Photomultiplier Power Supply

Abstract

Designed primarily as a high voltage photomultiplier power supply with a 15-0-15 volt auxiliary low voltage supply, adjustable between 5 V and 15 V , for transistor circuitry. 220 mA capability permits operation of most amplifier/discriminator units.

- provided with high tension plug and lead pre-wired for output polarity specified at time of order and mating connector for the low voltage output facility.
- instant switch-on without 'spikes' or surges
- 100 V to 2800 V at 5 mA max.
- adjustable to within 0.2 V
- digital dial fine voltage control
- very low ripple
- reversible output polarity
- compact and highly stable
- option for programming
- option for $19^{\prime \prime}$ rack adaption

Description

The output range provided by this unit is 100 volts to 2800 volts. Any voltage within these limits can be set by means of a 12 position switch with 200 volt steps and a 3 digit indicating dial controlling a 5 -turn potentiometer giving 0-500 volts above the switch setting.

Polarity is determined by the specially wired connecting lead provided. This is a convenient and safe method of permanently determining the polarity applied to a photomultiplier and obviates the dangers inherent in other methods of selecting polarity.
The advanced specification and very economical price have been achieved by the use of all solid state linear circuit techniques which develop the
high voltage without the 'spikes' and high frequency noise usually associated with inverter or saturated core devices. Excellent line and load regulation has been achieved by careful design. Ripple is less than 2 mV at full output; voltage change with temperature is negligible.

A standard feature of the unit is the provision of a low voltage auxiliary power supply with adjustable outputs for use with a wide range of photomultiplier head amplifier circuits. The positive and negative auxiliary power supply outputs are independently adjustable between 5 V and 15 V via rear panel pre-set controls. All the power supplies necessary to operate a photomultiplier light detecting system have therefore
been conveniently contained in a single unit.

Applications

This unit has a wide voltage range sufficient to suit the majority of photomultiplier tubes from side window types to fast linear focused structures. Dependent upon individual dynode chain currents, more then one photomultiplier may be driven from the same supply provided the maximum supply current is not exceeded.

The unit is designed as a laboratory power supply and will find many other applications where a high voltage, precision supply is needed.

Specification

High voltage power supply
Output voltage setting range
Polarity

Maximum current

Overload protection

Load regulation
Line stability

Ripple and noise
Meter
Mains input limits

Voltage selection

Resolution

Calibration accuracy (with fine control at zero)
Accuracy of fine control
Temperature coefficient
Drift with time (at constant line, load and temperature)

Output voltage float potential with respect to chassis (either terminal)
Ambient temperature
Working
Storage
Output connéctors
Net weight
Dimensions
Case
Overall

Auxiliary power supply

Output voltage

Maximum current

S/C current limit
Ripple
Load stability
Line stability
Front panel connector

100 to 2800 volts.
Positive or negative with respect to chassis using alternative output connectors.

5 mA .

Current limit at 6 mA , autoreset. Foldback to approx. 3 mA on short circuit. Lamp indicates limiting.
10 ppm for a no load to full load change.
10 ppm for a 10% change of mains voltage, within the permissible mains input limits.
2 mV peak to peak.
Scale length $70 \mathrm{~mm}(2.75 \mathrm{in})$. Accuracy 3%.
200 V to 250 V or 100 V to $125 \mathrm{~V}, 48$ to 66 Hz .
50 VA . Mains lead length 2 metres.
200 volt steps on a twelve position switch plus a $0-500$ volt continuous control by a five turn potentiometer with digital dial indication.

150 mV .
1%.
3% of indication.
$50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typical.
$50 \mathrm{ppm} / \mathrm{hr}$ typical.
$100 \mathrm{ppm} /$ day typical.
250 V d.c. maximum.

0 to $45^{\circ} \mathrm{C}$.
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
H.V. connector: Fischer 400 series.
H.V. coaxial cable type: UR76; length 2 metres.

6 Kg (13.2 lb).
$213 \mathrm{~mm}\left(8^{3} / \mathrm{s}^{\prime \prime}\right) \times 127 \mathrm{~mm}\left(5^{\prime \prime}\right) \times 260 \mathrm{~mm}\left(10^{1 / 4}\right)$.
$213 \mathrm{~mm}\left(8^{3} / 8^{\prime \prime}\right) \times 143 \mathrm{~mm}\left(5^{5} / 8^{\prime \prime}\right) \times 295 \mathrm{~mm}\left(11^{5} / 8^{\prime \prime}\right)$.

Maximum of 15-0-15 volts, