[0 to $1275 / \mathbf{1 5 0 / 5 \% / \text { step] }}$

2912	[T2: SP: Size5] Transfer Roller Current: Correction for Humidity, Special paper, Paper width A6 or less (Environment, Process Speed, [Color]) LS: Low Speed, RS: Regular Speed		
2912001	LL: LS [K]	*EGB	[0 to 1275 / $200 / 5 \% /$ step]
2912002	LL: LS [FC]	*EGB	[0 to 1275 / $200 / 5 \% /$ step]
2912003	MM: LS [K]	*EGB	[0 to 1275/400/5\%/step]
2912004	MM: LS [FC]	*EGB	[0 to 1275 / $400 / 5 \% /$ step]
2912005	HH: LS [K]	*EGB	[0 to 1275/200/5\%/step]
2912006	HH: LS [FC]	*EGB	[0 to 1275 / $200 / 5 \% /$ step]

2920	[S: HH SP: 1st] Smaller than A5 HH Special paper, st $^{\text {st }}$ side			
2920001	T2 Switch Timing	*EGB	$[0$ to $200 / \mathbf{1 5} / 1 \mathrm{~mm} /$ step $]$	
2920002	T2 Correction	*EGB	$[0$ to $1275 / \mathbf{2 0} / 5 \% /$ step $]$	

2921	[S: HH SP: 2nd] Smaller than A5 HH Special paper, $2^{\text {nd }}$ side		
2921001	T2 Switch Timing	*EGB	[0 to $200 / 15 / 1 \mathrm{~mm} / \mathrm{step}]$
2921002	T2 Correction	*EGB	[0 to 1275 / 0 / $5 \% /$ step]

2930	[Separa. : LE: HH] Separation Voltage: Correction for HH Humidity at the Leading Edge (Paper Type, Process Speed, [Color]) Paper Type -> Normal, Thin Process Speed -> LS: Low speed, RS: Regular speed		
2930001	Normal: RS: [K]	*EGB	[0 to 400 / $200 / 5 \% /$ step]
2930002	Normal: RS: [FC]	*EGB	
2930003	Normal: LS: [K]	*EGB	
2930004	Normal: LS: [FC]	*EGB	
2930005	Normal 2: RS: [K]	*EGB	
2930006	Normal 2: RS: [FC]	*EGB	
2930007	Normal 2: LS: [K]	*EGB	
2930008	Normal 2: LS: [FC]	*EGB	
2930009	Thin: RS: [K]	*EGB	
2930010	Thin: RS: [FC]	*EGB	
2930011	Thin: LS: [K]	*EGB	
2930012	Thin: LS: [FC]	*EGB	

SP3-XXX (Process)

3001		Color])	
3001001	[K]	*EGB	Displays the output voltage of TD sensor for each color. [0.00 to 5.00 / 0.01 / $0.01 \mathrm{~V} /$ step]
3001002	[M]	*EGB	
3001003	[C]	*EGB	
3001004	[Y]	*EGB	

3002	[Vcnt Current] Current Vent Display ([Color])		
3002001	[K]	*EGB	Displays the current Vant for each color. [0.00 to $5.00 / 3.00 / 0.01 \mathrm{~V} /$ step]
3002002	[M]	*EGB	
3002003	[C]	*EGB	
3002004	[Y]	*EGB	
	[Vent Initial] Initial Vent Display ([Color])		
3002005	[K]	*EGB	Displays the initial Vcnt for each color. [0.00 to $5.00 / 3.00 / 0.01 \mathrm{~V} /$ step]
3002006	[M]	*EGB	
3002007	[C]	*EGB	
3002008	[Y]	*EGB	

3003	[Vtref Current] Current Vtref Display ([Color])		
3003001	[K]	*EGB	Displays the current Vtref for each color. [0.00 to $5.00 / 3.00 / 0.01 \mathrm{~V} /$ step]
3003002	[M]	*EGB	
3003003	[C]	*EGB	
3003004	[Y]	*EGB	
	[Vtref Initial] Initial Vtref Display ([Color])		
3003005	[K]	*EGB	Displays the initial Vtref for each color. [0.00 to 5.00 / $3.00 / 0.01 \mathrm{~V} /$ step]
3003006	[M]	*EGB	
3003007	[C]	*EGB	
3003008	[Y]	*EGB	

3011	[T. Sensor Init.] Toner Density Sensor Initial Setting (Agitation Time, TS Target: Toner Sensor Target Value, [Color])		
3011001	Agitation: [K]	*EGB	Adjusts the agitation time for the developer for each color. [0 to $300 / 65 / 1 \mathrm{sec} /$ step]
3011002	Agitation: [M]	*EGB	
3011003	Agitation: [C]	*EGB	
3011004	Agitation: [Y]	*EGB	
3011005	TD Target: [K]	*EGB	Adjusts the TS initial target voltage for each color. [0.00 to $5.00 / 2.50 / 0.01 \mathrm{~V} /$ step]
3011006	TD Target: [M]	*EGB	
3011007	TD Target: [C]	*EGB	
3011008	TD Target: [Y]	*EGB	

3021	[Vt Shift] Vt Shift Setting ([Color])		
3021001	[K]	*EGB	Adjusts the Vt shift rate for each color. [0.00 to $5.00 / 0.75$ / $0.01 \mathrm{~V} /$ step]
3021002	[M]	*EGB	
3021003	[C]	*EGB	
3021004	[Y]	*EGB	

3041	[Vtref] Vtref Setting ([Color])Lower Limit: [K]		
3041001			Sets the lower limit Vtref voltage for each color. [0.10 to $5.00 / 1.50 / 0.01 \mathrm{~V} /$ step]
3041002	Lower Limit: [M]	*EGB	
3041003	Lower Limit: [C]	*EGB	
3041004	Lower Limit: [Y]	*EGB	
3041005	Upper Limit: [K]	*EGB	DFU
3041006	Upper Limit: [M]	*EGB	Sets the maximum limit Vtref voltage for
3041007	Upper Limit: [C]	*EGB	each color.
3041008	Upper Limit: [Y]	*EGB	[0.10 to $5.00 / 3.70$ / $0.01 \mathrm{~V} /$ step]

3042	[Vtref] Vtref Correction Setting ([Color]) DFU		
3042001	Mode	*EGB	$\begin{aligned} & \text { Sets the Vtref correction. } \\ & \text { [0 or } 1 \text { / } 1 \text { /-] Alphanumeric } \\ & 0 \text { : On, 1: Off } \end{aligned}$
3042002	Step [K]	*EGB	Adjusts the Vtref correction step for each color. [0.00 to $1.00 / 0.10 / 0.01 \mathrm{~V} /$ step]
3042003	Step [M]	*EGB	
3042004	Step [C]	*EGB	
3042005	Step [Y]	*EGB	
3042014	Change Step: [K]	*EGB	Adjusts the density change rate of the ID sensor pattern for each color. [0 to $100 / 10 / 1 \% /$ step]
3042015	Change Step: [M]	*EGB	
3042016	Change Step: [C]	*EGB	
3042017	Change Step: [Y]	*EGB	

3101	[P. Sensor Patt.] ID Sensor Pattern Density Setting ([Color])		
3101001	Change Value: [K]	*EGB	Displays the density change rate of the ID sensor pattern for each color. [-100 to $100 / 0 / 1 \% /$ step]
3101002	Change Value: [M]	*EGB	
3101003	Change Value: [C]	*EGB	
3101004	Change Value: [Y]	*EGB	

3111	[Voff Display] Vsp-offset Display		
3111001	Regular	*EGB	Displays the Vsp-offset regular voltage. [0.00 to $5.00 / \mathbf{0 . 0 0} / 0.01$ V/step]
3111002	Diffusion	*EGB	Displays the Vsp-offset diffusion voltage. [0.00 to $5.00 / \mathbf{0 . 0 0} / 0.01 \mathrm{~V} /$ step $]$

3121	[Vsg Display] Vsg Display		
3121001	Regular	*EGB	Displays the Vsp regular voltage. [0.00 to $5.00 / 0.00 / 0.01$ V/step]
3121002	Diffusion		Displays the Vsp diffusion voltage. $[0.00$ to $5.00 / 0.00 / 0.01$ V/step $]$

3131	[Lps Display] Ips Display		
3131001	Lps	*EGB	Displays the Ips. [0 to $511 / 0 / 1 /$ step $]$

3141	[Vmin Display]		
3141001	$[\mathrm{~K}]$	*EGB	Displays the Vmin voltage for each color.
3141005	$[\mathrm{Cl}]$	*EGB	[0.00 to $5.00 / \mathbf{0 . 0 0} / 0.01$ V/step $]$

3142	[Kx Display $]$	*EGB	Displays the minimum Kx. [0.0000 to $1.0000 / \mathbf{0 . 0 0 0 0} / 0.0001 /$ step $]$
3142001	Min		

3143	[K5		
3143002	[M]	*EGB	Displays the P.sensor K5 for each color. [0.0000 to $5.0000 / 1.2500 / 0.0001 /$ step]
3143003	[C]	*EGB	
3143004	[Y]	*EGB	

3145	[Vmin]		
3145001	Upper Limit	*EGB	DFU Adjusts the maximum Vmin. $[0.00$ to $5.00 / \mathbf{0 . 0 5 / 0 . 0 1 \mathrm { V } / \text { step }]}$

3146	[K2]	*EGB	DFU Adjusts the upper limit. [0.0000 to $1.0000 / \mathbf{0 . 1 5 0 0 ~ / ~ 0 . 0 0 0 1 / s t e p] ~}$
3146001	Upper Limit	*EGB	DFU Adjusts the lower limit. [0.0000 to $1.0000 / \mathbf{0 . 0 5 0 0} / 0.0001 /$ step]
3146002	Lower Limit		

3147	[K5]	*EGB	DFU Adjusts the upper limit. [0.0000 to $5.0000 / \mathbf{2 . 5 0 0 0} / 0.0001 /$ step $]$
3147001	Upper Limit	*EGB	DFU Adjusts the lower limit. [0.0000 to $5.0000 / \mathbf{0 . 7 5 0 0} / 0.0001 /$ step $]$
3147002	Lower Limit		

3148	[P sensor Prm.] ID sensor Parameter		
3148001	setting	*EGB	DFU [0 to $8.0000 / 4.600 / 0.001 /$ step $]$

3151	[Vsg		
3151001	Regular: [K]	*EGB	Displays the Vsg output from ID sensor for each mode. [0.00 to $5.00 / 0.00 / 0.01 \mathrm{~V} /$ step]
3151002	Regular: [M]	*EGB	
3151003	Regular: [C]	*EGB	
3151004	Regular: [Y]	*EGB	

3151005	Diffusion: $[\mathrm{K}]$	"EGB	Displays the Vsg output from ID sensor for
each mode.			
3151006	Diffusion: $[\mathrm{M}]$	"EGB	
3151007	Diffusion: $[\mathrm{C}]$	"EGB	[0.00 to $5.00 / \mathbf{0 . 0 0} / 0.01 \mathrm{~V} /$ step $]$
3151008	Diffusion: $[\mathrm{Y}]$	*EGB	

3161	[P. Pattern] ID Sensor Pattern Setting ([Color]) DFU		
3161001	Target Value: [K]	*EGB	Adjusts the target voltage of ID sensor
pattern for each mode.			

3171	[P. Pattern] ID Sensor Pattern Setting ([Color]) DFU		
3171001	Interval: [K]	"EGB	Adjusts the interval of making the ID sensor
3171002	Interval: [MCY]	*EGB	pattern. [0 to $200 / 60 / 1$ sheet/step]

3201	[Toner Near End] Toner Near End ([Color]) DFU		
3201001	Sensor: $[\mathrm{K}]$		Displays the output from the toner end
3201002	Sensor: $[\mathrm{M}]$		sensor.
3201003	Sensor: $[\mathrm{C}]$		[0.0 to $5.0 / \mathbf{0 . 0} / 0.1 \mathrm{~V} /$ step]

3202	[Toner Near End] Toner Near End ([Color])		
3202001	Counter: [K]	*EGB	Displays the counter of the toner near end for each mode. [0 to $30 / 0 / 1 /$ step]
3202002	Counter: [M]	*EGB	
3202003	Counter: [C]	*EGB	
3202004	Counter: [Y]	*EGB	

3301	[Toner Mode] Toner Supply Control ([Color])		
3301001	[K]	*EGB	Selects the method of the toner suppy for each mode. [0 to 3 / 3 / 1/step] 0: Fixed, 1: Coefficient (Pixel), 2: Coefficient (TD sensor), 3: Hybrid -6.2.5
3301002	[M]	*EGB	
3301003	[C]	*EGB	
3301004	[Y]	*EGB	

3302	[Toner Mode] Toner Supply Control ([Color])		
3302001	Fixed Rate: [K]	*EGB	Adjusts the toner supply rate for each mode. These SPs are enabled only when SP3301 for each color is set to " 0 ". [0 to $100 / 5$ / 1\%/step]
3302002	Fixed Rate: [M]	*EGB	
3302003	Fixed Rate: [C]	*EGB	
3302004	Fixed Rate: [Y]	*EGB	

3303	[Toner Mode] Toner Supply Control ([Color])		
3303001	T. Supply Rate: $[\mathrm{K}]$	*EGB	Displays the toner supply rate for each

3303002	T. Supply Rate: [M]	*EGB	mode.[0 to $100 / 0 / 1 \% /$ step]
3303003	T. Supply Rate: [C]	*EGB	
3303004	T. Supply Rate: [Y]	*EGB	

3304	[Ton	ply Co	([Color])
3304001	Upper Limit: [K]	*EGB	Adjusts the upper limit of toner supply rate for each mode. [0 to $100 / 100 / 1 \% /$ step]
3304002	Upper Limit: [M]	*EGB	
3304003	Upper Limit: [C]	*EGB	
3304004	Upper Limit: [Y]	*EGB	
3304005	Lower Limit: [K]	*EGB	Adjusts the lower limit of toner supply rate for each mode. [0 to $800 / \mathbf{1 0 0} / 10 \mathrm{msec} / \mathrm{step}$]
3304006	Lower Limit: [M]	*EGB	
3304007	Lower Limit: [C]	*EGB	
3304008	Lower Limit: [Y]	*EGB	

3306	[Toner Mode]	ly	([Color])
3306001	Coefficient 1: $[\mathrm{K}]$	*EGB	Adjusts the time of the toner supply in proportional control mode (Pixel). [0.10 to $5.00 / 1.00 / 0.01 /$ step]
3306002	Coefficient 1: [M]	*EGB	
3306003	Coefficient 1: [C]	*EGB	
3306004	Coefficient 1: [Y]	*EGB	
3306005	Coefficient 2: [K]	*EGB	Adjusts the time of the toner supply in proportional control mode (TD sensor). [0.10 to 5.00 / 0.3 / 0.01/step]
3306006	Coefficient 2: [M]	*EGB	
3306007	Coefficient 2: [C]	*EGB	
3306008	Coefficient 2: [Y]	*EGB	
3306009	Coefficient 3: [K]	*EGB	Adjusts the time of the toner supply in hybrid control mode. [0.10 to 5.00 / 0.4 / 0.01/step]
3306010	Coefficient 3: [M]	*EGB	
3306011	Coefficient 3: [C]	*EGB	
3306012	Coefficient 3: [Y]	*EGB	
3306013	Coefficient 4: [K]	*EGB	Adjusts the time of the toner supply in hybrid control mode. [0.10 to 5.00 / 0.1 / 0.01/step]
3306014	Coefficient 4: [M]	*EGB	
3306015	Coefficient 4: [C]	*EGB	
3306016	Coefficient 4: [Y]	*EGB	
3306017	Coefficient 5: [K]	*EGB	Adjusts the time of the toner supply in hybrid control mode. [0.10 to $5.00 / \mathbf{0 . 8 0 / 0 . 0 1 / s t e p]}$
3306018	Coefficient 5: [M]	*EGB	
3306019	Coefficient 5: [C]	*EGB	
3306020	Coefficient 5: [Y]	*EGB	

3401	[Toner End Detec] Toner End Detection	
3401001		*EGB

3411	[Toner Near End] ([Color]) DFU		
3411001	Min. Print: [K]	*EGB	Minimum: This is the minimum number of prints after the toner end sensor detects toner end.
3411002	Min. Print: [Cl]	*EGB	
3411003	Max. Print: [K]	*EGB	

3411004	Max. Print: $[\mathrm{Cl}]$	*EGB	Maximum: For low image coverage, more sheets can be printed. This sets the maximum that can be printed after toner end is detected. [0 to $750 / \mathbf{0} / 1 /$ step] DFU
3411005	Pixel: $[\mathrm{K}]$	*EGB	Adjusts the number of sheets (A4), which the pixel area is converted into for the toner end after detecting the toner near end. [0 to $100 / \mathbf{0} / 1$ sheet/step $]$
3411006	Pixel: $[\mathrm{Cl}]$	*EGB	

3501	[Process Cont.] Process Control		
3501001	ON/ OFF	*EGB	Sets the method of the process control. [0 to $3 / 0 / 1 /$ step] 0 : Auto, 1: Fixed 2: Auto + LS, 3: Auto (Table fixed) Do not use settings 2 and 3 .

3511	[Pntr. Display] Process Control Table Display ([Color])		
3511001	$[\mathrm{~K}]$	"EGB	Displays the current process control table for
3511002	$[\mathrm{M}]$	each mode.	
3511003	$[\mathrm{C}]$	each	[1 to $30 / \mathbf{1 5} / 1 /$ step $]$
3511004	$[\mathrm{Y}]$	*EGB	

3531	$\left[\begin{array}{l}\text { [M/A Target] ([Color]) }\end{array}\right.$		
3531001	$[\mathrm{~K}]$	*EGB	Adjusts the maximum toner target M/A for each mode. [0.000 to $1.000 / \mathbf{0 . 5 3 / 0 . 0 0 1 ~ \mathrm { mg } / \mathrm { step }]}$
3531002	$[\mathrm{M}]$	"EGB	[0.000 to $1.000 / \mathbf{0 . 5 0 0 / 0 . 0 0 1 \mathrm { mg } / \mathrm { step }]}$
3531003	$[\mathrm{C}]$	"EGB	
3531004	$[\mathrm{Y}]$	*EGB	

3541	[TD Setting] Toner Density Adjustment Setting	
3541001		${ }^{*} \mathrm{EGB}$

3551	[PC SelfChk] Process Control Self-check		
3551001	Job End 1: $[\mathrm{K}]$	*EGB	At the end of a job, process control is done
after the interval of time that is set with SP			
3555001 , if this number of pages was			
printed after the previous process control.			
[0 to 2000 / 210 / 1 page/step]			

3551006	Job End 3: $[\mathrm{Cl}]$	*EGB	process control is done if the number of pages in the job gets to this number. $[0$ to $2000 / 500 / 1$ page/step]

3554	[Pow. ON SelfChk] Power On Self-check		
3554001	Time	*EGB	Adjusts the threshold (Time) of the process control from turning the power on. [0 to $24 / 6.0 / 0.1 \mathrm{H} /$ step]
3554002	Temp./ Humidity	*EGB	Adjusts the threshold (Temperature/ Humidity) of the process control. [0 to $100 / 6 / 0.1 \mathrm{~g} / \mathrm{m} 3 /$ step]
3554003	Time 2	*EGB	Adjusts the threshold (Time) for developer mixing after turning the power on. [0 to 200.0 / 36.0 / 0.1 H/step]
3554004	Temp./ Humidity 2	*EGB	Adjusts the threshold (Temperature/ Humidity) for developer mixing after turning the power on. [0 to $100 / 6.0 / 0.1 \mathrm{~g} / \mathrm{m} 3 /$ step]

3555	[S.Chk Stand-by] Self-check Stand-by Time	
3555001		*EGB

3556	[Image Process.] Image Processing		
3556001	Time (Year)	*EGB	[0 to 99 / 0 / 1 year/step]
3556002	Time (Month)	*EGB	[1 to 12 / 1 / 1 month/step]
3556003	Time (Date)	*EGB	[1 to 31/1/1 day/step]
3556004	Time (Hour)	*EGB	[0 to 23 / 0 / 1 hour/step]
3556005	Time (Minute)	*EGB	[0 to 59/0 / 1 minute/step]

3557	[Image Process.] Image Processing		
3557001	Temperature	*EGB	$\left[-127\right.$ to $127 / 0.0 / 0.1^{\circ} \mathrm{C} /$ step $]$
3557002	Humidity	${ }^{*}$ EGB	$[0$ to $100 / \mathbf{0} / 0.1 \% \mathrm{RH} /$ step $]$
3557003	A. Humidity	*EGB	$[0$ to $100 / 0 / 0.1 \mathrm{~g} / \mathrm{m} 3 /$ step $] /$ step $]$

3558	[No Use SelfChk] No Use Self-check		
3558001	Maximum Repeat	*EGB	Adjusts the maximum repeat times of the process control. $[0$ to $100 / 10 / 1$ time/step]

3561	[Dev g Display] Development gamma Display ([Color])		
3561001	[K]	*EGB	Displays the development gamma measured during the process control self-check. [0.00 to $5.00 / 0.00 / 0.01 /$ step]
3561002	[M]	*EGB	
3561003	[C]	*EGB	
3561004	[Y]	*EGB	

SERVICE MODE TABLE

3562	[Vk Display $]$ ([Color])			
3562001	$[\mathrm{~K}]$	*EGB	Displays the current Vk value.	
3562002	$[\mathrm{M}]$	"EGB	[-300 to $300 / \mathbf{0} / 1 \mathrm{~V} /$ step $]$	
3562003	$[\mathrm{C}]$	"EGB		
3562004	$[\mathrm{Y}]$	*EGB		

3573	[Vd Display] ([Color])		
3573001			Displays the current Vd value. [0 to $1000 / 0 / 1 \mathrm{~V} /$ step]
3573002	[M]	*EGB	
3573003	[C]	*EGB	
3573004	[Y]	*EGB	

3574	[VI Display] ([Color])		
3574001			Displays the current VI value. [0 to 1000 / 0 / 1 V/step]
3574002	[M]	*EGB	
3574003	[C]	*EGB	
3574004	[Y]	*EGB	

3575	[Vb Dis (Process	RS: Re	lar speed, LS: Low speed
3575001	RS: [K]	*EGB	Displays the current Vb value for each mode. [0 to 800 / $350 / 1 \mathrm{~V} /$ step]
3575002	RS: [M]	*EGB	
3575003	RS: [C]	*EGB	
3575004	RS: [Y]	*EGB	
3575005	LS: [K]	*EGB	
3575006	LS: [M]	*EGB	
3575007	LS: [C]	*EGB	
3575008	LS: [Y]	*EGB	

3576	[Charge Bias] Charge Roller Bias (DC, Process Speed,[Color]) RS: Regular speed, LS: Low speed		
3576001	DC: RS: [K]	*EGB	Displays the current charge roller DC bias of the development unit for each mode. [0 to 999 / 585 / $1 \mathrm{~V} /$ step]
3576002	DC: RS: [M]	*EGB	
3576003	DC: RS: [C]	*EGB	
3576004	DC: RS: [Y]	*EGB	
3576005	DC: LS: [K]	*EGB	
3576006	DC: LS: [M]	*EGB	
3576007	DC: LS: [C]	*EGB	
3576008	DC: LS: [Y]	*EGB	

3577	[Charge Bias] Charge Roller Bias (AC, Process Speed,[Color]) RS: Regular speed, LS: Low speed		
3577001	AC: RS: [K]	*EGB	Displays the current charge roller AC bias of the development unit for each mode. [0.0 to $3.0 / 1.9$ / $0.001 \mathrm{kV} /$ step]
3577002	AC: RS: [M]	*EGB	
3577003	AC: RS: [C]	*EGB	
3577004	AC: RS: [Y]	*EGB	

3577005	AC: LS: $[\mathrm{K}]$		
3577006	AC: $\mathrm{LS}:[\mathrm{M}]$		

3581	[LD Control] LD Power Control		
	Displays the current LD power rate for each mode.		
3581001	LD: RS: [K]	*EGB	[10 to $200 / 100 / 1 \% /$ step]
3581002	LD: RS: [M]	*EGB	
3581003	LD: RS: [C]	*EGB	
3581004	LD: RS: [Y]	*EGB	
3581005	LD: LS: [K]	*EGB	
3581006	LD: LS: [M]	*EGB	
3581007	LD: LS: [C]	*EGB	
3581008	LD: LS: [Y]	*EGB	

3701	[Low Resolution] (Threshold, [Color]) SP 3701-001 controls if the pixel count is used in hybrid toner supply mode or not. If this SP is 'on', it is used if the image coverage ratio for the page is below a threshold value (if the coverage is above this ratio, then the TD sensor is used). If this SP is 'off', then the TD sensor is always used. SP3701-002 to 005 control the threshold values for the image coverage ratio.		
3701001		*EGB	$\begin{array}{\|l\|l\|} \hline[0 \text { to } 1 / 0 /-] \\ 0 \text { : Off, } 1: ~ O n \\ \hline \end{array}$
3701002	Threshold: [K]	*EGB	[0 to 100 / 1 / 1\%/step]
3701003	Threshold: [M]	*EGB	
3701004	Threshold: [C]	*EGB	
3701005	Threshold: [Y]	*EGB	

3721	[Low Resolution] Toner Refresh Mode Setting in Low Image Coverage Ratio		
3721001	Toner Refresh Mode		Enables or disables the toner refresh mode. [0 or $1 / \mathbf{0} /-]$ $0:$ On. 1: Off
3721002	S: Toner Refresh	Toner refresh mode is done if the percentage of pages that have low image coverage is larger than this threshold value. [0 to $50 / \mathbf{2 0} / 1 \% /$ step]	

3801	[TD Initial] TD sensor Initialization ([Color])	DFU	
3801001	$[$ All $]$		Initializes the developer for each mode.
3801002	$[\mathrm{Cl}]$		Press the Enter key to execute the
initialization after the machine asks			

SERVICE MODE TABLE

3811	[Developer] Developer Initialization	
3811001	All	Initializes all the developers.

| 3820 | [Process Cont.] Process Control | |
| :--- | :--- | :--- | :--- |
| 3820001 | | Executes the process control.
 Press the Enter key to execute the
 initialization after the machine asks
 "Execute?" |

3821	[P CtI Result] Process Control Result		
3821001	1	*EGB	Displays each logged process control result. The ten most recent ones are shown. 3821 001 is the most recent. -4.1
3821002	2	*EGB	
3821003	3	*EGB	
3821004	4	*EGB	
3821005	5	*EGB	
3821006	6	*EGB	
3821007	7	*EGB	
3821008	8	*EGB	
3821009	9	*EGB	
3821010	10	*EGB	

SP5-XXX (Mode)

| 5024 | [mm/ inchDisplay] | |
| :--- | :--- | :--- | :--- |
| 5024001 | | ${ }^{*}$ CTL |
| | | Sets units (mm or inch) for custom paper
 sizes.
 [0 or $1 / 1 /-]$
 $0: ~ m m ~(E U / A S), ~ 1: ~ i n c h ~(N A) ~$ |

$\mathbf{5 0 4 0}$	[Free Size main] Free Size Main Scan DFU		
5040001	By-pass	*CTL	Displays the width of the custom paper size that is set by the user.
5040002	Tray1	*CTL	then
5040003	Tray2	*CTL	[0.0 to $297.0 / \mathbf{2 1 5 . 9} / 0.1 \mathrm{~mm} / \mathrm{step}]$
5040004	Tray3	*CTL	

5041	[Free Size Sub] Free Size Sub Scan DFU		
5041001	By-pass	*CTL	Displays the length of the custom paper size that is set by the user. [0.0 to $297.0 / 279.4 / 0.1 \mathrm{~mm} / \mathrm{step}$]
5041002	Tray1	${ }^{*} \mathrm{CTL}$	
5041003	Tray2	${ }^{*} \mathrm{CTL}$	
5041004	Tray3	${ }^{*} \mathrm{CTL}$	

5045	[Accounting count]		
5045001	Counter Method	${ }^{*}$ CTL	Selects the counting method if the meter charge mode is enabled with SP5-930-001. You can change the setting only one time. [0 to $1 / 1 /-]$ $0:$ Developments, 1: Pages

$\mathbf{5 0 5 1}$	[Toner Refill Displ] Toner Refill Display		
5051001		${ }^{*}$ CTL	Enable or disable the toner refill display. [0 to $1 / 0 /-]$ $0:$ enable, 1: disable

| 5150 | [Bypass Length Se] By-pass Length Setting | |
| :--- | :--- | :--- | :--- |
| 5801001 | | Lets or does not let the by-pass tray feed
 extra long paper (up to 1260 mm).
 [0 to 1/0 / -] Alphanumeric
 $0:$ Off, 1: On |

5302	[Set Time]			
5302002	Time difference	*CTL\#	Adjusts the RTC (real time clock) time setting for the local time zone. [-1440 to 1440 / NA, EU, CH / 1 minute/step] NA: -300, EU: 60, CH: 480	

5307	[Summer Time]		
5307001	Setting	-	Enables or disables the summer time mode. [0 to $1 / 1 /-]$ Alphanumeric $0:$ Off, $1:$ On
5307003	Rule Set(Start)	-	Specifies the start of the daylight saving time.
5307004	Rule Set(End)	-	Specifies the end of the daylight saving time.

5404	[UcodeCtrClr] User Code Counter Clear		
5404001	UcodeCtrClr	-	Clears all counters for users.

5501	[PM Alarm] PM Alarm Level	
5501001	*CTL	Sets the PM alarm level. A PM alarm is made when this condition occurs: PA x 1000 $=$ or > PC, where PA is the value set in SP5501 and $P C$ is the value in the PM counter. [0 to 9999 / 0 /-] The alert is sent to the e-mail address that is specified for the system administrator using a browser and the built-in web server (Web Image Monitor). 0 : Disables the PM alarm When SP5-866-001 is set to 1 , this $S P$ is enabled.

5504	[Jam Alarm]		
5504001		*CTL	Sets the jam alarm level. If a paper jam occurs, the jam alarm counter increases by +1 . If no paper jam occurs while the set number of paper is output, the jam alarm counter decreases by -1. The jam alarm occurs when the jam alarm counter gets to +10. [0 to 3 / 3 / 1/step] 0: Disables the jam alarm 1: 1.5K, 2: 3K, 3: 6 K The alert is sent to the e-mail address that is specified for the system administrator using a browser and the built-in web server (Web Image Monitor). When SP5-866-001 is set to 1 , this SP is enabled.

5505	[Error Alarm]		
5505001		*CTL	Sets the error alarm level. If an SC code occurs, the error alarm counter increases by +1 . If no SC code occurs while the set number of paper is output, the jam alarm counter decreases by -1 . The error alarm occurs when the error alarm counter reaches +5 . [0 to 255 / $30 / 1 /$ step] 0: Disables the PM alarm The alert is sent to the e-mail address that is specified for the system administrator using a browser and the built-in web server (Web Image Monitor). When SP5-866-001 is set to 1 , this SP is enabled.

5507	[Supply Alarm]		
5507001	Paper Supply Ala	*CTL	Enables or disables the supply alarm. [0 to $1 / 0 /-$ - Alphanumeric 0
5507003	Toner Supply Ala	-	Off, 1: On

5801	[Memory Clear]		
5801001	All	-	Resets the SP5801-002 through 016 except the security related data in 003, 010, 011and 015. These cannot be reset with SP mode.
5801002	Engine	-	Resets or deletes the engine-related data.
5801003	SCS	-	Clears the system settings.
5801004	IMH	-	Clears IMH data. DFU
5801005	MCS	-	Clears MCS data. DFU
5801008	PRT	-	Clears the printer application settings.
5801010	Web Service	*CTL	Clears the web service data and the network application data.
5801011	NCS	*CTL	Initializes the system default and interface settings (IP address also), SmartNetMonitor for Admin, WebStatusMonitor settings, and the TELNET settings.
5801014	DCS Setting	*CTL	Resets or deletes the DCS-related data.

5801015	Clear UCS Setting	${ }^{*}$ CTL	Resets or deletes the UCS-related data.
5801016	MIRS Setting		Resets or deletes the MIRS-related data.
5801017	CCS		Resets or deletes the CSS-related data.

5802	[Engine Free Run]	
5802001		Performs a free run on the printer engine. NOTE: 1) The machine starts free run in the same condition as the sequence of A4/LT printing from the 1st tray. Therefore, paper should be loaded in the 1st tray, but paper is not fed. 2) The main switch has to be turned off and on after using the free run mode for a test.

5803	[Input Check]		
	-5.2 .4		

5804	[Output Check]		
	-5.2 .5		

5807	[Destin. / Model] Destination Code / Model			FA
5807001	Destination Code	*EGB	[0 to 4 / 0 / 1/step] Alphanumeric 0: DOM, 1: OTHER, 2: ASIA 3: ERP. 4: USA	
5807002	Model	*EGB	$\begin{aligned} & {[0 \text { or } 1 / 0 /-]} \\ & 0: \mathrm{Pla}(\mathrm{G} 104), 1: \mathrm{Plb}(\mathrm{G} 105) \end{aligned}$	

5808	[Destination] Destination Code Display		
5808001	Destin. Code Disp	*EGB	Displays the destination code.

58810	[Fusing SC Reset]		
5810001		Resets a type A service call condition. Turn the main power switch off and on after resetting the SC code.	

5811				
5811001	Serting			
5811002	Display	*EGB	Sets the machine serial number.	FA
5811003	ID 2 Code Display	*EGB	Displays the machine serial number.	

5812	[Tel. No. Setting]		
5812001	Service	*CTL	Sets the telephone number for a service representative. This number is printed on the Counter List, which can be printed with the user's "Counter" menu. This can be up to 20 characters (both numbers and alphabetic characters can be input).
5812002	FAX TEL No.	*CTL	Sets the fax or telephone number for a service representative. This number is printed on the Counter List, which can be printed with the user's "Counter" menu if the Meter Charge mode is selected with SP5- 930-1. This can be up to 13 characters (both numbers and alphabetic characters can be input).

5813	[Power Freqency]		
5813001		-	Displays the power frequency. [0 to $100 / 0 / 1 \mathrm{~Hz} /$ step] Not used

5814	[Power Voltage]		
5814001	Detected Voltage	-	Displays the detected power voltage. [0 to $400 / 0 / 1 \mathrm{~V} /$ step] Not used

5816	[Remote Service]		
5816001	I/F Setting	*CTL	[0 to 2 / 2 / 1/step] Alphanumeric $0:$ Off, 1: CSS 2: Network (The remote service function is on.)
5816002	CE Call	*CTL	[0 to 1 / 1 / 1/step] 0: Start, 1: End
5816003	Function Flag	*CTL	[0 to $1 / 0 / 1 /$ step] 0 : Off (The remote service function is disabled.) 1: On (The remote service function is enabled.)
5816006	Device Informati	*CTL	Shows or does not show the device information in the User Tools. [0 to 1 / 0 / 1/step] 0: Not displayed, 1: Displayed
5816007	SSL Disable	*CTL	[0 to 1 / 0 / 1/step] $0:$ On, 1: Off
5816008	RCG Connect Time	*CTL	Sets the timeout counter for the remote connection. [1 to $90 / 10 / 1$ second/step]
5816009	RCG Write Timeou	*CTL	Sets the timeout counter for writing processing. [0 to 100 / $60 / 1$ second/step]

ENGINE SERVICE MODE

5816010	RCG Read Timeout	${ }^{*}$ CTL	Sets the timeout counter for reading processing. $[0$ to $100 / 60 / 1$ second/step]
5816011	Port 80 Enable	*CTL	Enables or disables access to the SOAP method via port 80. [0 to $1 / 0 / 1 /$ step] $]$ $0:$ Disables, $1:$: Enables

5821	[Remote Service Address]			
5821001	CSS-PI Device Co	${ }^{*}$ CTL	[0 to 4 / 0 / 1/step] DFU	
5821002	RCG IP Address	*CTL	Sets the IP address of the RCG (Remote Communication Gate). [00000000h to FFFFFFFFF / 00000000h / 	

5824	[NV-RAM Data Upload]		
5824001		$\#$	Uploads the UP and SP mode data (except for counters and the serial number) from the NVRAM to an SD card.

5825	[NV-RAM Data Download]			
5825001		$\#$	Downloads the UP and SP mode data from an SD card to the NVRAM.	

5828	[Network] Job spool settings/ Interface selection for Ethernet and wireless LAN		
5828050	1284 Compatible	*CTL	Switches Centronics IEEE1284 compatibility on/off for the network. [0 or $1 / 1 /$-] 0: Disabled, 1: Enabled NOTE: Selecting "0" disables bi-directional data transmission.
5828052	ECP	*CTL	Switches the ECP setting for Centronics off/on. [0 or 1 / 1 /-] 0 : Disabled, 1: Enabled NOTE: With "1" selected, SP5-828-050 must be enabled for 1284 mode compatibility.
5828065	Job Spool	*CTL	Switches the job spool on/off. [0 or $1 / 0 /-$-] 0 : Disabled, 1: Enabled
5828066	HD job Clear	*CTL	Selects the treatment of the job when a spooled job exists at power on. [0 to 1 / 1 / 1/step] 0 : Data is cleared, 1: Automatically printed

5828069	Job Spool (Protocol)	${ }^{*} \mathrm{CTL}$	Switches job spooling off or on and enables settings for job spooling protocols. [0 to 1 / 1 / 1/step] 0: Off, 1: On Bit switch: - Bit 0: LPR - Bit 1: FPT - Bit 2: IPP - Bit 3: SMB - Bit 4: BMLinkS - Bit 5: DIPRINT - Bits 6 and 7: Reserved
5828084	Print Settings List	-	Prints a list of NCS related parameters.
5828085	IP Interface	-	displays the IP interface. [0 to $3 /-$] 0: No IP device, 1: DHCP 2: Static IP address 3: DHCP and Static IP address
5828090	TELNET	${ }^{*} \mathrm{CTL}$	Enables or disables Telnet. [0 to 1 / 1 / 1 /step] 0: Disabled, 1: Enabled
5828091	Web	*CTL	Enables or disables the Web monitor. [0 to 1 / 1 / 1 /step] 0: Disabled, 1: Enabled

5832	[HDD Init.] HDD Initialization		
5832001		$\#$	Prepares the hard disk. Use this SP mode only when there is a hard disk error.

5839	[IEEE 1394]		
5839004	Host Name	*CTL	Displays the host name.
5839007	Cycle Master	*CTL	[0 or $1 / 1 /$ /-] Alphanumeric 0: Off, 1: On
5839008	BCR mode	*CTL	[0 to 3 / 3 / 1/step] Alphanumeric 0: Standard, 1: IRM Color Copy 2: Reserved, 3: Always Effective
5839009	IRM 1394a Check	*CTL	$\begin{aligned} & {[0 \text { or } 1 / 0 /-]} \\ & 0: \text { Off, } 1: \text { On } \\ & \hline \end{aligned}$
5839010	Unique ID	*CTL	$\begin{aligned} & {[0 \text { or } 1 / 1 /-]} \\ & 0 \text { : Off, } 1: \text { On } \end{aligned}$
5839011	Logout	*CTL	$\begin{array}{\|l\|l\|} \hline[0 \text { or } 1 / 1 /-] \\ 0: \text { Off, } 1: ~ O n \\ \hline \end{array}$
5839012	Login	${ }^{*} \mathrm{CTL}$	$\begin{aligned} & {[0 \text { or } 1 / 0 /-]} \\ & 0: \text { Off, 1: On } \end{aligned}$
5839013	Login MAX	*CTL	[0 to $63 / 8$ / 1/step]]

5840	[IEEE 802.11b]			
5840006	Channel Max			

5842	[NFA analisis] Net File Application Analysis	
5842001	*CTL	Prints or does not print the module log for each bit. [0 to 1 / 1 / 1/step] 0 : Prints, 1: Not print Bit switch: - Bit 0: System or other related application. - Bit 1: Captured related application - Bit 2: Certification related application - Bit 3: Address related application - Bit 4: Control devices or transmission logs related application - Bit 5: Output (print, fax or transmission) related application - Bit 6: Documents related application In the Bit 7, 0: Not print, 1: Print - Bit 7: MSB related application

5844	[USB]	*CTL	Adjusts the USB transfer rate. [0 to $1 / 0 / 1 /$ step] Alphanumeric 0: Auto Change, 1: Full speed
5844001	Transfer Rate	${ }^{*}$ CTL	Displays the vendor ID.

5845	[Delivery Srv] Delivery Server		
5845003	Retry Interval	${ }^{*}$ CTL	Specifies the retry interval. $[60$ to $900 / 300 / 1$ second/step]
5845004	No. of Retries	${ }^{*}$ CTL	Specifies the maximum number of retries. $[0$ to $99 / 3 / 1 /$ step $]$

5846	[UCS Setting]			
5846003	Maximum Entries		Displays the number of maximum entries.	
5846050	Init All Dir	*CTL	Initializes all address information data except the administration account.	
5846098	Bit SW 2	*CTL	FA	
5846099	Bit SW	*CTL	FA	

5848	[Web Service]	*CTL	Enables or disables the udirectory access limitation. 0000: Disabled, 0001: Enabled
5848004	ac: ud	*CTL	Enables or disables the devicemanagement access limitation. 0000: Disabled, 0001: Enabled
5848011	ac: dm		

5856	[Remote Update]		
5856002	Local Port	Allows the technician to updade the firmware using a parallel cable. [0 to $1 / 0 / 1 /$ step] 0 0 Disable 1: Enable	

5857	[Save Debug Log]		
5857001	On/ Off	*CTL	Enables or disables the debug log saving function. [0 to $1 / 0 / 1 /$ step] Alphanumeric $0:$ On, 1: On
5857002	Target	*CTL	Sets the storage location for the debug log. [2 to 3/2 / 1/step] $2: ~ H D D, ~ 3: ~ S D ~$
5857005	Save to HDD	*CTL	Sets the key number of the debug log.
5857006	Save to SD	*CTL	Sets the key number of the debug log.

ENGINE SERVICE MODE

5857009	HDD to SD (4MB)	*CTL	Copies the most recent 4 MB of the debug log from the hard disk to the SD card.
5857010	HDD to SD (Any)	*CTL	Sets the key number of the debug log copied from the hard disk to the SD card.
5857011	Erase HDD Log	*CTL	Deletes the debug log from the hard disk.
5857012	Erase SD Log	*CTL	Deletes the debug log from the SD card.
5857013	Free Space on SD	*CTL	Shows the free space on the SD card.
5857014	SD to SD (4MB)	*CTL	Copies the most recent 4 MB of the debug log from an SD card to a different SD card.
5857015	SD to SD (Any)	${ }^{*} \mathrm{CTL}$	Sets the key number of the debug log copied from an SD card to a different SD card.
5857016	Make HDD Log File	*CTL	Makes a log file on the HDD to save debug
5857017	Make SD Log File	*CTL	logs. To save debug logs, the controller makes a log file first, then writes data in the file. This procedure can use much time. The user can switch off the main power switch before the log is written in the file. To prevent this possible problem, you can prepare a log file in advance. If you do this, the controller uses less time to save logs because the log file is prepared.

5858	[Debug Save When]		
5858001	Engine SC Error	${ }^{*}$ CTL	Collects debug logs when an engine-related SC code occurs. [0 to $1 / 0 / 1 /$ step] $0:$ OFF, 1: ON
5858002	System SC Error	${ }^{*}$ CTL	Collects debug logs when a controller-related SC code occurs. [0 to $1 / 0 / 1 /$ step] $0:$ OFF, 1: ON
5858003	Any SC Error	*CTL	Sets the SC code whose logs are collected. [00000 to 65535 / 0 / 1/step]
5858004	Jam	*CTLCollects debug logs when a paper jam occurs. [0 to 1/0 / 1/step] $0:$ OFF, 1: ON	

5859	[Log Sa		
5859001	Key 1	${ }^{*} \mathrm{CTL}$	Sets the key number of a specific event NOTE) whose logs are saved in the specified storage (NOTE). When multiple key numbers are assigned, the logs are collected in this order: Key 1, Key 2, ..., Key 9, Key 10. NOTE: The event is set with SP5-857-2. The storage is set with SP5-858. [0000000 to 9999999 / 0 / 1/step]
5859002	Key 2	${ }^{*} \mathrm{CTL}$	
5859003	Key 3	${ }^{*} \mathrm{CTL}$	
5859004	Key 4	${ }^{*} \mathrm{CTL}$	
5859005	Key 5	${ }^{*} \mathrm{CTL}$	
5859006	Key 6	${ }^{*} \mathrm{CTL}$	
5859007	Key 7	${ }^{*} \mathrm{CTL}$	
5859008	Key 8	${ }^{*} \mathrm{CTL}$	
5859009	Key 9	${ }^{*} \mathrm{CTL}$	
5859010	Key 10	${ }^{*} \mathrm{CTL}$	

5860	[SMTP/ POP3/ IMAP]		
5860002	SMTP Server Port No.	${ }^{*} \mathrm{CTL}$	Adjusts the number of the SMTP server ports. [1 to 65535 / 25 / 1/step]
5860003	SMTP Auth.	*CTL	Enables or disables the SMTP authentication for mail transfers. [0 to 1 / 0 / 1/step] 0 : Disable, 1: Enable
5860006	SMTP Auth. Encryp	*CTL	Encrypts or does not encrypt passwords for POP3/IMAP4 authentications. [0 to 2 / 0 / 1/step] 0: Automatic, 1: Not encrypt, 2: Encrypt
5860007	POP before SMTP	*CTL	Enables or disables the authentication that is executed on the POP server before the communication is established with the SMTP server to transfer mails. [0 to 1 / 0 / 1/step] 0 : Disable, 1: Enable
5860008	POP to SMTP Wait	*CTL	Adjusts the waiting time to access the SMTP server after the authentication on the POP server. [0 to $10000 / \mathbf{3 0 0} / 1 \mathrm{~ms} / \mathrm{step}$]
5860009	Rev Protocol	${ }^{*}$ CTL	Sets the protocol of receiving e-mail. [0 to 2 / 0 / 1/step] 0: Not receive, 1: POP3, 2: IMAP4
5860013	POP Auth. Encryption	*CTL	Encrypts or does not encrypt passwords for POP3/IMAP4 authentications. [0 to 2 / 0 / 1/step] 0: Automatic, 1: Not encrypt, 2: Encrypt
5860014	POP Server Port No.	*CTL	Adjusts the port number of the POP server. [1 to $65535 / 110 / 1 /$ step]
5860015	IMAP Srv Port No	${ }^{*} \mathrm{CTL}$	Adjusts the port number of the IMAP4 server. [1 to $65535 / 143 / 1 /$ step $]$
5860017	Receive Interval	*CTL	Adjusts the interval of receiving an e-mail. [2 to 1440 / 3 / 1 minute/step]
5860019	Mail Keep Sett.	*CTL	Sets the way of keeping the e-mail in the server. [0 to 2 / 0 / 1/step] 0 : Not keeping 1: Keeping All 2: Keeping the only error e-mail
5860020	Part. Mail Rcv Tm	${ }^{*} \mathrm{CTL}$	Adjusts the time for keeping the partial emails. If the partial e-mails are not received during the set time, these are deleted. [1 to $168 / 72 / 1 \mathrm{~h} /$ step]
5860021	MDN Res RFC2298	*CTL	[0 or 1/1/-]
5860022	SMTP From Replace	${ }^{*} \mathrm{CTL}$	Determines whether the FROM item of the mail header is switched to the validated account after the SMTP server is validated. [0 to 1 / $0 / 1 /$ step] 0: No. "From" item not switched, 1: Yes. "From" item switched.

5860 025	SMTP Auth Direct	${ }^{*}$ CTL	Selects directly the way of SMTP authentication if all SMTP authentications fail due to the error in the SP5860-006. This SP is activated only when SP5860-003 is set to "Enable". Bit switch 0: LOGIN
		Bit switch 1: PLAIN Bit switch 2: CRAM MD5 Bit switch 3: DIGEST MD Bit switch 4-7: Not used	

5866	[E-Mail Alert]			
5866001	Notice Func E-Ma	*CTL	Enables or disables the alert notice function by e-mail. [0 to $1 / 0 / 1 /$ step] $0:$ Off, $1:$ On	
5866005	Add Date Field	*CTL	Enables or disables to add the date field on the alert notice e-mail. [0 to $1 / 0 / 1 /$ step] $0:$ Off, $1:$ On	

5869	[RAM Disk Setting]		
5869001	Mail Function	*CTL\#	Enables or disables the e-mail transfer function. This SP sets the RAM disk size for the e-mail transfer function. [0 to $1 / 0 / 1 /$ step] $0:$ On, 1: Off

| 5870 | [Common Key Info W] Common Key Information Writting | |
| :--- | :--- | :--- | :--- |
| 5870001 | Writing | Writes the authentication data (used for
 NRS) in the memory. |
| 5870003 | Initialize | Initializes the authentication data in the
 memory. |

5873	[SD Card Appli Move]		
58731	Move Exec		$\boxed{ }$ 5.4
58732	Undo Exec		$\boxed{ } 5.4$

5907	[Plug/ Play] Plug/ Play Name Selection		
5907001	${ }^{*} \mathrm{CTL}$	[0 to 8 / 0 / 1/step]	
		MFG	MDL
		0 RICOH	Aficio CL4000DN
		1 RICOH	Aficio CL4000HDN
		2 SAVIN	CLP26DN
		3 Gestetner	C7425dn
		4 NRG	C7425dn
		5 NRG	C7425hdn
		6 infotec	IPC 2525
		7 infotec	IPC 2525e
		8 LANIER	LP125cx/LP126cn

5930	[Meter Click Ch.] Meter Click Charge	
5930001	*EGB	Enables or disables the Meter Charge mode. When enabling the Meter Charge mode, the "Counter" menu is added to the user menu. [0 or 1 / 0 /-] Alphanumeric 0: OFF, 1: ON

5950	[Factory Default]		
5950001		*EGB	Enables the first initial setting. This SP is set to 1 in the factory. This SP is cleared after first turning the main power on. [0 or 1/0/-] FA 0: Disables, 1: Enables

5952	[Under F. Adjust] Under Factory Adjustment	
5952001		${ }^{*}$ EGB

| 5953 | [dehumidifier] Tray heater Switch Setting | |
| :--- | :--- | :--- | :--- |
| 5953001 | *EGB | Enables or disables the tray heater on/off
 switch when the main power switch is on.
 [0 to $1 / 0 /-]$ Alphanumeric
 $0:$ Off, 1: On |

$\mathbf{5 9 7 0}$	[Debug Serial] Debug Serial Port Setting		
	${ }^{*}$ CTL		

5990			
5990001	All (Data List)		Does SP5-990-002, 004, 005, 006, and 007.
5990002	SP (Mode Data List)		Prints an SMC report on all SP modes.
5990004	Logging Data		Prints an SMC report on the SPs that save logs.
5990005	Diagnosic Report		Prints the Self-Diagnosis Report.
5990006	Non-Default	Prints an SMC report on the SPs that have settings, which are different from the defaults.	
5990007	NIB Summary		Prints the network configuration report.

SP7-XXX (Data Log)

7002	[Total Counter]		
7002001	Color Counter	*EGB	Displays the value of the counters. 7002002

7401	[SC Counter]		
7401001		${ }^{*}$ CTL	Displays the number of SC codes detected. [0 to $9999 / 0 / 1 /$ step]

7403	[Latest1		
7403001	Latest	*CTL	Logs the SC codes detected. The 10 most recently detected SC Codes are not displayed on the screen, but can be seen on the SMC (logging) outputs.
7403002	Latest 1	*CTL	
7403003	Latest 2	${ }^{*} \mathrm{CTL}$	
7403004	Latest 3	${ }^{*} \mathrm{CTL}$	
7403005	Latest 4	${ }^{*} \mathrm{CTL}$	
7403006	Latest 5	${ }^{*} \mathrm{CTL}$	
7403007	Latest 6	${ }^{*} \mathrm{CTL}$	
7403008	Latest 7	*CTL	
7403009	Latest 8	${ }^{*} \mathrm{CTL}$	
7403010	Latest 9	${ }^{*} \mathrm{CTL}$	

7502	[Total Jam]	${ }^{*}$ CTL	Displays the total number of jams detected. [0 to 9999 / 0 / 1 sheet/step]
7502001			

7504	[Jam Location]		
	Displays the number of jams according to the location where jams were detected.		
7504001	Main 001	*CTL	Not used
7504003	Main 003	*CTL	Tray 1: ON
7504004	Main 004	${ }^{*} \mathrm{CTL}$	Tray 2: ON
7504005	Main 005	${ }^{*} \mathrm{CTL}$	Tray 3/LCT: ON
7504006	Main 006	${ }^{*} \mathrm{CTL}$	Tray 4: ON
7504008	Main 008	${ }^{*} \mathrm{CTL}$	Registration: ON
7504009	Main 009	*CTL	External Tray: ON
7504010	Main 010	*CTL	Internal Tray: ON
7504011	Main 011	*CTL	Duplex: ON
7504012	Main 012	*CTL	Duplex Exit 1: ON
7504013	Main 013	*CTL	Duplex Exit 2: ON
7504015	Main 015	*CTL	Optional paper tray unit feed: ON
7504061	Main 061	${ }^{*} \mathrm{CTL}$	Registration: OFF
7504063	Main 063	*CTL	External Tray: OFF
7504065	Main 065	*CTL	Duplex: OFF
7504066	Main 066	${ }^{*} \mathrm{CTL}$	Duplex Exit 1: OFF
7504070	Main 070	${ }^{*} \mathrm{CTL}$	Not used
7504071	Main 071	*CTL	Not used

7506	[Jam Pap		
7506133	A4 SEF	*CTL	Displays the number of jams according to the paper size. [0 to 9999 / 0 / 1 sheet/step]
7506134	A5 SEF	*CTL	
7506142	B5 SEF	${ }^{*} \mathrm{CTL}$	
7506164	LG SEF	${ }^{*} \mathrm{CTL}$	
7506166	LT SEF	*CTL	
7506172	HLT SEF	*CTL	
7506255	Others	*CTL	

7507	[Jam His		
7507001	Latest	*CTL	Displays the 10 most recently detected paper jams.
7507002	Latest 1	*CTL	
7507003	Latest 2	*CTL	
7507004	Latest 3	*CTL	
7507005	Latest 4	${ }^{*} \mathrm{CTL}$	
7507006	Latest 5	*CTL	
7507007	Latest 6	*CTL	
7507008	Latest 7	${ }^{*} \mathrm{CTL}$	
7507009	Latest 8	*CTL	
7507010	Latest 9	*CTL	

7803	[PM Counter Displ] Preventive Maintenance Counter Display (Sheets or Rotations (\%), Unit, [Color]) Trans Belt Unit: Transfer Belt Unit T. Roll 2: Transfer Roller 2, Waste Toner: Waste Toner Bottles		
	Displays the PM counter for each unit.		
7803001	Paper	*EGB	Displays the number of sheets printed for each current maintenance unit. When a unit is replaced, the machine automatically detects that the new unit is installed. Then, the current PM counter value is automatically moved to the PM Counter - Previous (SP7-906-1 to 10) and is reset to " 0 ". The total number of sheets printed with the last unit replaced can be checked with SP7-906-1 to 10. SP7-803-001: This shows the number of pages printed. [0 to 9999999 / 0 / 1 sheet/step]
7803002	S: PCU: [K]	*EGB	
7803003	S: PCU: [M]	*EGB	
7803004	S: PCU: [C]	*EGB	
7803005	S: PCU: [Y]	*EGB	
7803009	S: Transfer Belt Unit	*EGB	
7803010	S: T. Roll 2	*EGB	
7803011	S: Fusing Unit	*EGB	
7803012	S: By-pass	*EGB	
7803013	S: Tray 1	*EGB	
7803014	S: Tray 2	*EGB	
7803015	S: Tray 3	*EGB	

7803017	R: PCU: [K]	*EGB	Displays the number of revolutions of motors or clutches for each current maintenance unit. [0 to 9999999 / 0 / 1 revolution/step] When a unit is replaced, the machine automatically detects that the new unit is installed. Then, the current PM counter value is automatically moved to the PM Counter Previous (SP7-906-11 to 20) and is reset to " 0 ". The total number of revolutions made with the last unit replaced can be checked with SP7-906-11 to 20. [0 to 9999999 / 0 / 1 rotation/step] Displays the number of sheets printed until the waste toner bottle becomes full or toner runs out. [0 to 9999999 / 0 / 1 /step] Displays the value given by the following formula: (Current revolution \div Target revolution) \times 100, where "Current revolution" is the current value for the counter of the part, and "Target revolution" is the values of SP7-803-17 through 27. This shows how much of the unit's expected lifetime has been used up. The R\% counter is based on rotations, not prints. If the number of rotations reaches the limit, the machine enters the end condition for that unit. If the print count lifetime is reached first, the machine also enters the end condition, even though the R\% counter is still less than 100%. [0 to 999 / 0 / 1 rotation\%/step]
7803018	R: PCU: [M]	EGB	
7803019	R: PCU: [C]	EGB	
7803020	R: PCU: [Y]	EGB	
7803025	R: Trans Belt Unit	EGB	
7803026	R: T. Roll 2	*EGB	
7803027	R: Fusing Unit	*EGB	
7803033	Toner Supply: [K]	*EGB	
7803034	Toner Supply: [M]	*EGB	
7803035	Toner Supply: [C]	*EGB	
7803036	Toner Supply: [Y]	*EGB	
7803037	R\%: PCU: [K]	*EGB	
7803038	R\%: PCU: [M]	*EGB	
7803039	R\%: PCU: [C]	*EGB	
7803040	R\%: PCU: [Y]	*EGB	
7803045	R\%: Trans Belt Unit	*EGB	
7803046	$\mathrm{R} \%$: T. Roll 2	*EGB	
7803047	$\mathrm{R} \%$: Fusing Unit	*EGB	

7804	[PM Count. Reset] Preventive Maintenance Counter Reset (Sheets, Unit, [Color]) Trans Belt Unit: Transfer Belt Unit, T. Roll 2: Transfer Roller 2, Waste Toner: Waste Toner Bottle, Toner: Toner Bottles		
	Clears the PM counter for each unit.		
7804002	PCU: [K]	-	Clears the PM counter. Press the Enter key after the machine asks "Execute?". When a unit is replaced, the machine automatically detects that the new unit is installed. Then, the current PM counter value is automatically moved to the PM CounterPrevious (SP7-906-1 to 40) and is reset to "0".
7804003	PCU: [M]	-	
7804004	PCU: [C]		
7804005	PCU: [Y]	-	
7804009	Trans Belt Unit	-	
7804010	Transfer Roller 2	-	
7804011	Fusing Unit	-	
7804012	S: By-pass	-	
7804013	S: Tray 1	-	
7804014	S: Tray 2	-	
7804015	S: Tray 3	-	
7804017	S: Toner: [K]	-	
7804018	S: Toner: [M]	-	

7804019	S: Toner: $[\mathrm{C}]$	-	
7804020	S: Toner: $[\mathrm{Y}]$	-	
7804021	Toner Supply: $[\mathrm{K}]$	-	
7804022	Toner Supply: $[\mathrm{M}]$	-	
7804023	Toner Supply: $[\mathrm{C}]$	-	
7804024	Toner Supply: $[\mathrm{Y}]$	-	
7804050	All		

7806	[Procon Counter] Process Control Counter ([Color])		
7806001	[K]	*EGB	[0 to 2000 / 0 / 1/step]
7806002	[CI]	*EGB	
	[MUSIC Counter] ([Color])		
7806003	[K]	*EGB	Counts the paper printed after previous MUSIC. [0 to 999 / 0 / 1/step]
7806004	[CI]	*EGB	
	[P. Pattern Coun.] P. Sensor Pattern Counter ([Color])		
7806005	[K]	*EGB	[0 to 255 / 0 / 1/step]
7806006	[CI]	*EGB	
	[Low Resolution] Low Resolution Counter ([Color])		
7806007	Sheets: [K]	*EGB	[0 to 255 / 0 / 1/step]
7806008	Sheets: [M]	*EGB	
7806009	Sheets: [C]	*EGB	
7806010	Sheets: [Y]	*EGB	

7807	[SC/ Jam Clear] SC/ Jam Counter Clear		
7807001	All Clear	-	Clears the all counters related to SC codes and paper jams.

7810	[Engine Cnt Reset] Engine Counter Reset		
7810001	All Clear	-	Clears the all Engine counters other than the total counter (SP7812).

7812	[Total Cnt. Rst.] Total Counter Reset		
7812001	Color Counter	-	Clears the total color counter.
7812002	Black Counter	-	Clears the total black counter.
7812100	All Reset	-	Clears the total all counter.

$\mathbf{7 8 1 5}$	[Rep. Cnter Reset] Replacement Counter Reset (Sheets, Unit, [Color]) Trans Belt Unit: Transfer Belt unit, Waste Toner: Waste Toner Bottle, Toner: Toner Bottle		
7815001	PCU: $[\mathrm{K}]$	-	Clears the replacement counter and the previous unit counter of the black PCU.
7815002	PCU: [M]	-	Clears the replacement counter and the previous unit counter of the magenta PCU.
7815003	PCU: $[\mathrm{C}]$	-	Clears the replacement counter and the previous unit counter of the cyan PCU.

7815004	PCU: [Y]	-	Clears the replacement counter and the previous unit counter of the yellow PCU.
7815005	Trans Belt Unit	-	Clears the replacement connter and the previous unit counter of the Transfer belt unit.
7815006	Transfer Roller 2	-	Clears the replacement counter and the previous unit counter of the Transfer Roller.
7815007	Fusing Unit	-	Clears the replacement counter and the previous unit counter of the Fusing unit.
7815008	S: By-pass	-	Clears the replacement counter and the previous unit counter of the Paper pick up roller at by-pass.
7815009	S: Tray 1	-	Clears the replacement counter and the previous unit counter of the Paper pick up roller at tray 1.
7815010	S: Tray 2	-	Clears the replacement counter and the previous unit counter of the Paper pick up roller at tray 2.
7815011	S: Tray 3	Clears the replacement counter and the previous unit counter of the Paper pick up roller at tray 3.	
7815029	Toner: [K]	Clears the replacement counter and the previous unit counter of the black toner bottle	
7815030	Toner: [M]	-	Clears the replacement counter and the previous unit counter of the magenta toner bottle
7815031	Toner: [C]	-	Clears the replacement counter and the previous unit counter of the cyan toner bottle
7815032	Toner: [Y]	-	Clears the replacement counter and the previous unit counter of the yellow toner bottle
7815100	All	Clears the all replacement and the previous unit counters.	

7817	[Rep Cnter Reset] Replacement Counter Reset		
7817001	All Cloear	-	Clears the all adjustment counters.

| 7832 | [Diag. Result] Diagnostic Result | |
| :--- | :--- | :--- | :--- |
| 7832001 | - | Displays the result of the diagnostics. To
 scroll the return codes, press the up-arrow
 key or the down-arrow key. |

7834	[Cov. Counter] Coverage Counter		
7834001	All Clear	-	Clears the all coverage counters.

7836	[Total Memory Size]		
7836001		-	Shows the total storage size.

ENGINE SERVICE MODE

7853	[Rep. Count. Disp] Replacement Counter Display (Sheets, Unit, [Color]) Trans Belt Unit: Transfer Belt unit, Waste Toner: Waste Toner Bottle, Toner: Toner Bottle		
7853002	PCU: [K]	*EGB	Displays the replacement counter for each unit. [0 to 9999999 / 0 / 1/step]
7853003	PCU: [M]	*EGB	
7853004	PCU: [C]	*EGB	
7853005	PCU: [Y]	*EGB	
7853009	Trans Belt Unit	*EGB	
7853010	Transfer Roller 2	*EGB	
7853011	Fusing Unit	*EGB	
7853012	S: By-pass	*EGB	
7853013	S: Tray 1	*EGB	
7853014	S: Tray 2	*EGB	
7853015	S: Tray 3	*EGB	
7853028	Waste Toner	*EGB	

7901	[Assert Info]		
7901001	File Name	*CTL	Records the location where a problem is detected in the program. The data stored in
7901002	\# of Lines	*CTL	
dhis SP is used for problem analysis.			
7901003	Location	*CTL	

7906	[PM Counter-PREV] Previous Preventive Maintenance Counter Display (Sheets or Rotation (\%),Unit, [Color]) Trans Belt Unit: Transfer Belt Unit, T. Roll 2: Transfer Roller 2, Waste Toner: Waste Toner Bottle, Toner: Toner Bottles		
7906001	S: PCU: [K]	*EGB	Displays the number of sheets printed with the previous maintenance units. [0 to 9999999 / 0 / 1/step]
7906002	S: PCU: [M]	*EGB	
7906003	S: PCU: [C]	*EGB	
7906004	S: PCU: [Y]	*EGB	
7906008	S: Trans Belt Unit	*EGB	
7906009	S: T. Roll 2	*EGB	
7906010	S: Fusing Unit	*EGB	
7906011	R: PCU: [K]	*EGB	Displays the number of revolutions for each unit in the previous maintenance units. [0 to 9999999 / 0 / 1 revolution/step]
7906012	R: PCU: [M]	*EGB	
7906013	R: PCU: [C]	*EGB	
7906014	R: PCU: [Y]	*EGB	
7906018	R: Trans Belt Unit	*EGB	
7906019	R: T. Roll 2	*EGB	
7906020	R: Fusing Unit	*EGB	
7906026	Toner Supply: [K]	*EGB	Displays the toner supply time for each color in the previous toner bottles. [0 to 9999999 / 0 / 1/step]
7906027	Toner Supply: [M]	*EGB	
7906028	Toner Supply: [C]	*EGB	
7906029	Toner Supply: [Y]	*EGB	

7906030	R\%: PCU: [K]	*EGB	Displays the value given by the following formula: (Current count \div Yield count) $\times 100$, where "Current count" is the current values in the counter for the part, and "Yield count" is the recommended yield. $\text { [0 to } 999 \text { / } 0 \text { / } 1 \text { \%/step] }$ Displays the number of sheets fed with the previous maintenance unit. [0 to 9999999 / 0 / 1/step]
7906031	R\%: PCU: [M]	*EGB	
7906032	R\%: PCU: [C]	*EGB	
7906033	R\%: PCU: [Y]	*EGB	
7906034	R\%: Trans Belt Unit	*EGB	
7906035	R\%: T. Roll 2	*EGB	
7906036	R\%: Fusing Unit	*EGB	
7906037	S: By-pass	*EGB	
7906038	S: Tray 1	*EGB	
7906039	S: Tray 2	*EGB	
7906040	S: Tray 3	*EGB	

7910	[ROM No]		
	Displays the ROM number for each component.		
7910001	System	7910160	MSIS
7910002	Engine	7910161	MSIS (OPTION)
7910018	NIB	7910162	PDF
7910131	Bluetooth	7910163	BMLinkS
7910150	RPCS	7910180	FONT
7910151	PS	7910181	FONT 1
7910152	RPDL	7910182	FONT 2
7910153	R98	7910183	FONT 3
7910154	R16	7910200	Factory
7910155	RPGL	7910202	Net File
7910156	R55	7910204	Printer
7910157	RTIFF	7910209	Test Suite
7910158	PCL	7910210	MIB
7910159	PCLXL	7910211	WebSystem

7911			
	[Firmware Ver.] Firmware Version		
7911001	Sisplays the firmware version.	7911160	MSIS
7911002	Engine	7911161	MSIS (OPTION)
7911018	NIB	7911162	PDF
7911131	Bluetooth	7911163	BMLinkS
7911150	RPCS	7911180	FONT
7911151	PS	7911181	FONT 1
7911152	RPDL	7911182	FONT 2
7911153	R98	7911183	FONT 3
7911154	R16	7911200	Factory
7911155	RPGL	7911202	Net File
7911156	R55	7911204	Printer
7911157	RTIFF	7911209	Test Suite
7911158	PCL	7911210	MIB
7911159	PCLXL	7911211	WebSystem

ENGINE SERVICE MODE

7931	[Toner Info [K]] Toner Bottle Information [K] (R: Replacement or E: End)		
7931001	Model ID	*EGB	Displays the information number for each category.
7931002	Cartridge Ver	*EGB	
7931003	Brand ID	*EGB	
7931004	Area ID	*EGB	
7931005	Production ID	*EGB	
7931006	Color ID	*EGB	
7931007	Maintenance ID	*EGB	
7931008	New	*EGB	
7931009	Recycle Count	*EGB	
7931010	Prod. Date	*EGB	
7931011	Serial No.	*EGB	
7931012	Remaining Toner	*EGB	Displays the remaining toner rate. [0 to $100 / 100 / 1 \% /$ step]
7931013	Toner End	*EGB	Displays the toner end record.
7931014	Refill Flag	*EGB	Displays the refilling record.
7931015	R: Total Counter	*EGB	Displays the total number of sheets when
7931016	R: Color Counter	*EGB	replacing the new toner bottle for the b / w mode or the full color mode. [0 to 9999999 / 0 / 1/step]
7931017	E: Total Counter	*EGB	Displays the total number of sheets when
7931018	E: Color Counter	*EGB	detecting the toner end for the b / w mode or the full color mode. [0 to 9999999 / 0 / 1/step]
7931019	Near End	*EGB	Displays the toner near end record. [0 to $3 / 0 / 1 /$ step]
7931020	Install Date	*EGB	Displays the date of the install the toner bottle.
7931021	Toner End Date	*EGB	Displays the date of the toner end.

7932	[Toner Info [M]] Toner Bottle Information [M] (R: Replacement or E: End)		
7932001	Model ID	*EGB	Displays the information number for each category.
7932002	Cartridge Ver	*EGB	
7932003	Brand ID	*EGB	
7932004	Area ID	*EGB	
7932005	Production ID	*EGB	
7932006	Color ID	*EGB	
7932007	Maintenance ID	*EGB	
7932008	New	*EGB	
7932009	Recycle Count	*EGB	
7932010	Prod. Date	*EGB	
7932011	Serial No.	*EGB	
7932012	Remaining Toner	*EGB	Displays the remaining toner rate. [0 to $100 / 100 / 1 \% /$ step]
7932013	Toner End	*EGB	Displays the toner end record.
7932014	Refill Flag	*EGB	Displays the refilling record.
7932015	R: Total Counter	*EGB	Displays the total number of sheets when

7932016	R: Color Counter	*EGB	replacing the new toner bottle for the b / w mode or the full color mode. [0 to 9999999 / 0 / 1/step]
7932017	E: Total Counter	*EGB	Displays the total number of sheets when
7932018	E: Color Counter	*EGB	detecting the toner end for the b / w mode or the full color mode. [0 to 9999999 / 0 / 1/step]
7932019	Near End	*EGB	Displays the toner near end record. [0 to $3 / 0 / 1 /$ step]
7932020	Install Date	*EGB	Displays the date of the install the toner bottle.
7932021	Toner End Date	*EGB	Displays the date of the toner end.

7933	[Toner Info [C]] Toner Bottle Information [C] (R: Replacement or E: End)		
7933001	Model ID	*EGB	Displays the information number for each category.
7933002	Cartridge Ver	*EGB	
7933003	Brand ID	*EGB	
7933004	Area ID	*EGB	
7933005	Production ID	*EGB	
7933006	Color ID	*EGB	
7933007	Maintenance ID	*EGB	
7933008	New	*EGB	
7933009	Recycle Count	*EGB	
7933010	Prod. Date	*EGB	
7933011	Serial No.	*EGB	
7933012	Remaining Toner	*EGB	Displays the remaining toner rate. [0 to $100 / 100 / 1 \% /$ step]
7933013	Toner End	*EGB	Displays the toner end record.
7933014	Refill Flag	*EGB	Displays the refilling record.
7933015	R: Total Counter	*EGB	Displays the total number of sheets when
7933016	R: Color Counter	*EGB	replacing the new toner bottle for the b / w mode or the full color mode. [0 to 9999999 / 0 / 1/step]
7933017	E: Total Counter	*EGB	Displays the total number of sheets when
7933018	E: Color Counter	*EGB	detecting the toner end for the b / w mode or the full color mode. [0 to 9999999 / 0 / 1/step]
7933019	Near End	*EGB	Displays the toner near end record. [0 to $3 / 0 / 1 /$ step]
7933020	Install Date	*EGB	Displays the date of the install the toner bottle.
7933021	Toner End Date	*EGB	Displays the date of the toner end.

7934	[Toner Info [Y]] Toner Bottle Information [Y] (R: Replacement or E: End times)		
7934001	Model ID	*EGB	Displays the information number for each category.
7934002	Cartridge Ver	*EGB	
7934003	Brand ID	*EGB	

ENGINE SERVICE MODE

7934004	Area ID	*EGB	
7934005	Production ID	*EGB	
7934006	Color ID	*EGB	
7934007	Maintenance ID	*EGB	
7934008	New	*EGB	
7934009	Recycle Count	*EGB	
7934010	Prod. Date	*EGB	
7934011	Serial No.	*EGB	
7934012	Remaining Toner	*EGB	Displays the remaining toner rate. [0 to $100 / 100 / 1 \% /$ step]
7934013	Toner End	*EGB	Displays the toner end record.
7934014	Refill Flag	*EGB	Displays the refilling record.
7934015	R: Total Counter	*EGB	Displays the total number of sheets when
7934016	R: Color Counter	*EGB	replacing the new toner bottle for the b / w mode or the full color mode. [0 to 9999999 / 0 / 1/step]
7934017	E: Total Counter	*EGB	Displays the total number of sheets when
7934018	E: Color Counter	*EGB	detecting the toner end for the b / w mode or the full color mode. [0 to 9999999 / 0 / 1/step]
7934019	Near End	*EGB	Displays the toner near end record. [0 to 3 / 0 / 1/step]
7934020	Install Date	*EGB	Displays the date of the install the toner bottle.
7934021	Toner End Date	*EGB	Displays the date of the toner end.

7935	[PM Interval] Preventive Maintenance Interval (Sheets or Rotations, Unit)		
7935001	S: PCU	*EGB	Adjusts the interval (the number of sheets) of the PM setting. [0 to 255 / 50 / 1 K/step]
7935002	R: PCU	*EGB	Adjusts the interval (the rotations) of the PM setting. [0 to $100.00 / 54.26 / 0.01 \mathrm{Km} /$ step]
7935003	S: Trans. Belt	*EGB	[0 to 255 / $100 / 1 \mathrm{~K} /$ step]
7935004	R: Trans. Belt	*EGB	[0 to $500.00 / 108.52 / 0.01 \mathrm{Km} /$ step]
7935005	S: Fusing	*EGB	[0 to $255 / 100 / 1 \mathrm{~K} /$ step]
7935006	R: Fusing	*EGB	[0 to $200.00 / 103.79 / 0.01 \mathrm{Km} / \mathrm{step}$]

7936	[PM Count. Reset] Preventive Maintenance Counter Reset	
7936001	All	Resets the following SP counters. - SP3251-001 to -004 - SP3303-001 to -004 - SP3821-001 to -010 - SP7931-001 to -021 - SP7932-001 to -021 - SP7933-001 to -021 - SP7934-001 to -021 - SP9001-001 to -024 - SP9001-029 to -032 - SP9001-059 to -061 - SP9001-075 to -077 - SP9901-001, 002 - SP9914-005 to -006

SP8-XXX (Data Log 2)

The counters in Data Log 2 are commonly used in multiple machines. Data Log 2 includes the counters of the functions or units that are not supported by Model GP1a and P1b. The counters in Data Log 2 are cleared by SP5-801 (Memory Clear) or SP7-808 (Counter Reset).

Keys and abbreviations in Data Log 2

- Program-related keys and abbreviations

T: The grand total of the counters of all application programs
P: \quad The counter of the printer application program excluding the events related to the document server
O: The counter of other application programs including remote application programs

8001	[T: 1-0.01]	*CTL	Total jobs
8004	[P: 1-0-01]	*CTL	
	The number of times the application program starts a job [0~9999999/0/1]		

- The jobs interrupted by paper jams or some other errors are also counted.
- The jobs executed by SPs are not counted.

8021	[T: 1-0-03]	*CTL	Print job / Local storage; document server
8024	[P: 1-0.03]	*CTL	
8027	[0: 1-0-03]	*CTL	
	The number of times the application program stores data on the document server$\text { [0~9999999/ } 0 \text { / 1] }$		

- When images stored on the document server by a network application (including Palm 2), are printed with another application, the O : counter increments.

8031	[T: 1-0-04]	*CTL	Print job/ Designated application program
8034	[P: 1-0-04]	*CTL	
8037	[0: 1-0-04]	*CTL	
	The number of times the application program retrieves data from the document server$\text { [0~9999999/ } 0 \text { / 1] }$		

- When documents already stored on the document server are printed, the counter of the application program that executes the print job increases.

8061	[T: 1-0-07]	*CTL	Finish, post-print processing jobs
8064	[P: 1-0-07]	${ }^{*} \mathrm{CTL}$	
8067	[0: 1-0-07]	${ }^{*} \mathrm{CTL}$	
	The number of times the application program uses the finisher [0~9999999/ $0 / 1$]		
001	Sort	The number of times the application program starts the sort mode	
002	Stack	The number of times the application program starts the tack mode	
003	Staple	The number of times the application program starts the staple mode	
004	Booklet	The number of times the application program starts the booklet mode NOTE: The counter of the staple mode (003) can also increase.	
005	Z-Fold	The number of times the application program starts the Z-fold mode NOTE: The booklet mode is not included.	
006	Punch	The number of times the application program starts the punch mode NOTE: The counter of the printer application program (P:) can also increase.	
007	Other	(Reserved)	

8071	[T: 1-0-08]	*CTL	Jobs/ Pages	
8074	[P: 1-0-08]	*CTL		
8077	[0: 1-0-08]	*CTL		
	The number of jobs that try to output a specific number of pages [0~9999999/ 0 / 1]			
-001	1 Page		-008	21~50 Pages
-002	2 Pages		-009	51~100 Pages
-003	3 Pages		-010	101~300 Pages
-004	4 Pages		-011	301~500 Pages
-005	5 Pages		-012	501~700 Pages
-006	6~10 Pages		-013	701~1000 Pages
-007	11~20 Pages		-014	1001~ Pages

- The jobs interrupted by paper jams or some other errors are also counted.
- If a job is suspended and restarted later, the job is seen as one job.

8381	[T: 2-2-01]	*CTL	Total print pages
8384	[P: 2-2-01]	*CTL	
8387	[0: 2-2-01]	*CTL	
	The number of sheets that the application program tries to print (excluding the pages printed in the SP mode)$[0 \sim 9999999 / 0 / 1]$		

- The following pages are not counted as printed pages:
- Blank pages in a duplex printing job
- Blank pages inserted as document covers, chapter title sheets, and slip sheets
- Reports printed to confirm counts
- All reports done in the service mode (service summaries, engine maintenance reports, etc.)
- Test prints for machine image adjustment
- Error notification reports
- Partially printed pages as the result of a printer jam

| 8391 | [T: 2-2-02] |
| :--- | :--- | :--- | :--- |

8411	[T: 2-2-04]		
	Prints/Duplex	*CTL	The number of sheets used in duplex printing [0~9999999/0 / 1]

- The counter increases by +1 when both sides (front/back) are printed. The counter does not increase when one of the two sides is not printed (e.g., the last page of the documents that have three pages, five pages, seven pages, and so on).

8421	[T: 2-2-05]	*CTL	Print pages/ Duplex printing combine
8424	[P: 2-2-05]	*CTL	
8427	[0: 2-2-05]	*CTL	
	The number of sheets used in binding and combining [0~9999999/ 0 / 1]		
001	Simplex> Duplex	*CTL	
004	Simplex Combine	*CTL	
005	Duplex Combine	*CTL	
006	2>	*CTL	2 pages on 1 side (2-Up)
007	4>	*CTL	4 pages on 1 side (4-Up)
008	6>	*CTL	6 pages on 1 side (6-Up)
009	8>	*CTL	8 pages on 1 side (8-Up)
010	9>	*CTL	9 pages on 1 side (9-Up)
011	16>	*CTL	16 pages on 1 side (16-Up)
012	Booklet	*CTL	
013	Magazine	*CTL	

- These counters are useful for the users who want to know how much paper they have saved.
- Partially printed sheets are also counted as 1 page (e.g, the last page in the 4-Up mode is only partially printed when the documents have 5,6 , or 7 pages, 9,10 , or 11 pages, 13, 14, or 15 pages, and so on.).
- Here is a summary of how the counters work in the booklet and magazine modes.

Booklet		Magazine	
Original Pages	Count	Original Pages	Count
1	1	1	1
2	2	2	2
3	2	3	2
4	2	4	2
5	3	5	4
6	4	6	4
7	4	7	4
8	4	8	4

8431	[T: 2-2-06]	${ }^{*} \mathrm{CTL}$	Print pages/ Image editing performed on the original with the copier GUI
8434	[P: 2-2-06]	${ }^{*} \mathrm{CTL}$	
8437	[0: 2-2-06]	${ }^{*} \mathrm{CTL}$	
	The number of pages that the application program handles in a specific way [0~9999999/ $0 / 1$]		
001	Cover/Slip Sheet	*CTL	The number of cover sheets or slip sheets inserted NOTE: A duplex-printed cover is counted as two.
002	Series/Book	${ }^{*} \mathrm{CTL}$	The number of pages printed in series (one side) or in the booklet mode
003	User Stamp	${ }^{*} \mathrm{CTL}$	The number of pages where stamps were applied (including page numbering and date stamping)

8441	[T: 2-2-07]	*CTL	Print pages/ Paper size	
8444	[P: 2-2-07]	*CTL		
8447	[0: 2-2-07]	*CTL		
	The number of sheets of a specific paper size that the application program uses [0~9999999/0/1]			
001	A3		007	LG
002	A4		008	LT
003	A5		009	HLT
004	B4		010	Full Bleed
005	B5		254	Other (Standard)
006	DLT		255	Other (Custom)

- These counters do not distinguish between LEF and SEF.

8451	[2-2-08]	*CTL	Print pages/ Paper tray
	The number of sheets fed from a specific tray [0~9999999/ $0 / 1$]		
8451001	Bypass Tray	*CTL	By-pass Tray
8451002	Tray 1	*CTL	Printer
8451003	Tray 2	*CTL	Paper Tray Unit/LCT (Optional)
8451004	Tray 3	*CTL	Paper Tray Unit (Optional)
8451005	Tray 4	*CTL	(Not used)
8451006	Tray 5	*CTL	(Not used)
8451007	Tray 6	*CTL	(Not used)
8451008	Tray 7	*CTL	(Not used)
8451009	Tray 8	*CTL	(Not used)
8451010	Tray 9	*CTL	(Not used)

8461	[T: 2-2-09]	*CTL	Print pages/ Paper type	
8464	[P: 2-2-09]	*CTL		
	The number of sheets of specific paper types [0~9999999/ $0 / 1$]			
001	Normal		005	Normal (Back)
002	Recycled		006	Thick (Back)
003	Special		007	OHP
004	Thick		008	Other

- These counters increase when the paper is output. On the other hand, the PM counter increases (to measure the service life of each feed roller) when the paper is fed.
- Blank sheets (covers, chapter covers, slip sheets) are also counted.
- During duplex printing, a sheet printed on two sides and a sheet printed on one side are both counted as 1.

8471	$[2-2-10]$	${ }^{*}$ CTL	Print pages/ Magnification
	The number of pages magnified or reduced $[0 \sim 9999999 / 0 / 1]$		
8471001	$\sim 49 \%$	8471004	$101 \% \sim 200 \%$
8471002	$50 \% \sim 99 \%$	8471005	$201 \% \sim$
8471003	100%		

- Some application programs (on the computer) can specify the magnification setting of the printer driver (e.g., MS Excel). In a case like this, SP8-471 recognizes the setting and increases the corresponding counter. Other application programs can magnify or reduce the print images on their own. In a case like this, SP8-471 does not recognize the magnification setting of the application programs and increase the counter of 100%.
- Magnification adjustment conducted on the document server is not counted.
- Blank cover sheets and slip sheets are regarded as 100%.

8481	$[$ T: 2-2-11]	${ }^{*}$ CTL	Print pages/ Toner save
8484	$[$ [P: 2-2-11]	*CTL	
	The number of pages printed with the toner save feature activated $[0 \sim 9999999 / 0 / 1]$		

- These counters display the same result.

8501	$[\mathrm{T:} \mathrm{2-2-12]}$	${ }^{*} \mathrm{CTL}$	Print pages/ Color mode
$\mathbf{8 5 0 4}$	$[$ P: 2-2-13]	${ }^{*} \mathrm{CTL}$	
	The number of pages printed in a specific color mode $[0 \sim 9999999 / 0 / 1]$		
001	B/W	003	Full Color
002	Single Color		

| 8511 | $[$ T: 2-2-14] | ${ }^{*}$ CTL | Print pages/ Emulation |
| :--- | :--- | ---: | ---: | ---: |
| $\mathbf{8 5 1 4}$ | $[$ P: 2-2-14] | ${ }^{*}$ CTL | |

- These counters display the same result.

8521	[T: 2-2-15]	*CTL	Print pages/ Finish post-print processing	
8524	[P: 2-2-15]	*CTL		
	The number of pages processed by the finisher [0~9999999/0/1]			
001	Sort		005	Z-Fold
002	Stack		006	Punch
003	Staple		007	Other
004	Booklet			

- Even if the pages are too many for the finisher to staple, all pages are counted (including unstapled pages).
- The counter of stapling (003) increases by +1 when the paper is transported from the printer to the tray of the finisher. Even if a paper jam occurs on this path, the counter (003) increases. If the same job is retried, the counter (003) increases once again.

8531	$[$ [T: 2-2-16]	${ }^{\text {CCTL }}$	Staples
	The number of staples $[0 \sim 9999999 / 0 / 1]$		

8581	[T: 2-2-23]	*CTL	Total	counter
	The number of outputs in a specific color mode [0~9999999/ $0 / 1$]			
001	Total		010	Total: Color
002	Total: Full Colo		011	Total: B/W
003	B\&W/Single Color		012	Full Colour: A3
004	Development: CMY		013	Full Colour: ~B4
005	Development: K		014	Full Colour Prin
008	Print: Color		015	Mono Colour Prin
009	Print: B/W			

8584	[P: 2-2-23]	${ }^{*}$ CTL	Print counter	
	The number of outputs in a specific color mode [0~9999999/ 0 / 1]			
8584001	B/W	8584003	Full Color	
8584002	Single Color			

8591	$[$ [O: 2-2-23]	${ }^{*}$ CTL	Other counter
	The number of A3/DLT, duplex printing, or staples [0~9999999/ 0 / 1]		
8591001	A3/DLT	8591001	Staple
8591001	Duplex		

- Note that these counters are not for the printer application program.

8771	$[3-0-01]$	*CTL	Development counter
	The number of rotations of the development rollers [0~9999999/0 / 1]		
8771001	Total	8771004	M
8771002	K	8771005	C
8771003	Y		

8781	[TonerBotolinfo] Toner Bottle Information		
8781001	Last [BK]	*EGB	The number of toner bottles (bottles) already replaced$\text { [0~9999999/ } 0 \text { / 1] }$
8781002	Last [Y]	*EGB	
8781003	Last [M]	*EGB	
8781004	Last [C]	*EGB	

8801	[3-0-05]	*CTL	Toner remain
8801001	K	*CTL	The percentage of the remaining toner [0~100/ $0 / 1$]
8801001	Y	${ }^{*} \mathrm{CTL}$	
8801001	M	*CTL	
8801001	C	*CTL	

8831	[Coverage] Coverage Display (Average, [Color])		
8831001	Average: $[\mathrm{K}]$	"EGB	The average coverage [0~100/ 0 / 0.01]
8831002	Average: $[\mathrm{Y}]$	"EGB	"EGB
8831003	Average: $[\mathrm{M}]$	"EGB	
8831004	Average: $[\mathrm{C}]$		

- SP8-831 displays the image coverage ratio for each color of the last output. This SP mode displays the coverage ratio of the output, i.e. the ratio of the total pixel area of the image data to the total printable area on the paper. Note that this value is not directly proportional to the amount of toner consumed, although of course it is one factor that affects this amount. The other major factors involved include: the type, total image area and image density of the original, toner concentration and developer potential.

8841	[Coverage] Coverage Display (Last Page, [Color]) L: Last Page		
8841001	Last: [K]	*EGB	The coverage of the latest print$[0 \sim 100 / 0 / 0.01]$
8841002	Last: [Y]	*EGB	
8841003	Last: [M]	*EGB	
8841004	Last: [C]	*EGB	

8851	[Coverage: 0-10\%] Coverage Display (Sheets, [Color]) S: Sheets		
8851001	S: [K]	*EGB	[0 to 9999999 / 0 / 1 sheet/step]
8851002	S: [Y]	*EGB	
8851003	S: [M]	*EGB	
8851004	S: [C]	*EGB	

8861	[Coverage: 11-20\%] Coverage Display (Sheets, [Color]) S: Sheets		
8871	[Coverage: 21-30\%] Coverage Display (Sheets, [Color]) S: Sheets		
8881	[Coverage: 31\%-] Coverage Display (Sheets, [Color]) S: Sheets		
001	S: $[\mathrm{K}]$	*EGB	The number of scanned sheets of a specific coverage ratio$\text { [0~9999999/ } 0 \text { / 1] }$
002	S: [Y]	*EGB	
003	S: [M]	*EGB	
004	S: [C]	*EGB	

- For example, SP8-851-001 displays the number of scanned sheets whose blackcoverage ratio is 0 percent through 10 percent. SP8-881-004 displays the number of scanned sheets whose cyan-coverage ratio is 31 percent or higher.

8891	[PM Count. Disp] PM Counter Display (Sheets, [Color]) S: Sheets		
8891001	S: Toner [BK]	*EGB	The number of sheets output by the scanner application program$\text { [0~9999999/ } 0 \text { / 1] }$
8891002	S: Toner [Y]	*EGB	
8891003	S : Toner [M]	*EGB	
8891004	S: Toner [C]	*EGB	

8901	[PMCounterPREV1] Previous1 PM Counter Display		
8901001	S: Toner [BK]	*EGB	The number of sheets output by the scanner application program with the previously replaced units$\text { [0~9999999/ } 0 \text { / 1] }$
8901002	S : Toner [Y]	*EGB	
8901003	S : Toner [M]	*EGB	
8901004	S: Toner [C]	*EGB	

8911	[PMCounterPREV2] Previous2 PM Counter Display		
8911001	S: Toner [BK]	*EGB	The number of sheets output by the scanner application program with the units that was replaced before the previous unit.$\text { [0~9999999/ } 0 \text { / 1] }$
8911002	S: Toner [Y]	*EGB	
8911003	S: Toner [M]	*EGB	
8911004	S : Toner [C]	*EGB	

8941	[3-6-01]	*CTL	Machine status
	The amount of time the machine spends in a specific mode[0~9999999/0 / 1]		
8941001	Operation Time	*CTL	The engine is operating. The counter does not include the time when the data is being saved in the HDD (while engine is not operating).
8941002	Standby Time	*CTL	The engine is not operating. The counter includes the time when the data is being saved in the HDD. The counter does not include the time when the machine is n the Energy Saver Mode, the Low Power Mode, or the Off Mode.
8941003	Energy Save Time	*CTL	The machine is in the Energy Saver Mode. The counter includes the time when the background printing is being executed.
8941004	Low Power Time	*CTL	The machine is in the Low Power Mode. The counter includes the time when the engine is on in the Energy Saver Mode. The counter also includes the time when the background printing is being executed.
8941005	Off Mode Time	*CTL	The machine is in the Off Mode. The counter includes the time when the background printing is being executed. The counter does not include the time when the main power switch is off.
8941006	Down Time/SC	${ }^{*} \mathrm{CTL}$	The total downtime caused by SC codes
8941007	Down Time/PrtJam	*CTL	The total downtime caused by paper jams
8941008	Down Time/OrgJam	${ }^{*} \mathrm{CTL}$	The total downtime caused by original jams
8941009	Down Time/TonEnd	*CTL	The total downtime caused by toner ends

SP9-XXX

9001			
	[Shutter Motor]		
9001064	Open Time	*EGB	Adjusts the open shutter time. [0 to $990 / 210 / 10 \mathrm{msec} / \mathrm{step}$]
9001065	Close Time	*EGB	Adjusts the closed shutter time. [0 to $990 / 100 / 10 \mathrm{msec} /$ step]
	[Filming Remov.] Filming Removal (R: Rotation)		
9001066	R: OPC: Toner	*EGB	[0 to 255 / 1 / 1/step]
9001067	Toner Dev. Bias	*EGB	[0 to $800 / 50 / 1 \mathrm{~V} /$ step]
9001068	R: OPC: No-Toner	*EGB	[0 to $255 / 30 / 1 /$ step]
	[Filming Remov.] Filming Removal		
9001069	Filming Coun.: [K]	*EGB	Displays the counter that counts the number of sheets in black and white printing mode from previous filming removal. [0 to 65535 / $0 / 1 /$ step]
9001074	Interval: [k]	*EGB	Adjusts the threshold for filming removal. This SP is executed even the print job is proceeding. [0 to 65535 / 150 / 1/step]
9001075	Counter: [FC]	*EGB	Displays the counter that counts the number of sheets in full color printing mode from previous filming removal. [0 to 65535 / 0 / 1/step]
9001076	Interval: [FC]	*EGB	Adjusts the threshold for filming removal. This SP is executed even the print job is proceeding. [0 to 65535 / 150 / 1/step]
	[Vb: LS] Vb at Low Process Speed		
9001083	Vb Shift	*EGB	[0 to 65535 / 10 / 1/step]
	[Vc: LS] Vc at Low Process Speed		
9001084	Vc Shift	*EGB	[0 to 65535 / 0 / 1/step]
	[Filming Remov.] Filming Removal: Job end		
9001099	Interval (E): [K]	*EGB	Displays the counter that counts the number of sheets in black and white printing mode from previous filming removal. [0 to 65535 / $0 / 1 /$ step]
9001100	Interval (E): [FC]	*EGB	Displays the counter that counts the number of sheets in full color printing mode from previous filming removal. [0 to 65535 / 0 / 1/step]
9001101	Interval: [end]	*EGB	Adjusts the threshold for job end filming removal. This SP is not executed until the print job has ended. [0 to 65535 / 75 / 1/step]

9003	[Time Adjust.] Time Adjustment		
	Adjusts the current year, month, date, hour, and minute.		
9003001	Year	-	$[0$ to $99 / 0 / 1 \mathrm{y} /$ step $]$
9003002	Month	-	$[1$ to $12 / \mathbf{1} / 1 \mathrm{~m} /$ step $]$

9003003	Date	-	$[1$ to $31 / 1 / 1$ d/step $]$
9003004	Hour	-	$[0$ to $23 / 0 / 1$ hour/step $]$
9003005	Minute	-	$[0$ to $59 / 0 / 1 \mathrm{~m} /$ step $]$

9801	[DCS Debug] DCS Debug Information		
9801001	Common	${ }^{*} \mathrm{CTL}$	DFU
9801002	IFC	${ }^{*} \mathrm{CTL}$	
9801003	SMM	${ }^{*} \mathrm{CTL}$	
9801004	SJM/ RJM	${ }^{*} \mathrm{CTL}$	
9801005	DSS	${ }^{*} \mathrm{CTL}$	
9801006	MRS	${ }^{*} \mathrm{CTL}$	
9801007	NAS	*CTL	

9903	[Gamma] Gamma Table (Process Speed, [Color]) RS: Regular Speed, LS: Low Speed		
	Adjusts the gamma table lists for each mode.		
9903003	RS: [K] 3	*EGB	[0 to $31 / 19$ / 1/step]
9903006	LS: [K] 3	*EGB	[0 to 31/12 / 1/step]
9903009	RS: [M] 3	*EGB	[0 to 31/19 / 1/step]
9903012	LS: [M] 3	*EGB	[0 to $31 / 12 / 1 /$ step]
9903015	RS: [C] 3	*EGB	[0 to $31 / 19$ / 1/step]
9903018	LS: [C] 3	*EGB	[0 to $31 / 12$ / 1/step]
9903021	RS: [Y] 3	*EGB	[0 to $31 / 19 / 1 /$ step]
9903024	LS: [Y] 3	*EGB	[0 to $31 / 12 / 1 /$ step]
9903028	OHP: K3	*EGB	[0 to $31 / 7 / 1 /$ step]
9903031	OHP: M3	*EGB	[0 to 31/7/1/step]
9903034	OHP: C3	*EGB	[0 to $31 / 7 / 1 /$ step]
9903037	OHP: Y3	*EGB	[0 to 31/7/1/step]

9906	[Vpp] (Environment)		
	Adjusts the Vpp value for each environment.		
9906001	Vpp 1: LL	*EGB	[0 to 3000 / 1950 / $1 \mathrm{~V} /$ step]
9906002	Vpp 2: LL	*EGB	[0 to 3000 / 2200 / 1 V/step]
9906003	Vpp 1: ML	*EGB	[0 to 3000 / 1780 / 1 V/step]
9906004	Vpp 2: ML	*EGB	[0 to 3000 / 2030 / 1 V/step]
9906005	Vpp 1: MM	*EGB	[0 to 3000 / 1770 / 1 V/step]
9906006	Vpp 2: MM	*EGB	[0 to 3000 / 2020 / 1 V/step]
9906007	Vpp 1: MH	*EGB	[0 to 3000 / 1810 / $1 \mathrm{~V} /$ step]
9906008	Vpp 2: MH	*EGB	[0 to 3000 / 2060 / 1 V/step]
9906009	Vpp 1: HH	*EGB	[0 to 3000 / 1770 / 1 V/step]
9906010	Vpp 2: HH	*EGB	[0 to 3000 / 2020 / $1 \mathrm{~V} /$ step]

ENGINE SERVICE MODE

9908	[Background Po.] Background potential		
9908001	Upper Limit	*EGB	Adjusts the upper limit vale of background potential. [0 to $300 / \mathbf{1 3 0} / 1 /$ step]
9908002	Lower Limit	*EGB	Adjusts the lower limit vale of background potential. [0 to $300 / \mathbf{1 3 0} / 1 /$ step]

9910	[Charge Output]		
9910001	Charge Output	-	Performs the charge output.
	[Toner Fill Up]		
9910003	[All]	-	Fills up the toner for all colors.
	[TC Initial] Toner Cartridge Initial		
9910004	[AII]	-	Initializes the all toner bottles for each mode.
9910005	[K]	-	
9910006	[M]	-	
9910007	[C]	-	
9910008	[Y]	-	
	[Toner Fill Up]		
9910010	[K]	-	Fills up the toner for each color.
9910011	[M]	-	
9910012	[C]	-	
9910013	[Y]	-	
9910020	Upper Limit	*EGB	Adjusts the upper limit for filling up the toner. If the toner is detected for [N$]$ times, the toner fill up mode ends. [N] can be adjusted with this SP9910-020. [1 to $5 / 3 / 1 /$ step]

9911	[TC Initial] Toner Cartridge Initial			
9911001	Maximum Repeat	*EGB	$[1$ to $30 / 15 / 1 /$ step $]]$	
9911002	Threshold	*EGB	$[1$ to $100 / \mathbf{2 0} / 0.01 \mathrm{~V} /$ step $]$	

9912	[ST Sensor]	-	Detects ST sensor output.
9912001	read	-	

9914	[Waste Toner NF] Waste Toner Near Full		
9914001	Print 1	*EGB	Adjusts the number of sheets that can be printed after the waste toner full was detected. [0 to $5000 / \mathbf{1 2 5 0} / 1 /$ step]
9914002	Print 2	*EGB	Adjusts the number of sheets that can be printed. [0 to $1000 / \mathbf{2 5 0} / 1 /$ step]
9914003	Print 3	*EGB	$[0$ to $1000 / \mathbf{1 2 5 / 1 / \text { step }]}$
9914004	Print 4	*EGB	$[0$ to $5000 / \mathbf{2 5 0 0 / 1 / \text { step }]}$
9914005	Detection Times	*EGB	$[0$ to $50 / \mathbf{0} / 1 /$ step]
9914006	Near Full Count.	*EGB	$[0$ to $100000 / \mathbf{0} / 1 /$ step]

9918	[LD Pow. Change] LDB Power Change	
9918001		*EGB

5.2.4 INPUT CHECK TABLE

When entering the Input Check mode, 8 digits display the result for a section. Each digit corresponds to a different device as shown in the table.

Bit No.	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Result	0 or 1							

$\begin{array}{\|\|l\|l} \hline \text { SP5-803 } \\ -X X X \end{array}$	Bit	Description	Reading	
			0	1
001	Input Check 1			
	DFU			
002	Input Check 2			
	0	Color OPC Motor	Locked	Not locked
	1	Black OPC/ Development Motor	Locked	Not locked
	2	Color Development Motor	Locked	Not locked
	3	Paper Feed/ Fusing Motor	Locked	Not locked
	4	Registration Sensor	Paper detected	Paper not detected
	5	Paper Exit Sensor	Paper not detected	Paper detected
	6	Interlock Switch 5V	Open	Close
	7	Top Cover Sensor	Close	Open
003	Input Check 3			
	DFU			
004	Input Check 4			
	0-3	DFU	-	-
	4	Polygon Motor Fan	Locked	Not locked
	5	Color Drum Gear Position Sensor	Activated (Actuator inside sensor)	Deactivated
	6	Black Drum Gear Position Sensor	Activated (Actuator inside sensor)	Deactivated
	7 Interlock Switch 24V		Opened	Closed
005	Input Check 5			
	DFU			
006	Input Check 6			
	DFU			
011	Input Check 11			
	0	Paper Size Sensor 1	Pushed	Not Pushed
	1	Paper Size Sensor 2	Pushed	Not Pushed
	2	Paper Size Sensor 3	Pushed	Not Pushed
	3	Paper Size Sensor 4	Pushed	Not Pushed
	4	Paper Width Sensor	Pushed	Not Pushed
	5	Paper Height Sensor 1	Pushed	Not Pushed
	6	Paper Height Sensor 2	Pushed	Not Pushed
	7	Paper End Sensor	Not End	End

$\begin{gathered} \hline \text { SP5-803 } \\ \text {-XXX } \end{gathered}$	Bit	Description	Reading	
			0	1
012	Input Check 12			
	0	Transfer Belt Contact Sensor	Not Contact	Contact
	1	Transfer Roller Contact Sensor	Not Contact	Contact
	2	Duplex Jam Sensor 1	Paper detected	Paper not detected
	3	Duplex Jam Sensor 1	Paper detected	Paper not detected
	4	Fusing New Unit Sensor	New	Old
	5	Fusing Unit Set Sensor P1	Set	Not Set
	6	Fusing Unit Set Sensor P2	Set	Not Set
	7	Not Used	-	-
013	Input Check 13			
	0	Paper Overflow Sensor	Overflow	Not overflow
	1	Fusing Exit Sensor	Paper detected	Paper not detected
	2	Inverter Sensor	Paper detected	Paper not detected
	3	Fusing Unit Fan	Locked	Not locked
	4	PSU Fan	Locked	Not locked
	5	Drive Unit Fan	Locked	Not locked
	6	Paper Exit Fan	Locked	Not locked
	7	DFU		
014	Input Check 14			
	0	Toner End Sensor [Y]	End	Not end
	1	Toner End Sensor [C]	End	Not end
	2	Toner End Sensor [M]	End	Not end
	3	Toner End Sensor [K]	End	Not end
	4	New PCU Detection [Y]	New	Old
	5	New PCU Detection [C]	New	Old
	6	New PCU Detection [M]	New	Old
	7	New PCU Detection [K]	New	Old
015	Input Check 15			
	0	LDU Shutter Sensor	Close	Open
	1	Left Cover Sensor	Close	Open
	2	Waste Toner Overflow Sensor	Not overflow	Overflow
	3	By-pass Paper Detection Sensor	Paper detected	Paper not detected
	4	By-pass Paper Size Sensor 1	Pushed	Not Pushed
	5	By-pass Paper Size Sensor 2	Pushed	Not Pushed
	6	By-pass Paper Size Sensor 3	Pushed	Not Pushed
	7	By-pass Paper Size Sensor 4	Pushed	Not Pushed
016	Input Check 16			
	0-2	Not used	-	-
	3	Fusing Entrance Sensor	Paper detected	Paper not detected
	4	Transfer Belt New Unit Detection	New	Old
	5-7	Not used	-	-
017	Input Check 17			
	0-4	DFU	-	-
	5	Front Door Sensor	Close	Open
	6-7	DFU	-	-

$\begin{gathered} \hline \text { SP5-803 } \\ \text {-XXX } \end{gathered}$	Bit	Description	Reading	
			0	1
020	Input Check 20			
	0	Tray 2 Paper Near End Sensor 1	Pushed	Not Pushed
	1	Tray 2 Paper Near End Sensor 2	Pushed	Not Pushed
	2	Tray 2 Paper End Sensor	End	Not end
	3	Tray 2 Paper Feed Sensor	Paper detected	Paper not detected
	4	Tray 2 Paper Size 4	Pushed	Not Pushed
	5	Tray 2 Paper Size 3	Pushed	Not Pushed
	6	Tray 2 Paper Size 2	Pushed	Not Pushed
	7	Tray 2 Paper Size 1	Pushed	Not Pushed
021	Input Check 21			
	0	Tray 3 Paper Near End Sensor 1	Pushed	Not Pushed
	1	Tray 3 Paper Near End Sensor 2	Pushed	Not Pushed
	2	Tray 3 Paper End Sensor	End	Not end
	3	Tray 3 Paper Feed Sensor	Paper detected	Paper not detected
	4	Tray 3 Paper Size 4	Pushed	Not Pushed
	5	Tray 3 Paper Size 3	Pushed	Not Pushed
	6	Tray 3 Paper Size 2	Pushed	Not Pushed
	7	Tray 3 Paper Size 1	Pushed	Not Pushed

5.2.5 OUTPUT CHECK TABLE

5804	[Output Check]	
5804001	Fusing Fan H	Fusing Unit Fan: High speed
5804002	Fusing Fan L	Fusing Unit Fan: Low speed
5804003	PSU Fan	PSU Fan
5804005	Polygon Fan	Polygon Motor Fan
5804007	PSU Inner Fan	PSU Inner Fan
5804008	Drive Fan	Drive Unit Fan
5804009	Exit Paper Fan H	Paper Exit Fan: High speed
5804010	Polyg. Mir. Motor	Polygon Mirror Motor
5804011	Exit Paper Fan L	Paper Exit Fan: Low speed
5804012	Duplex Fan	Duplex Motor
5804020	Paper Feed Motor	Paper Feed/ Fusing Motor
5804022	Mono. PCU Motor	Black OPC/ Development Motor
5804024	Color PCU Motor	Color OPC Motor
5804026	Color Dev. Motor	Color Development Motor
5804030	[Y] Toner Motor	Toner Supply Motor [Y]
5804031	[C] Toner Motor	Toner Supply Motor [C]
5804032	[M] Toner Motor	Toner Supply Motor [M]
5804033	[K] Toner Motor	Toner Supply Motor [K]
5804034	T. Belt Contact M	Transfer Belt Contact Motor
5804035	T. Roll 2 Contact M	Transfer Roller Contact Motor
5804036	LDU Shutter Motor	LDU Shutter Motor
5804040	Trans. Belt Motor	Transfer Belt Unit Motor
5804042	Duplex In Motor	Inverter Motor
5804044	Duplex Exit Motor	Duplex Motor
5804060	Paper Feed Clutch	Paper Feed Clutch

5804061	Relay Clutch	Relay Transport Clutch
5804062	Regist. Clutch	Registration Clutch
5804063	Develop. Clutch	Development Clutch
5804064	By-pass Solenoid	By-pass Solenoid
5804065	Duplex Solenoid	Junction Gate Solenoid
5804100	[Y]: Charge DC	Charge Roller DC: Yellow PCU
5804102	[C]: Charge DC	Charge Roller DC: Cyan PCU
5804104	[M]: Charge DC	Charge Roller DC: Magenta PCU
5804106	[K]: Charge DC	Charge Roller DC: Black PCU
5804110	[Y]: Charge AC	Charge Roller AC: Yellow PCU
5804112	[C]: Charge AC	Charge Roller AC: Cyan PCU
5804114	[M]: Charge AC	Charge Roller AC: Magenta PCU
5804116	[K]: Charge AC	Charge Roller AC: Black PCU
5804118	Charge AC Trigger	Charge Roller AC Trigger
5804120	[Y]: Develop. DC	Development DC: Yellow
5804122	[C]: Develop. DC	Development DC: Cyan
5804124	[M]: Develop. DC	Development DC: Magenta
5804126	[K]: Develop. DC	Development DC: Black
5804130	[Y]: Transfer Belt	Transfer Belt Bias: Yellow
5804132	[C]: Transfer Belt	Transfer Belt Bias: Cyan
5804134	[M]: Transfer Belt	Transfer Belt Bias: Magenta
5804136	[K]: Transfer Belt	Transfer Belt Bias: Black
5804140	T. Roll 2 Posi.	Transfer Roller: Positive Voltage
5804142	T. Roll 2 Nega.	Transfer Roller: Negative Voltage
5804200	[Y]: TD. Sensor Vcnt	TD Sensor Vcnt: Yellow
5804201	[C]: TD. Sensor Vcnt	TD Sensor Vcnt: Cyan
5804202	[M]: TD. Sensor Vcnt	TD Sensor Vcnt: Magenta
5804203	[K]: TD. Sensor Vcnt	TD Sensor Vcnt: Black
5804204	ID. Sensor LED	ID Sensor LED
5804205	Toner End Sensor	Toner End Sensor
5804210	ID. Sensor Left	ID. Sensor Left
5804211	ID. Sensor Center	ID. Sensor Center
5804212	ID. Sensor Right	ID. Sensor Right
5804220	Color PCL	Color PCL
5804221	Mono. PCL	Monochrome PCL
5804230	PFU 1 Motor	Optional paper tray unit 1 Motor
5804231	PFU 1 Clutch	Optional paper tray unit 1 Clutch
5804240	PFU 2 Motor	Optional paper tray unit 2 Motor
5804241	PFU 2 Clutch	Optional paper tray unit 2 Clutch

5.3 FIRMWARE UPDATE

5.3.1 TYPE OF FIRMWARE

The table lists the programs used by Model G104.

	Type of firmware	Function	Location of firmware	Message displayed
1	Engine - Main	Printer engine control	EGB flash ROM	Engine
2	System	Printer system management	Controller flash ROM	Onboard Sys
3	Printer Application	Feature application	SD card	Opt SD1 Prn
	NIB	NIB management	SD card	Opt SD1 Prn
	Web System	Web service application	SD card	Opt SD1 Prn

5.3.2 PRECAUTIONS

Handling SD Cards

Observe the following precautions when handling SD cards:

- Turn off the main power switch before you insert or remove an SD card. Data in the SD card can be corrupted if you insert or remove an SD card while the main power switch is on.
- Do not turn off the main power switch during downloading.
- Keep SD cards in a safe location. Do not store SD cards in the following locations:
- Locations exposed to high temperature, high humidity, direct sunlight, or strong vibration
- Locations where there are effects from magnetic forces
- Do not bend or scratch SD cards.
- Do not drop SD cards or expose them to shock or vibration.

NOTE: For the arrangement of files in SD cards, see 5.3.3.

Upload or Download

In this section, "upload" and "download" have these meanings:

- Upload: To copy data from the printer to the SD card
- Download: To copy data from the SD card to the printer

Network Connection

Before you start, inform the user that they cannot use the printer during firmware update, and that they must disconnect the printer physically from the network. If a print job comes in during upload/download, it can cause problems with the firmware update.

5.3.3 FILE ARRANGEMENT

How the Program Works

The firmware-update program for this machine searches the folder romdata for necessary firmware. When you save the firmware on a SD card, create a folder named romdata. Do not create another folder named romdata in another folder.
NOTE: Do not make another firmware-update program folder in the folder romdata. Otherwise, it may cause a malfunction for the firmware updating. You should only have one firmware update program folder in the folder romdata.

The firmware program contains the file information. Before downloading the firmware from an SD card, the firmware-update program reads the file information. The firmware is downloaded only when the file information is correct.
NOTE: The file information can identify the firmware, but this information does not guarantee that the data is not corrupted.

Example

When you save the firmware, we recommend that you arrange folders and files as follows:

- In the folder romdata, make only one folder and use this folder for one model. Use the machine code as the name of this folder.
- When you save files other than firmware, make a new folder outside romdata. Save the files in this folder. Do not save any file outside the folders. (The diagram shows an example. Three folders, log, nvramdata, and prt, are outside romdata. These folders can store debug logs, NVRAM data, and captured files respectively.)

5.3.4 UPDATING

Procedure

Before beginning this procedure, print a configuration page.

1. Turn off the main power switch.
2. Disconnect the printer from the network (5.3.2).
3. Remove the slot cover from slot 3 ($\times 1$).

NOTE: Do not use the slot 2 . The slot 2 is for customer use.
4. Turn the SD card face to the rear side of the printer, and insert it into slot 3.
5. Slowly push the SD card into the slot until it clicks.
6. Make sure that the SD card is locked in place.

NOTE: To remove the SD card, push it in until it clicks, and release it slowly. The slot pushes out the SD card.
7. Turn on the main power switch.
8. Wait until a firmware name is shown on the display (about 1 minute).

NOTE: The firmware name is read from within the firmware. The firmware name will not change even if you change the file name on your PC.
9. If the necessary firmware name is shown on the display, go to the next step. To use a different firmware, push the up-arrow key or the down-arrow key to find the necessary firmware.
10. To select the firmware, push the enter key. Make sure that a star (*) is next to the firmware name.
11. If you update more than one firmware program at the same time, find each firmware and select each of them. Make sure a star is added to each firmware name.
12. To select "Up Date", push the up-arrow key or the down-arrow key.

NOTE: If the customer has used all of three slots, you will need an empty slot for this procedure. Ask the customer to temporarily remove one of the SD card in slot 3.
13. To start firmware update, push the enter key. While each firmware is downloaded, the underscores on the operation panel are replaced by stars.
14. Wait until the message "Updated" is shown.
15. Turn off the main power switch.
16. Remove the SD card from the slot.
17. Attach the slot cover (
18. Connect the printer to the network physically.
19. Turn on the main power switch.
20. Print the Configuration Page to check that the every firmware is correctly updated: Menu > List/Test Print > Config.P/Er.Log

Error Handling

An error code is shown if an error occurs during the download. Error codes have the letter "E" and a number. If an error occurs, the firmware has not correctly downloaded; see the error code table (5.3.6) and perform the necessary steps. After this, try to download the firmware again.

Power Failure

If firmware update is interrupted by power failure, the firmware has not correctly downloaded. In this case, machine operation is not guaranteed. You have to download the firmware again.

5.3.5 NVRAM DATA UPLOAD/DOWNLOAD

\triangle CAUTION
 Turn off the main power switch before you insert or remove an SD card.
 Make sure that the controller and the EGB are correctly connected.

Uploading NVRAM Data

Copy the data from the NVRAM to an SD card (referred to as "to upload NVRAM data" in this section) before you replace the NVRAM. If you cannot upload NVRAM data, manually input the necessary settings after you replace the NVRAM.

1. Start the SP mode.
2. Select SP5990-001 (ALL (Data List)).
3. Execute the SP.
4. See if the SMC Report is correctly
 output.
NOTE: You may need the SMC Report if the machine does not complete an NVRAM data upload or download (Downloading NVRAM Data) correctly.
5. Exit the SP mode.
6. Turn off the main power switch.
7. Insert an SD card into slot 3 .
8. Turn on the main power switch.
9. Enter the SP mode.
10. Select SP5824-001(NVRAM Upload).
11. Push the enter key. The upload starts.

- When uploading ends correctly, the following file is made:
- NVRAMIserial_number.NV where "NVRAM" is the folder name in the SD card and "serial_number. NV " is the file name with the extension ". NV ". The serial number of the printer is used as the file name. For example, if the serial number is G1040017, the file name is "G1040017.NV".

12. Exit the SP mode.
13. Turn off the main power switch.
14. Remove the SD card.
15. Mark the SD card with, for example, the machine code. You will need this SD card when you download NVRAM data (Downloading NVRAM Data).
NOTE: One SD card can store the NVRAM data from two or more machines.

Downloading NVRAM Data

Copy the data from the SD card to the NVRAM (referred to as "to download NVRAM data" in this section) after you replace the NVRAM. If you cannot download NVRAM data, manually input the necessary settings.

1. Make sure that the main power switch is off. If it is on, turn it off.
2. Make sure that you have the correct SD card that contains the necessary NVRAM data.
3. Insert the SD card into slot 3.
4. Turn on the main power switch.
5. Enter SP mode.
6. Select SP5825-001 (NVRAM Download).
7. Push the enter key. The download starts.

NOTE: The machine cannot execute the download if the file name in the SD card is different from the serial number of the printer (Uploading NVRAM Data).
8. Exit the SP mode.
9. Turn off the main power switch.
10. Remove the SD card.
11. Turn on the main power switch.
12. Check that the NVRAM data is correctly downloaded.

This procedure does not download the following data to the NVRAM:

- Total Count
- Serial Number

5.3.6 ERROR CODE TABLE

These error codes are used by more than one model. Some codes are not used by Model G104.

Code	Cause	Solution
20	Cannot map logical address	Make sure SD card inserted correctly, or use another SD card.
21	Cannot access memory	HDD connection incorrect or replace hard disks.
22	Cannot decompress compressed data	Incorrect ROM data on the SD card, or data is corrupted.
23	Error occurred when ROM update program started	Controller program abnormal. If the second attempt fails, replace controller board.
24	SD card access error	Make sure SD card inserted correctly, or use another SD card.
30	No HDD available for stamp data download	HDD connection incorrect or replace hard disks.
31	Data incorrect for continuous download	Insert the SD card with the remaining data required for the download, the re-start the procedure.
32	Data incorrect after download interrupted	Execute the recovery procedure for the intended module download, then repeat the installation procedure.
33	Incorrect SD card version	Incorrect ROM data on the SD card, or data is corrupted.
34	Module mismatch - Correct module is not on the SD card)	SD update data is incorrect. Acquire the correct data (Japan, Overseas, OEM, etc.) then install again.
35	Module mismatch - Module on SD card is not for this machine	SD update data is incorrect. The data on the SD card is for another machine. Acquire correct update data then install again.
36	Cannot write module - Cause other than E34, E35	SD update data is incorrect. The data on the SD card is for another machine. Acquire correct update data then install again.
40	Engine module download failed	Replace the update data for the module on the SD card and try again, or replace the EGB board.
42	Operation panel module download failed	Replace the uppate data for the module on the SD card and try again, or replace the LCDC.
43	Stamp data module download failed	Replace the update data for the module on the SD card and try again, or replace the hard disks.
44	Controller module download failed	Replace the update data for the module on the SD card and tray again, or replace controller board.
50	Electronic confirmation check failed is update data is incorrect. .he data on the SD card then install again. maine. Acquire correct update data	
		Sata

5.4 SD CARD APPLI MOVE

5.4.1 OVERVIEW

The service program "SD Card Appli Move" (SP5873) enables you to copy application programs from one SD card to another SD card.

There are two service SD card slots. Model G104 can use slot 3 to store application programs. Slot 3 is for maintenance work. Because of this, if the application programs are stored on two SD cards or more, (1) choose one SD card from these SD cards or (2) store all the application programs on one card.

Use extreme caution when using SD Card Appli Move:

1. The authentication data is transferred with the application program from one SD card to the other SD card. Authentication fails if you try to use the SD card after you copy the application program from this card to another SD card.
2. Do not use an SD card if it has been used for other work, for example, on a computer. Normal operation is not guaranteed when such an SD card is used.
3. Keep the SD card in a secure place (Note) after you copy the application program from one card to another card. This is because: (1) The SD card can be the only proof that the user is licensed to use the application program. (2) You may need to check the SD card and its data to solve a problem in the future.
NOTE: Refer to "Keeping the SD card" at the end of this chapter.

5.4.2 MOVE EXEC

The menu "Move Exec" (SP5873-001) enables you to copy application programs from the original SD card to another SD card. The application programs are copied as follows:

- From slot 3 to slot 2 when SD cards are in slots 2 or in all slots
Note that the authentication data is also copied with the application program (5.4.1).

1. Turn off the main power switch.
2. Make sure that an SD card is in slot 2. The application program is copied to the SD card in slot 2.
3. Insert the SD card (having stored the application program) to slot 3 . The application program is copied from this SD card.
4. Turn on the main power switch.
5. Start the SP mode.
6. Select SP5873-001 "Move Exec."
7. Follow the messages displayed on the operation panel.
8. Exit the SP mode.
9. Turn off the main power switch.
10. Remove the SD card from slot 3.
11. Turn on the main power switch.
12. Check that the application programs run normally.

5.4.3 UNDO EXEC

The menu "Undo Exec" (SP5873-002) enables you to copy back application programs from an SD card to the original SD card. You can use this program when, for example, you have mistakenly copied some programs by using Move Exec (SP5873-001). The application programs are copied as follows:

- From slot 2 to slot 3 when SD cards are in slots 2 or in all slots
Note that the authentication data is also copied with the application program (5.4.1).

1. Turn off the main power switch.
2. Insert the original SD card in slot 3 . The application program is copied back to this card.
3. Make sure that the SD card (having stored the application program) is in slot 2. The application program is copied back from this SD card.
4. Turn on the main power switch.
5. Enter SP mode.
6. Select SP5873-002 "Undo Exec."
7. Follow the messages displayed on the operation panel.
8. Exit SP mode.
9. Turn off the main power switch.
10. Remove the SD card from slot 3.
11. Turn on the main power switch.
12. Check that the application programs run normally.

Keeping the SD card

After moving exe, the original SD card must be kept in a secure place. Keep the SD card in the area [A] as the drawing shows and fasten it with a tape.

DETAILED SECTION DESCRIPTIONS

6. DETAILED SECTION DESCRIPTIONS

6.1 OVERVIEW

6.1.1 COMPONENT LAYOUT

1. Toner bottle [Y]
2. Toner bottle [C]
3. Toner bottle [M]
4. Toner bottle $[K]$
5. Transfer Belt Unit
6. Fusing Unit
7. Duplex Unit
8. ID sensor
9. By-pass Feed Table
10. Transfer roller
11. PCU (Photo Conductor Unit)
12. Development Unit (x4)
13. Standard tray
14. PSU (Power Supply Unit)
15. Polygon Mirror Motor
16. LDU
17. Transfer Belt Cleaning Unit

OVERVIEW

6.1.2 PAPER PATH

[A]: Duplex Unit
[B]: By-pass Feed Table
[C]: Optional 1 Tray Paper Feed Unit, 2 Tray Paper Feed Unit
[D]: Standard tray
[E]: Standard Paper Exit Tray (Internal Tray)

6.1.3 DRIVE LAYOUT

1. Black OPC/ Development Motor:

This controls the black OPC and development unit for black.
2. Color OPC Motor:

This controls the OPCs for magenta, cyan, and yellow.
3. Color Development Motor:

This controls the color development units (magenta/cyan/yellow).
4. Paper Feed/ Fusing Motor:

This controls the paper feed mechanisms (tray 1/by-pass tray), fusing unit, paper, registration roller, transport relay roller and paper exit roller.
5. Transfer Belt Unit Motor:

This controls the transfer belt unit and the transfer roller.
6. Duplex Motor:

This controls the duplex exit, relay and exit rollers.
7. Inverter Motor:

This controls the inverter roller.

6.1.4 BOARD STRUCTURE

The EGB (Engine Board) controls all of the machine functions and the handshake with the CTL (Controller). The IOB (In/Out Board) controls input/output, drivers and input/output -connections. The IOB is a part of the EGB expansion board.
Only two of the optional interface boards (IEEE1284, IEEE1394, IEEE802.11b, and Bluetooth) can be installed.

The controller connects to the EGB through the PCI Bus (Peripheral Component Interconnect Bus).

Descriptions

1. EGB (Engine Board):

This controls the Engine, the controller interface, image processing, MUSIC (Mirror Unit for Skew and Interval Correction), and input/output. MUSIC is also called Automatic Line Position Adjustment).
2. IOB (Input/Output Board):

This controls input/output, and the interfaces with the optional units, and the operation panel.
3. Controller:

The controller board controls these functions:

- SD cards (Boot)
- IEEE802.11b
- SD cards (Option)
- Bluetooth
- Memory DIMM
- NVRAM
- IEEE1284
- HDD
- IEEE1394

4. LD Drive Board:

This is the laser diode drive circuit board.
5. IEEE1394 Interface (Option):

This lets computers connect to this printer with an IEEE1394 interface.
6. HDD Unit (Option):

The HDD unit stores the data for these items.

- Additional software fonts
- Collation
- Locked print
- Sample print
- Downloaded forms for form overlay

7. Memory DIMM (Standard: 64MB DRAM, Option: 64/128/256MB DRAM):

This is for more printer processing memory, and is also used for collation and for soft fonts.
8. Operation Panel Board:

Controls the display panel, the LED, and the keypad.
9. IEEE1284 Interface (Option):

This is a parallel printer port.
10. USB:

Lets you connect the printer to a computer.
11. Bluetooth (Option):

Lets you connect the printer to a computer with a wireless connection.
12. IEEE802.11b wireless LAN (Option):

Lets you connect the printer to a computer with a wireless connection.

OVERVIEW

6.1.5 PRINTING PROCESS

This machine uses four PCUs, four development units, and four laser beams for color printing. Each PCU contains a drum, charge roller, cleaning brush, and blade. The toner image on each drum is transferred to the transfer belt. All four color toners are put on the belt at the same time. Then the completed four-color image is transferred to the paper.

1. Drum charge:

The charge roller gives the drum a negative charge
2. Laser exposure:

The laser beam from the laser diode (LD) goes through the lens and mirrors and to the drum. To make a latent image on the drum, the machine turns the laser beam on and off.
3. Development:

The development roller moves negatively-charged toner to the latent image on the drum surface. This machine uses four development units (one for each color).
4. Image transfer:

The charge that is applied to the transfer roller pulls the toner from the drum to the transfer belt. Four toner images are put on the paper.
5. Cleaning for OPC drum:

The cleaning brush and blade remove remaining toner on the drum surface after image transfer to the paper.
6. Quenching for OPC drum:

Quenching is done at the end of each page with a quenching lamp (LED array) in the PCU.
7. Paper registration:

The registration roller controls the paper feed timing to make sure that the image transfers to the correct location on the paper. It also removes skew.
8. Paper Transfer and Separation:

Toner transfers from the transfer belt to the paper when the paper is fed between the transfer belt and transfer roller. At this time, the paper also separates from the transfer belt, because of a discharge plate immediately after the transfer roller.
9. ID sensor:

The ID sensor board contains three ID sensors (one at the left, one at the center, and one at the right). The ID sensor detects the density of the ID sensor pattern on the transfer belt. The ID sensor output is used for process control and for automatic line-position adjustment, skew, and color registration adjustments for the latent image.

6.2 PROCESS CONTROL

6.2.1 OVERVIEW

This machine has these two forms of process control:

- Potential control
- Toner supply control

Process control uses these components:

- Three ID (image density) sensors (left [A], center [B], and right [C]). Only the center ID sensor is used for process control. The left, center, and right ID sensors are used in combination for line positioning and other adjustments.
- TD (toner density) sensor in each development unit.

6.2.2 POTENTIAL CONTROL

Overview

Potential control controls development to keep the toner images on the drums at the same density. It does this by compensating for variations in drum chargeability and toner density.
The machine uses the ID sensor to measure the reflectivity of the transfer belt and the density of a standard sensor pattern. This is done during the process control self-check.
The machine measures these values from the ID sensor output and a reference table in memory.

- VD: Drum potential without exposure - to adjust this, the machine adjusts the charge roller voltage.
- VB: Development bias
- VL: Drum potential at the strongest exposure - to adjust this, the machine adjusts the laser power.
(Also, VREF is corrected. This is used for toner supply control.)
This controls the development potential to make sure that the maximum quantity of toner applied to the drum is constant.
If SP3-501-001 process control is set to 1 (Fixed), the machine does not perform the potential control, but uses these fixed parameters:
- Development bias adjusted with SP2-212-001 to -008
- Charge roller voltage adjusted with SP2-201-001 to -009
- Laser power selected with SP2105-001 to -012.
- However, these SPs are not normally adjusted in the field.

Process Control Self-check

This machine performs potential control with a procedure that is known as the process control self-check. This procedure is done at these 9 times.

1. Initial

This starts automatically at the following times:

- Immediately after the power is turned on
- When the machine comes back from energy saver mode
- 6 hours after the power was turned on (can be changed with SP 3554 001)
- If absolute humidity changes more than $\pm 6 \mathrm{~g} / \mathrm{m}^{3}$ (e.g. $23^{\circ} \mathrm{C} / 50 \% \rightarrow 27^{\circ} \mathrm{C} /$ 70\%). The humidity threshold can be changed with SP 3554002.

2. Interval: Job End

At the end of a job, process control is done after the interval of time that is set with SP 3555001 , if more than 210 prints (default) were made after the previous process control (this number can be changed with SP3551-001 and 002).

At the end of a job, process control is done immediately, if more than 300 (default) prints were made after the previous process control (this number can be changed with SP3551-003 and -004).
The default setting of SP 3555001 is 0 . Because of this, there is no difference between these two processes, and the 300-print setting is not used.
After process control is done (except for forced process control), the counters are reset to "0."
3. Interval: Interrupt (default: 500)

If the machine makes a sequence of 500 or more color prints in the same job, printing stops and process control is done. After it is completed, the machine continues to make prints. The default value of 500 can be adjusted with SP3551-005 to -006
4. Non-use Time (6 hours)

This starts before the next print job if the machine has no job for 6 hours. If the non-use time process control is done (N) times after the user turns on the power, it will not be done. N is adjusted with SP3558.
5. Installation

This starts only when this machine turns on at first installation. The machine does this if SP5-950-001 is set to 1 (set at the factory).
6. After Toner End Recovery

This starts after recovery from a toner end condition.
7. After Developer Initialization

This starts after a developer initialization is done. Developer initialization occurs automatically after a new PCU is installed.
8. After Transfer Belt Unit Initialization

This starts after a transfer belt unit initialization is done. Transfer belt unit initialization occurs automatically after a new transfer belt unit is installed.
9. Forced

This is done when SP3-820-001 is used.

6.2.3 PROCESS CONTROL SELF-CHECK PROCEDURE

Step 1: VsG Adjustment

This machine uses three ID sensors (direct-reflection type). They are located at the left, center, and right of the transfer unit. Only the center ID sensor is used for process control. The ID sensor checks the bare transfer belt's reflectivity and the machine calibrates the ID sensor until its output (known as VSG) is as follows.

- VSG $=4.0 \pm 0.5$ Volts

This calibration adjusts for the transfer belt's condition and the ID sensor condition, for example, dirt on the belt or ID sensor.

Step 2: ID Sensor Solid Pattern Generation

The machine mixes the developer and then makes a 10-gradation pattern on the transfer belt for each toner color. The pattern has 10 squares (the sequence is as follows: 10 black squares, 10 magenta squares, 10 cyan squares and 10 yellow squares). Each of the squares is $15.03 \mathrm{~mm} \times 12.23 \mathrm{~mm}$, and is a solid-color square. To make the squares, the machine changes the development bias and charge roller voltage. The difference between development bias and charge roller voltage is always the same.

Step 3: Sensor Pattern Detection

The ID sensor detects the densities of the 10 solid-color squares for each color. This data goes to memory.

Step 4: Toner Amount Calculation

The quantity of toner on the transfer belt (M / A, mass per unit area, $\mathrm{mg} / \mathrm{cm}^{2}$) is calculated for each of the 10 gradations of the sensor pattern. To do this, the machine uses the ID sensor output value from each gradation of the pattern.

Step 5: VD, Vb, VL Selection and Vref Adjustment

The machine makes a plot of the 10 values of M/A against the development potential that was used to make each of the gradations. Then it makes a line through the 10 points.
Then, it finds the development potential that is necessary to put the 'target $\mathrm{M} / \mathrm{A}^{\prime}$ ' of toner on the OPC.

This development potential is then used to
 find the best values of development bias, charge roller voltage and laser power for the machine in its current condition. To do this, it refers to a table in memory.

The machine also adjusts VREF (toner density target) at the same time. As a result, the development gamma detected by process control will be the value stored in SP3-561-001 to -004 (do not adjust in the field unless told to do this).
After that, the transfer belt cleaning unit cleans the transfer belt.

6.2.4 TONER SUPPLY CONTROL

Toner Supply Control Modes

This machine has four toner supply control modes. They are selected with SP 3-301-001 to -004.

1. Fixed supply mode

This mode is used when the TD sensor becomes defective. The amount of toner supply can be adjusted with SP3-302-001-004 if the image density is incorrect (the default setting is 5%).
2. Proportional control mode 1 (Pixel) This mode is used when the TD sensor becomes defective. Only the pixel count is used to control toner supply. The amount of toner supply can be adjusted with SP3-306-001 to -004.
3. Proportional control mode 2 (TD sensor)

This mode is used when the ID sensor at the center becomes defective. Only the TD sensor is used to control toner supply. The amount of toner supply can be adjusted with SP3-306-005 to -008.
4. Hybrid control mode

This is the default toner supply control mode. The TD sensor or the pixel count are used in this mode.

- If the image coverage ratio is less than the value of SP 3-701-002 to 005, pixel count is used.
- If the image coverage ratio is more than the value of SP 3-701-002 to 005, the TD sensor is used.
- But, if SP 3-701-001 is 'off', then the TD sensor is always used. The default setting for this SP is 'off'. Because of this, pixel count is not used.

The amount of toner supply can be adjusted with SP3-306-009 to -020.
The TD sensor is in the PCU. If the TD sensor becomes defective, the technician must replace the PCU. But if this is not possible at that time, the technician can change the toner supply mode with SP 3-301-001 to 004.

Low Image Coverage

After process control, toner refresh mode is done (this can be switched off with SP 3721 001).

- Toner refresh is only done if the percentage of pages (after the previous process control) that was detected with low image coverage is more than the value of SP 3721002.
- SP 3701002 to 005 control the limits that the machine uses to detect if the image coverage is low.
Toner refresh mode supplies new toner, because there is old toner in the developer after printing many pages with low image coverage.

During toner refresh mode, the machine does the following:

1) The machine mixes the developer for 5 seconds.
2) The machine does an engine free run, which simulates printing of 10 sheets of A4/LT size paper with the image data (2 by 2) and normal toner supply.
3) The machine mixes the developer for 10 seconds.

6.2.5 TONER NEAR END/TONER END DETECTION

Introduction

Toner Near End

To detect toner near-end the machine uses:

- Pixel count (memory chip on the toner bottle)

Toner End

To detect toner end the machine uses:

- Output from the toner end sensor [A]

Toner Near End Detection

The machine uses pixel count to detect toner near end.

1) The controller counts the printed pixels. Then, it calculates the remaining toner quantity from the record stored in the memory ID chip for each toner bottle.
2) If the remaining toner quantity is calculated at less than 10% of a full bottle, the machine detects a toner near-end condition.
3) The remaining toner quantity and "Toner near end" are recorded in the memory ID chip.
4) Toner near-end is displayed on the LCD display.

NOTE: Toner near-end detection uses the pixel counter on the memory ID chip. If new toner is added to the empty toner bottle, the contents of the ID chip are not reset, so the toner near-end or end condition will not reset. Also, near-end detection cannot be done properly.

Toner End Detection

The machine detects toner end when the toner end sensor detects no toner 3 times in a row 3.1 seconds after toner was supplied. At this time, "Toner end" is recorded in the memory ID chip.

Toner End Recovery

The machine detects that a toner bottle was replaced if one of these events occurs during a toner end condition:

- The top cover is opened and closed.
- The main switch is turned off and on.

The machine then starts to supply toner to the development unit. After this, the machine resets the toner end condition.

NOTE: 1) When "Toner near end" is detected, "Toner end recovery" is not done.
2) If there is no "Toner end" information in the memory ID chip, the machine detects that there is toner in the toner bottle and "Toner end recovery" is done.

6.2.6 DEVELOPER INITIALIZATION

When the machine detects that a new PCU was installed, it initializes the developer.

To do this, the machine mixes the developer for a few seconds, and adjusts VCNT (control voltage for TD sensor) to adjust VT (TD sensor output) equal to 2.5 ± 0.1 volts. The machine stores this VT as VREF.

During PCU initialization, the machine automatically supplies toner because there is no toner in the toner supply pipe at installation. Then the machine performs a process control self-check.

6.3 PAPER FEED

6.3.1 OVERVIEW

1. Paper feed roller
2. Transfer roller
3. Relay transport roller
4. Duplex relay roller
5. Registration roller
6. Duplex exit roller
7. Transfer belt drive
8. By-pass feed roller

The machine has a paper tray (550 sheets) and a by-pass paper feed table (100 sheets).
The paper feed mechanism uses a friction pad system.

6.3.2 PAPER FEED DRIVE

The paper feed and fusing motor drives the paper feed roller [A], by-pass feed roller $[B]$ and registration roller $[C]$ via clutches and gears. The paper feed roller and by-pass feed roller feed paper to the registration roller.

The machine creates a paper buckle at the registration roller to correct paper skew. The paper buckle can be adjusted with SP1-003-001 to -045.

6.3.3 PAPER TRAY

Paper Lift

When the tray $[A]$ is set in the machine, the tray arms $[B]$ move along the guide slopes [C] of the main frame. This makes the springs [D] lift the bottom plate [E]. The bottom plate [E] pushes the paper against the paper feed roller and keeps the top sheet of paper at the correct height as paper is fed from the stack.
Using the paper pressure switch [F], you can adjust the bottom plate pressure. When you use thick paper of $75 \mathrm{~g} / \mathrm{m}^{2}$ or more, move this switch to the left.

Paper Size Detection

The paper size sensor is at the rear of the tray on the engine mainframe. This sensor has four switches. The outputs from the switches detect the paper size, as shown in the table. The actuators are on the side plate $[\mathrm{B}]$. The side plate is moved by the end plate [D] through a cam [C].

Paper Size	Switch Location			
	1	2	3	4
LG SEF	Pushed	Pushed	-	-
A4 SEF	-	Pushed	Pushed	-
LT SEF	Pushed	Pushed	Pushed	Pushed
US. EXE SEF	Pushed	-	-	-
B5 SEF	Pushed	-	-	-
A5 SEF/ HLT SEF	-	Pushed	Pushed	Pushed
A5 LEF/ HLT LEF	-	-	Pushed	Pushed

SEF = Short Edge Feed
LEF = Long Edge Feed

Paper Near End/End Detection

There are four sensors in tray 1: the two near end sensors $[B][E]$, the end sensor [C] and the paper width sensor [A].

Near-end detection

Two near end sensors detect the amount of paper in the tray.
When the quantity of paper decreases, the bottom-plate-pressure lever moves up and the actuator [F] (on the pressure-lever drive shaft) turns.

Remaining paper	Near end sensor 1 [E]	Near end sensor 2 [B]
Full ~ 450	ON	OFF
$450 \sim 250$	ON	ON
$250 \sim 50$	OFF	ON
$50 \sim 0$	OFF	OFF

OFF: No actuator

End detection

When the paper tray is empty, the actuator [D] moves into the end sensor. The sensor detects paper end.

Paper width sensor

When paper with a small width (less than A5/HLT) is put in the tray, it does not lift the actuator [G] of the paper width sensor. Because of this, the paper width sensor detects the paper that has a width less than A5/HLT.

PAPER FEED

By-pass Tray Feed and Size Detection

Paper Feed Mechanism

When the paper detection feeler [A] detects a sheet of paper, the by-pass solenoid [B] unlocks the feed shaft stopper at the left end of the by-pass feed shaft [C].

The by-pass feed shaft has the feed roller [D] and two cams [E]. These cams move the paper support plate [F] up and down. This pushes the sheets of paper against the feed roller.

Paper Size Detection Mechanism

There are two paper side plates [G] on the by-pass tray. These connect with the paper size sensor $[\mathrm{H}]$ through a rack-and-pinion mechanism.

6.3.4 DUPLEX

1. Inverter roller
2. Duplex relay roller
3. Inverter sensor
4. Duplex jam sensor 2
5. Duplex jam sensor 1
6. Duplex exit roller
7. Duplex entrance roller
8. Junction gate

PAPER FEED

Drive

The inverter motor $[A]$ controls the inverter roller $[B]$ that feeds the sheet of paper to the duplex unit.

The duplex motor [C] controls the duplex entrance roller [D], duplex relay roller [E] and duplex exit roller [F] that feed the sheet of paper to the registration roller.

Interleaving

Step 1:
This duplex unit uses the interleaving method. This decreases the total time of duplex printing.
The machine prints on side [1]. Then, the first sheet of paper is fed partially out of the exit, but not fully.

Then the exit roller changes direction and the paper is redirected to the duplex feed path. At the same time, the second sheet of paper is fed between the transfer belt and the transfer roller, and side [3] is printed.

Step 2:

The machine prints side [3] on the second sheet of paper.

The second sheet of paper is fed to the paper exit, and into the duplex feed path. At the same time, the first sheet of paper is fed between the transfer belt and the transfer roller, and side [2] is printed.
The second sheet of paper immediately follows the first sheet of paper in the duplex feed path. Then side [4] is printed.

6.4 LASER EXPOSURE

6.4.1 OVERVIEW

1. LDB unit-C
2. Synchronizing detector board-M, K-S
3. LDB unit-Y
4. Mirror
5. LDB unit-K
6. LDB unit-M
7. Synchronizing detector board-Y, C-S
8. Polygon mirror motor
9. Synchronizing detector board-M, K-E
10. LD Mirror-K
11. Synchronizing detector board-Y, C-E
12. F-theta lens-M, K
13. F-theta lens-Y, C
14. LD Mirror-Y

This machine uses four LDB units and one polygon mirror motor to produce latent images on four OPC drums (one drum for each color toner).
There are two hexagonal mirrors. Each mirror reflects beams from two LDB units.
Laser exposure for yellow and cyan starts from the right side of the drum, but for magenta and black it starts from the left side of the drum. This is because the units for yellow and cyan are on the other side of the polygon mirror from the units for magenta and black.

6.4.2 OPTICAL PATH

The laser beams for cyan $[B]$ and magenta [D] are sent to the upper part of the polygon mirror [C]. The laser beams for yellow [A] and black [E] are sent to the lower part of the polygon mirror. The LD mirrors (see the previous page) reflect the laser beams for yellow and black to the lower polygon mirror.
The mirror [F] corrects the main scan line. Without this mirror, the line bends at the middle of the main scan. The central bend of the mirror is adjusted in the factory.
The speed of the polygon mirror is controlled by the selected mode (see below).

Mode	Resolution $(\mathbf{d p i})$	Polygon motor speed $(\mathbf{r p m})$	Process line speed $(\mathbf{m m} / \mathbf{s})$	Print speed $(\mathbf{p p m})$
B/W (except OHP/Thick paper)	600×600 $1,200 \times 600$	36614	155	25
$1,200 \times 1,200$ Color (except OHP/Thick paper)	600×600 $1,200 \times 600$	36614	77.5	12.5
	$1,200 \times 1,200$	36614	155	25
OHP/Thick	600×600 $1,200 \times 600$ $1,200 \times 1,200$	36614	77.5	12.5

6.4.3 LASER SYNCHRONIZING DETECTOR

Overview

The machine has four laser synchronizing detector boards (LSD) as shown above. Each pair of boards detects two colors. The machine knows each color from the time that they are detected. The two LSDs $[A][B]$ are used for magenta and black, and the two $[C][D]$ are used for yellow and cyan.

Main Scan Start Detection

For magenta and black, the LSD [B] detects the start of the main scan. For yellow and cyan, the LSD [C] detects the start of the main scan. The arrows [E] [F] show the direction of the laser scan.

6.4.4 LD SAFETY SWITCH

A safety switch turns off when the front cover or the right door is opened. As a result, a relay on the PSU cuts the power supply (+5 V) to the four LD boards. (The electric circuits run through the EGB and IOB.)

The LD safety switch system interrupts the laser beam circuit when the cover is open.

Front and Upper Right Cover Switch
The front cover and the right cover are mechanically connected to the actuator. The actuator is mechanically connected to the safety switch. When one of these covers is opened or closed, the actuator opens or closes the safety switch.

6.4.5 AUTOMATIC LINE POSITION ADJUSTMENT

Overview

YY, KK, CC, MM: Spaces between two lines of the same color
KY, KC, KM: \quad Spaces between a black line and a color line

During automatic line position adjustment, the line patterns above are created eight times on the transfer belt. The spaces between the lines (YY, KK, CC, MM, KY, KC, KM) are measured by the front, center, and rear ID sensors. The controller reads the average of the spaces, and adjusts the following items:

- Sub scan line position for YCM
- Main scan line position for KYCM
- Magnification ratio for KYCM
- Skew for YCM (-NOTE)

NOTE: In this procedure, only the skew for YCM is measured. If you want to adjust the main skew, do the main skew adjustment procedure.
(-3.3.2)

The transfer-belt-cleaning unit cleans the transfer belt after the patterns are measured.

Summary of Each Adjustment

Sub scan line position for YCM

The adjustment of the sub-scan line position for YCM uses the line position for K as a reference (color registration). The machine measures the gaps between the lines of each color in the pattern on the transfer belt. If the gaps for a color are not correct, the machine moves the image of the color up or down the sub scan axis. To do this, it changes the laser write timing for that color.

Main scan line position for KYCM

If the machine detects that the image is out of position in the main scan direction, it changes the laser-write-start timing for each scan line.

Magnification adjustment for KYCM

If the machine detects that magnification adjustment is necessary, it changes the LD clock frequency for the necessary color.

Skew for YCM

The adjustment of the skew for YCM uses the line position for K as a reference.

Adjustment Conditions

If SP 2153-001 is set to 'on', then automatic line position adjustment is done at the times shown below.

After process control is done

If SP 2153-002 is set to 'on', then the adjustment is done when these types of process control are successfully done.

- Initial process control
- Interval process control
- No-use time process control

Initialization

If SP 2153-003 is set to 'on', then the adjustment is done when the main power is turned on or the machine comes back from the standby mode, but only if one of the following conditions occurs.

- At a set time after the previous adjustment. The default value is 360 minutes. You can adjust the time with SP2153-013.
- When the temperature changed after a previous adjustment by more than a set value. The default value is 5 .
You can adjust the temperature change value with 2153-012.

Printing

If SP 2153-004 is set to 'on', then the adjustment is done when the machine gets print job data, but only if one of the following conditions occurs.

- At a set time after the previous adjustment. The default value is 360 minutes. You can adjust the time with SP2153-013.
- When the temperature changed after a previous adjustment by more than a set value. The default value is $5^{\circ} \mathrm{C}$.
You can adjust the temperature change value with SP2153-012.
- When the magnification changed after a previous adjustment by more than a set value. The default value is 1%.
You can adjust the magnification change value with SP2153-015.

Interrupt

If SP 2153-005 is set to 'on', then the adjustment is done when the one of the following conditions occurs during a print job with many pages.

- When the number of printed pages after the previous adjustment becomes more than a set number. The number of pages includes black and color printing. The default value is 190 pages. (If this condition occurs, automatic line position adjustment after the next interval process control will not be cancelled.) You can adjust the default value with SP2153-010.
- When the temperature changed after a previous adjustment by more than a set value. The default value is $5^{\circ} \mathrm{C}$.
You can adjust the temperature change value with SP2153-012.
- When the magnification changed after a previous adjustment by more than a set value. The default value is 1%.
You can adjust the magnification change value with SP2153-015.
This table shows when the automatic line position adjustment is done. It also shows the main SPs that control the timing of the adjustment. If SP 2153001 is 'off', then the automatic adjustment is never done. Note that the adjustments for the sub-scan line position, main scan line position, and magnification are done at the same time.

Enabled/Disabled (SP 2153 001)	After Process Control (SP 2153 002)	$\begin{aligned} & \text { Initialization } \\ & \text { (SP 2153 } \\ & 003 \text {) } \end{aligned}$	Printing (SP 2153 004)	Interrupt (SP 2153 005)	Remarks
On	ON	On	ON	On	Default
				Off	
			Off	On	
				Off	
		Off	ON	On	
				Off	
			Off	On	
				Off	
	Off	On	ON	On	
				Off	
			Off	On	
				Off	
		Off	ON	On	
				Off	
			Off	On	
				Off	
Off	-	-	-	-	No Adjustment

NOTE: You can also do the automatic line position adjustment manually with SP2111-001.

Main Scan Skew Adjustment

You can adjust the mirror adjustment cam for magenta [C], cyan [B], and yellow [A] with a screwdriver. This mechanism corrects the main scan skew. The diagram shows the effect on line skew [D] when you turn the cam in a counterclockwise direction.

For more about this adjustment, see section 3.3.2.

LDU Shutter

The LD unit has a shutter. The shutter prevents toner and other dust from falling on the LDU glass. The shutter motor $[A]$ moves the shutter $[B]$ in the direction of the arrow with the gear [C]. SC270 occurs if the output of the LDU shutter sensor [D] does not change 1 second after the LDU shutter motor turned on.

6.5 PHOTOCONDUCTOR UNIT

6.5.1 OVERVIEW

1. OPC drum
2. Cleaning blade
3. Cleaning brush
4. Cleaning brush roller
5. Waste toner collection coil
6. Charge roller

This machine has four PCUs, one for each color. Each PCU contains an OPC drum, charge roller, cleaning brush, and cleaning blade. The diameter of the drum is 30 mm (circumference: about 94.2 mm).

The photoconductor gap between each PCU and development roller is set by the drum positioning plate and the rear shaft. It is not adjustable in the field.

6.5.2 DRIVE AND DRIVE GEAR POSITION SENSOR

The black OPC/development motor [F] drives the PCU for black.
The color development motor [A] drives the PCUs for magenta, cyan, and yellow. One motor controls these three drums to help reduce CMY color registration errors.

Mechanism

The machine uses drum gear position sensors to detect if the drum motors are turning. SC380 occurs when it detects that the drum motor does not move. These sensors also help the machine to initialize the positions of the gears when the main switch is turned on and at initialization. This prevents changes between printouts in how the gears engage, which can cause changes in copy quality.
There is an actuator on each of the black [D] and magenta [B] drum gears. The drum gear position sensors [C][E] detect the positions of these actuators. The sensors check that the two actuators are parallel. This mechanism makes sure that output quality does not change. The cyan [G] and yellow [H] drum gears operate directly with the magenta drum gear because these three drum gears are connected through other gears.

In the ready condition, the two actuators are parallel. If they are not in a parallel position, the machine adjusts the position of the black drum gear automatically.

PHOTOCONDUCTOR UNIT

Initialization Process and SC Codes

When a drum gear position sensor has found an error, SC code 396 or 397 is shown. The table shows the steps of the initialization procedure, possible errors, and corresponding SC codes.

	Initialization process	Possible error	SC code
Step 1	The four drums turn at the same time for seven seconds. The two drum position sensors detect the two drum gear interrupters several times.	The black drum gear actuator is not detected.	396
	The color drum gear actuator is not detected.	397	
	Both black and yellow drum gear actuators are not detected.	396	
Step 2	The time lags between detection of the black drum gear interrupter and detection of the color drum gear interrupter are checked. The average time lag is calculated.		396
Step 3	The black drum turns. The position of the gear is adjusted for the average time difference.	The black drum gear actuator is not detected (-NOTE).	3

NOTE: If the connector of the black drum position sensor is connected to the magenta drum position sensor (and the connector of the magenta drum position sensor is connected to the black drum position sensor), no error occurs in step 1 and step 2.

6.5.3 DRUM CHARGE AND QUENCHING

This machine uses a charge roller [A]. The charge roller charges the drum surface with a negative charge. The high voltage supply board, which is at the rear of the machine, applies a dc and ac voltage (at a constant current) to the roller. The ac voltage helps to make sure that the charge given to the drum is as constant as possible.

The machine automatically controls the charge roller voltage if automatic process control is enabled (that is, if SP3-501-001 is set to 0). However, if process control is turned off, (that is, if SP3-501-001 is set to 1), the dc voltage is the value stored in SP2-201-001 to -004 or SP2-201-006 to -009 (do not adjust in the field unless told to do so).
The diameter of the roller is 30 mm (the circumference is about 94.2 mm).
The cleaning brush roller [B], which always touches the charge roller, cleans the charge roller.
For quenching at the end of every job, light from the quenching lamp (LED array in the PCU) illuminates the full area of the drum.

6.5.4 DRUM CLEANING

The cleaning brush $[A]$ loosens the remaining toner on the drum surface. The lubricant bar [B] lubricates the brush. The cleaning blade [C] then removes the waste toner. The toner collection coil [D] moves the toner to the waste toner collection duct.

6.5.5 WASTE TONER COLLECTION

[E]

The waste toner from the collection coils in the four PCUs fits into the waste-toner collection bottle from the four openings $[1][J][K][M]$ at the rear of the PCUs. The toner collection coils [B][C][D][G] move the waste toner to the waste toner bottle [L].
Coils [B][C][D] are driven by the color development motor and coil [G] is driven by the black OPC/development motor.
NOTE: The openings [I] to $[\mathrm{M}]$ are for these PCUs: black $\rightarrow[I]$, cyan $\rightarrow[\mathrm{J}]$, magenta $\rightarrow[K]$, yellow $\rightarrow[M]$.

The waste toner from the transfer-belt cleaning unit falls into the waste toner collection bottle from a separate opening [N]. The toner collection coil [A] moves this waste toner to the waste toner bottle.
The waste toner collection coil $[\mathrm{H}]$ is driven by the transfer roller contact motor.

The waste toner bottle has five seals (one at each opening). The seals prevent scattering of waste toner.

The pin [E] at the waste toner entrance pushes the shutter spring [F] in the rear of the PCU. Because of this, waste toner can fall into the waste toner bottle when the left cover is closed. If the left cover is open, the shutter mechanism prevents the waste toner from spilling out from the rear of the PCUs.

6.5.6 WASTE TONER BOTTLE FULL DETECTION AND SET DETECTION

The left cover sensor [A] (behind waste toner bottle) in the main frame detects when the left cover is open. It also detects if the waste toner bottle is in the machine. If the "Close Front/Left Cover" indication shows on the LCD when the cover is closed, check if the waste toner bottle is in the machine correctly.

The waste toner sensor $[B]$ detects when the bottle is almost full.
When the bottle contains a set quantity of waste toner, the sensor turns off. The machine detects that the waste toner bottle is almost full.

After that, the machine can print approximately 1250 more sheets. After printing 1250 sheets, the machine indicates "Replace Waste Toner bottle" after the end of the job. The printer cannot be used until the bottle is replaced or emptied.
NOTE: The number of sheets is calculated for a paper size of A4/LT and an image coverage ratio for each color of 5%.

6.5.7 PCU DETECTION (DEVELOPMENT UNIT DETECTION)

Unit Set Detection Pins

Each PCU has a connector [A]. The machine uses this to detect if the PCUs and development units are in the machine. Each PCU is detected through this connector when the drum positioning plate is closed.

New Unit Detection

Each PCU also has a circular hook [B]. The machine uses this to detect when a new PCU is installed.

On a new unit, the hook holds up the terminal [C]. This hook turns a switch on, and the machine detects that the unit is new.

When the unit is driven for the first time, the hook turns and releases the terminal and the switch turns off. The hook cannot pick up the terminal again. Because of this, the machine detects that this PCU is not new.

Error Message

PCU

When the machine cannot detect a PCU, it outputs the first message, "Reset PCU

Reset PCU
Correctly

Magenta

> Yellow/Cyan

Yellow/Magenta

Black

6.6 DEVELOPMENT

6.6.1 OVERVIEW

1. Doctor blade
2. Developer hopper
3. Mixing coil (left)
4. TD sensor
5. Mixing coil (right)
6. Development roller

This machine has four development units, one for each color. The developer in each unit is supplied to the development roller by the two mixing coils. Electrostatic attraction moves the developer to the surface of the roller.
The drum positioning plate and the rear shaft set the photoconductor gap between the PCU and development roller. It is not adjustable in the field.

The TD sensor detects toner density. Each development unit has a TD sensor.
The diameter of the development roller is 18 mm (the circumference is approximately 56.5 mm).

DEVELOPMENT

6.6.2 DRIVE

The black development motor $[\mathrm{A}]$ drives the development roller and the photoconductor for black through gears and the development clutch $[B]$.

The color development motor [C] drives the development unit for magenta, cyan, and yellow through gears.
The machine only contains one development clutch, and it is only used for black.

6.6.3 DEVELOPER MIXING

The toner is supplied from the hopper [A]. Two mixing coils [B and C] move the developer forward and backward to mix the developer.

Mixing occurs at the following times:

- Immediately after a new PCU is installed.
- During the process control self check
- During toner supply
- During development.
- Every 36 hours (can be changed with SP 3554003)
- If absolute humidity changes more than $\pm 6 \mathrm{~g} / \mathrm{m}^{3}$ (e.g. $23^{\circ} \mathrm{C} / 50 \% \rightarrow 27^{\circ} \mathrm{C} / 70 \%$). The humidity threshold can be changed with SP 3554004.

DEVELOPMENT

6.6.4 DEVELOPMENT BIAS

The high voltage supply board \#2 supplies development bias to the development roller through the receptacle at the rear of each development unit.

There are ac and dc bias voltages. The ac bias improves toner transfer to the drum.
The machine automatically controls the dc bias, if automatic process control is enabled. However, if process control is turned off, (that is, if SP3-501-001 is set to 1), the dc bias is the value stored in SP2212-001 to -009 (do not adjust in the field unless told to do this).

6.6.5 TONER SUPPLY MECHANISM

Overview

This machine uses four toner bottles $[A]$. Each bottle has a spiral groove $[B]$ in it. The toner supply motor $[F]$ turns the toner bottle (each bottle has a separate motor).

When the toner supply drive-mechanism starts, the toner bottles turn and the groove moves toner to the mouth of the bottle. Here, toner spills into a hopper [C]. Mylar blades turn and move the toner to an opening in the side of the hopper and the toner falls into the development unit [D]. The quantity of toner that is added is controlled by the length of time that the toner supply mechanism turns.

Toner End Detection

Toner end sensors [E] detect toner end conditions (6.2.5).

6.6.6 TONER BOTTLE DETECTION

Each toner bottle is detected by connection to the memory ID chip connector [G].

6.7 IMAGE TRANSFER

6.7.1 OVERVIEW

1. Transfer belt
2. Belt transfer roller
3. Transfer belt drive roller
4. Transfer roller
5. Belt entrance roller
6. Transfer belt tension roller
7. Cleaning blade
8. Toner collection coil
9. Cleaning brush

The toner is attracted from the four OPC drums to the transfer belt by the belt transfer rollers. For a full color print, all four colors are moved from the PCUs to the transfer belt at the same time.
The transfer roller then moves the four-color toner image from the transfer belt to the paper.

Transfer Unit Detection and New Unit Detection

Transfer belt unit detection

The transfer belt unit is detected when the connector $[A]$ is connected.
The transfer belt rotation sensor $[B]$ detects when the transfer belt entrance roller turns. It also detects the belt speed. To do this, it monitors the black and white stripes on the shaft.

Changes in temperature have an effect on the transfer belt drive roller. This can cause changes in belt speed. Color registration errors occur if belt speed is not constant. The rotation sensor detects any speed change and the machine keeps the transfer belt speed constant. You can enable or disable this belt speed correction with SP 21538.

New transfer belt unit detection

The transfer belt rotation sensor has a fuse when the transfer belt unit is new. The fuse is blown when the machine is turned on. At this time, it is detected as a new unit.
NOTE: The transfer belt unit is replaced as a maintenance item.

6.7.2 TRANSFER BELT DRIVE AND TRANSFER BELT ROLLER VOLTAGE

The transfer belt motor [A] drives the transfer belt drive roller [B]. The belt tension roller [C] adds tension to the transfer belt to help turn the belt. The speed of the transfer belt drive is set by the process line speed.

The belt transfer rollers [D] are charged from the terminal plates to transfer the toner from the PCUs to the transfer belt.

Transfer belt contact

The transfer belt does not touch the color PCUs (cyan, magenta and yellow) when the machine makes a black and white print.

The transfer belt contact motor [A] turns the CMY contact cam shaft [B] when the machine starts to make a color print. The CMY contact cam lifts the belt transfer roller unit for CMY [C] to the transfer belt. Because of this mechanism, the life of the transfer belt is longer (it is not necessary for the transfer belt to touch the color PCUs when the machine makes a black and white print).
The transfer belt contact sensor [D] detects if the transfer roller unit for CMY touches the transfer belt. If it does not touch the transfer belt during color printing, the machine stops and shows SC 442.

Transfer belt cleaning

[A] Cleaning brush
[D] Transfer belt cleaning blade
[B] Seal
[C] Transfer belt drive roller
[E] Toner collection coil
[F] Pressure spring

The transfer belt cleaning blade removes remaining toner from the transfer belt to prevent "ghosting" on the next print. This blade is included in the blade holder. The pressure spring applies pressure to the center of the blade holder. This blade gets constant pressure from the pressure spring.
The toner collection coil moves the remaining toner to the waste toner bottle from its opening [G].

6.7.3 TRANSFER ROLLER UNIT

[A] Transfer roller
[B] Registration roller
[C] Transfer belt
[D] OPC
[E] Belt transfer roller
[F] Transfer belt drive roller
[G] Discharge plate

Transfer from the belt

The belt transfer roller [E] is supplied a positive voltage, and this voltage pulls the toner from OPC [D] to the transfer belt.
After all four layers of toner are transferred to the transfer belt [C], the registration roller [B] turns on and feeds the paper to the transfer roller [A]. Paper feed is timed to align the leading edge of the toner image on the belt at 4 mm from the leading edge of the paper. The paper moves at the same speed as the transfer belt.

Image transfer

Charged with a negative voltage, the transfer belt drive roller [F] pushes the toner from the transfer belt to the paper. This voltage is automatically corrected for ambient temperature and humidity, print speed, and paper type.
To clean the transfer roller, positive and negative voltages are applied to the transfer belt drive roller to pull toner particles from the transfer roller to the belt. The belt-cleaning mechanism then removes this toner from the belt.

IMAGE TRANSFER

Discharge

The discharge plate $[A]$ removes remaining voltage from the printed paper. This is supplied with a positive voltage. As a result, the voltage is neutralized and paper separation from the transfer belt occurs.

Transfer roller contact

The transfer roller [A] is kept away from the transfer belt during the stand-by condition.
When printing starts, the transfer roller contact motor [B] turns the cam shaft [C]. This shaft has two cams [D] and an actuator [E]. The two cams push the transfer roller contact levers, which in turn push the transfer roller against the transfer belt. The actuator turns on the transfer roller contact sensor [F] when the cam shaft turns. Then, the machine detects that the transfer roller touches the transfer belt.

6.8 FUSING

6.8.1 OVERVIEW

1. Fusing tension roller
2. Cleaning roller
3. Oil supply roller
4. Pressure lever
5. Pressure roller
6. Hot roller
7. Fusing belt
8. Heating roller
9. Heating lamp
10. Thermistor
11. New fusing unit detection fuse
12. Thermostat

- For this model, a belt fusing system is used. This system has a faster warm-up time than a standard hot and pressure roller system.
- The heating roller is made of aluminum to increase the temperature of the fusing belt quickly.
- The hot roller is made of sponge, which becomes a little flat at the contact point of the pressure roller. This increases the fusing nip. This roller does not contain a heating lamp.
- The heating roller thermistor controls the temperature of the lamp.
- Each new fusing unit contains a fuse. A short time after a new fusing unit is installed, this fuse blows. When this occurs, the machine detects that a new fusing unit is installed.
The oil supply roller supplies oil to the fusing belt through the oiling roller. This mechanism applies a constant thickness of oil to the fusing belt.

6.8.2 FUSING TEMPERATURE CONTROL

The machine starts to warm up the fusing unit to reach the print ready condition. When the heating roller temperature gets to the idling temperature [A], the idling procedure starts to warm up the hot roller. The temperature becomes higher than the machine ready temperature $[B]$ and reaches the print ready temperature [C] after the heating roller completes idling.

The temperature increases to the target printing temperature. Then printing starts. If the temperature does not get to the target printing temperature before 30 seconds (SP 1104 022), printing starts.
The temperature increases to the first print temperature [G] when the first sheet of paper is printed, but this is only for the first page.

After the printing job, the machine turns off the heating roller to prevent overheating [F].

The fusing temperature settings can be adjusted.

Fusing roller idling

Fusing roller idle occurs at the following three times:

- Immediately after the power is turned on, or when the machine comes back from energy saver mode, if the fusing unit temperature is less than $100^{\circ} \mathrm{C}$.
This is [E] on the diagram.
This idling keeps the heating roller warmed up equally while it is heated. This temperature is controlled with SP 1912-005, and the durations of fusing idling are controlled with SP 1912-006, and 008 to 013
You can also adjust this with SP1912-002 and 1105-043
- At the end of a job: [F]

This prevents the heating roller's overheating. After printing, the machine turns the heating roller with no heating. You can adjust the setting with SP1912 007

- At intervals of 4 hours if the machine is not used.

This prevents deformation of the hot roller and pressure roller.

- Controlled by SP 1912-003 (interval) and 004 (duration)

FUSING

- Enable/disable this idling feature: 1912-001

For fusing idling at the start of a job, the duration and the fusing unit temperature during idling are also corrected for ambient temperature. SP 1917 controls all the corrections. The temperature/humidity sensor measures the room temperature. Corrections are made if:

- Room temperature is below $18^{\circ} \mathrm{C}$ (L threshold, controlled by SP 1917-008)
- Room temperature is above $30^{\circ} \mathrm{C}$ (H threshold, controlled by SP 1917-007)

Idling ready temperature before first print job: [A]

This is the idling ready temperature for the heating roller before the first print job. You can adjust the setting with SP1912-005. The default is $100^{\circ} \mathrm{C}$. If the heating roller temperature does not reach this temperature within 15 seconds after the heating lamp turns on, SC 542 occurs.

Machine ready temperature: [B]

You can adjust the setting with SP1913-002. The default is $150^{\circ} \mathrm{C}$.

Print ready temperature: [C]

You can adjust the setting with SP1105-022. The default is $160^{\circ} \mathrm{C}$.

Target printing temperature: [D]

This is adjusted by the value stored in SP1104-023. This value is added to the print ready temperature. The default is $5^{\circ} \mathrm{C}$.

First print temperature: [G]

When the machine prints the first page, the heating roller temperature can quickly decrease. If necessary, you can increase the temperature for the first page. This is a good adjustment for cold environments.
If fusing is not sufficient for the first page of a job, adjust these SPs:

- Temperature increase for the first page of a job: SP 1104-025

This value is added to the target printing temperature. The default is $0^{\circ} \mathrm{C}$.

- Duration for application of the temperature increase: SP 1104-026
- The increase is applied if the interval between jobs is greater than these values:
- OHP, Thick paper, or 1200×1200 dpi: SP 1104-024
- Other types of job: SP 1104-027

Corrections for Small Paper Sizes (less than A5/LT)

These corrections prevent excess heating of the fusing unit when paper widths less than A5/LT are used. In multi-page printing with this size paper, the heating roller's temperature is not the same in all areas because the smaller size paper is less than the width of the heating roller. The temperature at the ends of the roller that do not touch the paper becomes higher than other points on the roller during multipage printing. The following corrections decrease this problem:

- Print speed: This is decreased after 15 pages. Then, 30 seconds after this, the print speed increases back to the standard speed again. You can adjust with SP 1911-001 to 003.
- Fusing temperature: This is decreased in three stages, as shown below.
- Decreased by $5^{\circ} \mathrm{C}$ after 50 pages are printed (controlled by SP 1911-004 and 014)
- Decreased by $5^{\circ} \mathrm{C}$ again after 50 more pages are printed (controlled by SP 1911-006 and 016)
- Decreased by $5^{\circ} \mathrm{C}$ again after 50 more pages are printed (controlled by SP 1911-008 and 018)
There are also temperature reductions for one-sided printing and two-sided printing.
- One sided printing: The temperature is decreased in two steps, as shown below
- After 15 pages, no reduction (controlled by SP 1911-021 and 023)
- After 15 more pages, decreased by $5^{\circ} \mathrm{C}$ (controlled by SP 1911-022 and 024)
- Duplex printing: The temperature is decreased in two steps, as shown below
- After 15 pages, no reduction (controlled by SP 1911-025 and 027)
- After 15 more pages, decreased by $10^{\circ} \mathrm{C}$ (controlled by SP 1911-026 and 028)

Overheat Protection

- If the heating roller temperature becomes higher than $230^{\circ} \mathrm{C}$, the CPU cuts off the power to the heating lamp and SC543 occurs.
- If $250^{\circ} \mathrm{C}$ is detected, the thermostat opens, and the heating lamp power is cut off. SC545 occurs.

NOTE: 1) If the thermistor output is less than $0^{\circ} \mathrm{C}$ for six seconds, SC541 occurs.
2) If the heating lamp gets full power for 8 seconds after the heating roller gets to the print ready temperature, SC545 occurs.

6.8.3 DRIVE

After the toner image is transferred to the paper [A], it passes through the fusing unit. The fusing unit contains the heating roller [B]. The heating lamp [C] applies heat to the heating roller. The heating roller applies heat to the fusing belt [D] to melt the toner on the paper. The paper receives pressure between the fusing belt and the pressure roller [E], and melted toner bonds to the paper.

When the paper exits the fusing unit, it goes to the exit tray. The paper exit sensor [F] detects paper jams.

6.9 CONTROLLER

6.9.1 OVERVIEW

The controller uses GW architecture.

1. CPU: PMC RM7035C (533MHz)
2. TRUMPET: GW architecture ASIC. It controls the interface with the CPU and controls these functions: memory, local bus interrupts, PCI bus, video data, HDD, SD card for booting and image processing.
3. SHAKER: IO control ASIC. It controls the network, operation panel, USB port, SD cards.
4. SDRAM DIMM (2 slots):

128 MB SDRAM (resident)
Can be increased to 512 MB with two 256 MB SDRAM.
5. Flash ROM: 8 MB flash ROM programmed for the boot system.
6. SD card (Boot): The 32 MB SD card installed in the SD card slot \#1 includes the program for system, network application, printer, PCL5c, PS3 and RPCS applications and internal printer fonts.
7. NVRAM: 32 KB FRAM for the printer parameters, logged data and a record of the number of pages printed for each "User Code".
8. NVRAM board (option): 96MB NVRAM increases the number of "User Codes" form 100 to 500.
9. Network Interface: 100BASE-TX/10BASE-T
10. USB Interface: USB2.0
11. IEEE 1394 Interface (option): Firewire supports a data transfer speed of up to 400 Mbps .
12. IEEE 1284 Interface (option): This is the parallel printer port.
13. IEEE 802.11b (option): This lets you connect the printer to a wireless network.
14. Bluetooth (option): This lets you connect the printer to a Bluetooth network.
15. HDD (option): A 2.5" HDD (40 GB) can be connected using the IDE interface.
16. SD Card slots:

Slots 1 to 3 , numbered from right to left.

- Slot 1: Boot SD card
- Slot 2: Customer's application (for example, PostScript 3)
- Slot 3: Service use (for example, firmware upgrade), customer's application

1) The system and application software for the following boards can be downloaded from SD cards connected to slot \#3.

- Controller (Flash ROM and SD card for boot)
- EGB (Engine board)

NOTE: See the Service Tables Firmware Update Procedure for details on downloading software from the SD card.
2) An SD Card programmed with an additional application can be installed in SD Card slot \#2 or \#3. Use slot 2 first. If an additional application cannot be merged onto the card on slot 2 , then use slot 3 for that additional application. If possible, keep slot \#3 empty for the firmware update.

6.9.2 BOARD LAYOUT

DIP Switches: Factory use only. Keep DIP SW 1 ON and all other switches OFF.

SPECIFICATIONS

SPECIFICATIONS

1. GENERAL SPECIFICATIONS

Configuration:	Desktop			
Print Process:	Laser beam scanning \& Electro photographic printing 4 drums tandem method			
Printer Languages:	RPCS (Refined Printing Command Stream) PCL5c/e PCL-XL Adobe PostScript 3 PDF			
Resolution:	RPCS: $1200 \times 1200 \mathrm{dpi}, 1200 \times 600 \mathrm{dpi}, 600 \times 600 \mathrm{dpi}$ PCL5c/e: $600 \times 600 \mathrm{dpi} 300 \times 300 \mathrm{dpi}$ PCL-XL: $1200 \times 1200 \mathrm{dpi}, 1200 \times 600 \mathrm{dpi}, 600 \times 600 \mathrm{dpi}$ Adobe PostScript 3: $1200 \times 1200 \mathrm{dpi}, 1200 \times 600 \mathrm{dpi}, 600 \times 600 \mathrm{dpi}$ PDF: $1200 \times 1200 \mathrm{dpi}, 1200 \times 600 \mathrm{dpi}, 600 \times 600 \mathrm{dpi}$			
Gradation Printing speed:	1 bit/256 gradations			
		Resolution	Plain paper	Thick/OHP
		$600 \times 600 \mathrm{dpi}$	25 ppm	12.5 ppm
	Monochrome	$1200 \times 600 \mathrm{dpi}$	25 ppm	12.5 ppm
		$1200 \times 1200 \mathrm{dpi}$	12.5 ppm	12.5 ppm
		$600 \times 600 \mathrm{dpi}$	25 ppm	12.5 ppm
	Color	$1200 \times 600 \mathrm{dpi}$	25 ppm	12.5 ppm
		$1200 \times 1200 \mathrm{dpi}$	12.5 ppm	12.5 ppm
Resident Fonts:	PCL5c: 35 Manage 10 TrueTyp 1 Bitmap fo Adobe PostS 136 fonts	ntelli fonts fonts pt 3: Type 2 fonts,	Type 14 f	
Host Interfaces:	Ethernet (10/ USB2.0: Stan	$0 \text { Base-TX): Sta }$ ard		
	IEEE1394 (S IEEE802.11b Parallel (IEEE Bluetooth (Wi	I print, IP over Nireless LAN): 284: Optional): less): Optional	394): Option ptional ptional	
Network Protocols:	TCP/IP, IPX/S	X, NetBEUI, Ap	leTalk	

First Print Speed:	Color: 15 seconds or less (from tray 1) Black \& White: 10 seconds or less (from tray 1) Warm-up Time
Less than 30 seconds (at $23^{\circ} \mathrm{C} / 50 \%$)	
Print Paper Capacity:	Standard tray: 550 sheets $(80 \mathrm{~g} / \mathrm{m} 2,20 \mathrm{lb})$
By-pass tray: 100 sheets Optional paper feed tray: 550 sheets	

Print Paper Size:
(Refer to "Supported Paper Sizes".)

	Minimum	Maximum
Standard Tray	A4 / B5 $/ 81 / 2^{\prime \prime} 11^{\prime \prime} / 81 / 2^{\prime \prime} \times 14^{\prime \prime}($ SEF $)$	
By-pass	$90 \times 148 \mathrm{~mm}$	$216 \times 356 \mathrm{~mm}$
Optional Tray	A4 / B5 $/ 81 / 2^{\prime \prime} \times 11^{\prime \prime} / 81 / 2^{\prime \prime} \times 14^{\prime \prime}($ SEF $)$	

Printing Paper
Weight:

Output Paper
Capacity:
Memory:

Power Source: $\quad 120 \mathrm{~V}, 60 \mathrm{~Hz}$: More than 11 A (for North America)
220 V - 240 V, $50 / 60 \mathrm{~Hz}$: More than 6 A (for Europe/Asia)

Power Consumption:

	$\mathbf{1 2 0 ~ V}$	$\mathbf{2 2 0 - 2 4 0}$ V
Maximum	990 W or less	1200 W or less
Energy Saver	6 W or less	6 W or less

Noise Emission:
(Sound Power Level)

	Mainframe Only	Full System
Printing	63 dB or less	67 dB or less
Stand-by	40 dB or less	40 dB or less

NOTE: The above measurements were made in accordance with ISO9296 at the operator position.

Dimensions (W x D x H):446 x $589.5 \times 487 \mathrm{~mm}$ (17.4" x 23.2" x 19.2")
Weight: Less than 50 kg (110.3 lb.)

2. SUPPORTED PAPER SIZES

Paper	Size (W x L)	Main Tray		PFU		By-pass Tray		$\begin{gathered} \text { Dupl } \\ \text { ex } \end{gathered}$
		NA	E/A	NA	E/A	NA	E/A	
A3	$297 \times 420 \mathrm{~mm}$	N	N	N	N	N	N	N
A4 SEF	$210 \times 297 \mathrm{~mm}$	Y	Y	Y	Y	Y	Y	Y
A4 LEF	$297 \times 210 \mathrm{~mm}$	N	N	N	N	N	N	N
A5 SEF	$148 \times 210 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	Y	$\mathrm{Y}^{\#}$	Y	$\mathrm{Y}^{\#}$	Y	Y
A5 LEF	$210 \times 148 \mathrm{~mm}$	N	N	N	N	N	N	N
A6 SEF	$105 \times 148 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	Y	N	N	$\mathrm{Y}^{\#}$	Y	Y
B4 SEF	$257 \times 364 \mathrm{~mm}$	N	N	N	N	N	N	N
B5 SEF	$182 \times 257 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	Y
B5 LEF	$257 \times 182 \mathrm{~mm}$	N	N	N	N	N	N	N
B6 SEF	$128 \times 182 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	Y
Ledger	$11^{\prime \prime} \times 17^{\prime \prime}$	N	N	N	N	N	N	N
Letter SEF	8.5 " $\times 11$ "	Y	Y	Y	Y	Y	$\mathrm{Y}^{\#}$	Y
Letter LEF	11 " x 8.5"	N	N	N	N	N	N	N
Legal SEF	8.5 " $\times 14{ }^{\prime \prime}$	Y	Y	Y	Y	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	Y
Half Letter SEF	5.5 " x 8.5"	Y	$\mathrm{Y}^{\#}$	Y	$\mathrm{Y}^{\#}$	Y	$\mathrm{Y}^{\#}$	Y
Executive SEF	7.25 " $\times 10.5$ "	Y	Y	Y	Y	Y	$\mathrm{Y}^{\#}$	Y
Executive LEF	10.5 " x 7.25"	N	N	N	N	N	N	N
F SEF	8" $\times 13^{\prime \prime}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	Y
Foolscap SEF	8.5 " $\times 13^{\prime \prime}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	Y
Folio SEF	8.25 " x 13"	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	Y
8K	$267 \times 390 \mathrm{~mm}$	N	N	N	N	N	N	N
16K SEF	$195 \times 267 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	Y
16K LEF	$267 \times 195 \mathrm{~mm}$	N	N	N	N	N	N	N
Custom	$70 \times 216 \mathrm{~mm}{ }^{* 1}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N
	$5.5 \mathrm{C} \times 14^{\text {" } 2}$	$\mathrm{Y}^{\#}$	$Y^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$Y^{\#}$	N
	$14 " \sim 900 \mathrm{~mm}$	N	N	N	N	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N
Postcard	$100 \times 148 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N	N	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N
Double postal card	$200 \times 148 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	$Y^{\#}$	$Y^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N
Com10 Env.	4.125 " 9.5 "	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N
Monarch Env.	3.875 " x 7.5"	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N
C6 Env.	$114 \times 162 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N
C5 Env.	$162 \times 229 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N
DL Env.	$110 \times 220 \mathrm{~mm}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	$\mathrm{Y}^{\#}$	N

*1: This size is only for the by-pass tray. The size for the main tray and OPU is 98 mm .
*2: This size is only for the main tray and by-pass tray. The size for OPU is 148 mm .

Remarks:

Y	Supported: the sensor detects the paper size.
$\mathrm{Y}^{\#}$	Supported: the user specifies the paper size.
N	Not supported

3. SOFTWARE ACCESSORIES

The printer drivers and utility software are provided on one CD-ROM. An auto-run installer allows you to select which components to install.

3.1 PRINTER DRIVERS

Printer Language	Windows $\mathbf{9 5 / 9 8 / M E}$	Windows NT4.0	Windows $\mathbf{2 0 0 0}$	Windows XP	Macintosh
PCL 5c/6	Yes	Yes	Yes	Yes	No
PS3	Yes	Yes	Yes	Yes	Yes
RPCS	Yes	Yes	Yes	Yes	No

NOTE: 1) The printer drivers for Windows NT 4.0 are only for the Intel x86 platform. There is no Windows NT 4.0 printer driver for the PowerPC, Alpha, or MIPS platforms.
2) The PS3 drivers are all genuine AdobePS drivers, except for Windows 2000, which uses Microsoft PS. A PPD file for each operating system is provided with the driver.
3) The PS3 driver for Macintosh supports Mac OS 7.6 or later versions.

3.2 UTILITY SOFTWARE

Software	Description
Font Manager 2000 (Win95/98/Me, NT4.0, 2000, XP, Server2003)	A font management utility with screen fonts for the printer
Smart Device Monitor for Admin (Win95/98/Me, NT4.0, 2000, XP, Server2003)	A printer management utility for network administrators. NIB setup utilities are also available.
Smart Device Monitor for Cloant (Win95/98/Me, NT4.0, 2000, XP, Server2003)	- A printer management utility for client users. - A utility for peer-to-peer printing over a NetBEUI or TCP/IP network. - A peer to peer print utility over a TCP/IP network. This provides the parallel printing and recovery printing features.
Printer Utility for Mac (Mac)	This software provides several convenient functions for printing from Macintosh clients.
\|EEE1394 Utility (Win2000, XP, Server2003)	This utility solves problems with Windows 2000, XP, Server2003.
DeskTopBinder V2 Lite (Win95/98, 2000, NT4, XP, Server2003)	DeskTopBinder V2 Lite itself can be used as personal document management software and can manage both image data converted from paper documents and application files saved in each client's PC.

4. MACHINE CONFIGURATION

Item	Machine Code	No.	Remarks
Main Unit	G104		Standard model (128 MB memory, no HDD)
	G105		High specification model (256 MB memory, HDD standard)
	G392		Up to two trays unit can be installed.
Paper Feed Unit	B584		
Internal Options			
128 MB DIMM Memory	G818		
256 MB DIMM Memory	G395		
NVRAM Memory	B679		Used in common with model K-C2
IEEE1284 I/F Board	B581		
IEEE1394 I/F Board	G813		
IEEE802.11b Board	B736		
Bluetooth Board	G395		
HDD Type 4000	G820		
Network Data Protection Unit Type A			

NOTE: 1) Two of the IEEE1394, IEEE1284, IEEE802.11b, and Bluetooth can be installed at the same time.

SPECIFICATIONS

5. OPTIONAL EQUIPMENT

Paper Feed System:	Friction Pad
Paper Height Detection:	5 steps $(100 \%, 70 \%, 30 \%$, Near End and Empty)
Capacity:	550 sheets $\times 1$ tray $\left(80 \mathrm{~g} / \mathrm{m}^{2}, 20 \mathrm{lb}\right)$
Paper Weight:	52 to $216 \mathrm{~g} / \mathrm{m}^{2}(14$ to 58 lb$)$
Paper Size	A4 / B5 / 81/2" $\times 11 \mathrm{l} / 81 / 2^{\prime \prime} \times 14$ " (SEF)
Power Source:	DC $24 \mathrm{~V}, 5 \mathrm{~V}$ (from the main frame)
Power Consumption:	Less than 15 W
Dimension (W x D x H):	$446 \times 576 \times 150 \mathrm{~mm}$
Weight:	$8.5 \mathrm{~kg} \mathrm{(18lb)}$

G392
PAPER FEED UNIT TYPE 4000

PAPER FEED UNIT TYPE 4000 G392 TABLE OF CONTENTS

1. REPLACEMENT AND ADJUSTMENT 1
1.1 PAPER FEED UNIT 1
1.2 PAPER FEED MOTOR AND DRIVE BOARD 2
1.2.1 PAPER FEED MOTOR 2
1.2.2 DRIVE BOARD 2
1.3 PAPER FEED CLUTCH 3
1.4 SENSORS 4
1.4.1 PAPER END, PAPER NEAR END, AND PAPER FEED SENSORS 4
Paper feed sensor 4
Paper end and paper near end sensors 4
1.4.2 PAPER SIZE DETECTION SWITCH 4
1.5 PAPER FEED ROLLER 5
1.6 FRICTION PAD 5
2. DETAILED DESCRIPTIONS 6
2.1 OVERALL MACHINE INFORMATION 6
2.1.1 MECHANICAL COMPONENT LAYOUT 6
2.1.2 ELECTRICAL COMPONENT LAYOUT 7
2.2 DETAILED DESCRIPTIONS 8
2.2.1 PAPER FEED AND SEPARATION 8
2.2.2 PAPER LIFT 9
2.2.3 PAPER NEAR-END/END DETECTION 10
Paper near end detection 10
Paper end detection 10
2.2.4 PAPER SIZE DETECTION 11

1．REPLACEMENT AND ADJUSTMENT

| ＠CAUTION |
| :--- | :--- |
| Turn off the main power switch and unplug the machine before attempting
 any of the procedures in this section． |

NOTE：This manual uses several symbols．The meanings of those symbols are as follows：
（3）：C ring
茵：screw
玉鳥：connector／harness

1．1 PAPER FEED UNIT

－Remove the paper tray unit from the main unit．
－Pull out the paper tray．
［A］：Upper plate（ $\mathrm{K}^{2} \times 5$ ）
NOTE：Screw［a］is blue．
［B］：Right upper cover（
［C］：Paper feed unit（ $\hat{\xi} \times 7$ ，気事 $\times 2$ ）

1.2 PAPER FEED MOTOR AND DRIVE BOARD

1.2.1 PAPER FEED MOTOR

- Remove the paper feed unit.

1.2.2 DRIVE BOARD

- Remove the paper feed unit.
[B]: Drive board (

1.3 PAPER FEED CLUTCH

- Remove the paper feed unit.
[A]: Disconnect the clutch harness.
[B]: Side plate (${ }^{(1)} \times 4$)
[C]: Paper feed clutch
NOTE: Make sure to properly secure the clutch before completing installation.

1.4 SENSORS

1.4.1 PAPER END, PAPER NEAR END, AND PAPER FEED SENSORS

- Remove the paper tray unit from the main unit.
- Pull out the paper tray.

Paper feed sensor

[A]: Paper feed sensor
Paper end and paper near end sensors
[B]: Sensor holder (\% 1)
[C]: Paper near end sensors (妞 H 1 each)
[D]: Paper end sensor (

1.4.2 PAPER SIZE DETECTION SWITCH

NOTE: When you remove the rear cover, it is not necessary to remove the paper tray unit from the main unit.
[E]: Rear cover (($^{3} \times 4$)
[F]: Paper size detection switch ($⿷^{\mathbb{H} \|} \times 1$)

1.5 PAPER FEED ROLLER

- Pull out the paper tray
[A]: Paper feed roller (move the lever [B] to the right)

1.6 FRICTION PAD

- Pull out the paper tray
[A]: Friction pad

2. DETAILED DESCRIPTIONS

2.1 OVERALL MACHINE INFORMATION

2.1.1 MECHANICAL COMPONENT LAYOUT

1. Side fence
2. Paper pickup roller
3. Friction pad
4. Bottom plate
5. End fence

2.1.2 ELECTRICAL COMPONENT LAYOUT

1. Paper size detection switch
2. Drive board
3. Paper feed clutch
4. Paper feed motor
5. Paper feed sensor
6. Paper end sensor
7. Paper near end sensor 1
8. Paper near end sensor 2

2.2 DETAILED DESCRIPTIONS

2.2.1 PAPER FEED AND SEPARATION

- The paper tray holds 550 sheets of paper.
- The paper feed unit uses a friction pad system.
- The paper feed motor [A] drives the paper feed roller [B] and paper transfer rollers [C].
- The paper feed clutch [D] transfers drive from the motor to the paper feed roller.

2.2.2 PAPER LIFT

- The tray arm $[A]$ moves up on the guide slopes $[B]$ of the machine when the tray is set in the machine.
- The springs [C] lift the bottom plate [D] and the paper stack [E] on the plate.
- The stack of paper contacts the paper feed roller, and this keeps the top sheet of the stack at the correct paper height.
- The paper pressure lever [F] adjusts the bottom plate pressure. When you load thin paper ($52 \sim 74 \mathrm{~g} / \mathrm{m}^{2}, 14 \sim 19 \mathrm{lb}$), slide this lever to the right. The default position is to the left.

2.2.3 PAPER NEAR-END/END DETECTION

Paper near end detection

- Two paper near-end sensors [A], [B] detect the quantity of remaining paper in the tray.
- When the quantity of paper decreases, the bottom plate pressure lever [C] moves up and the actuator [D] turns.
- The machine detects the quantity of remaining paper with the outputs from the paper near-end sensors, as shown in the table below.

Remaining paper	Near end sensor 1 [A]	Near end sensor 2 [B]
Full ~ 450	ON	OFF
$450 \sim 250$	ON	ON
$250 \sim 50$	OFF	ON
$50 \sim 0$	OFF	OFF

OFF: No actuator

Paper end detection

- When the paper tray is empty, the paper end feeler [E] falls into the hole in the bottom plate and the paper end sensor [F] turns on.

2.2.4 PAPER SIZE DETECTION

- The paper size detection switch $[\mathrm{A}]$ is at the rear of the machine.
- The machine disables paper feed from a tray if the paper size cannot be detected (if the paper size actuator is broken or no tray is installed)
- The actuator $[B]$ is on the slide plate $[C]$ that engages with the end fence $[D]$.
- When the end fence moves, the actuator moves from side to side.
- The machine detects the paper size with the outputs from the paper size detection switch, as shown in this table.

Paper Size	Switch Location			
	1	2	3	4
LG SEF	Push	Push	-	-
A4 SEF	-	Push	Push	-
LT SEF	Push	Push	Push	Push
US. EXE SEF	Push	-	-	-
B5 SEF	Push	-	-	-
A5 SEF/ HLT SEF	-	Push	Push	Push
A5 LEF/ HLT LEF	-	-	Push	Push

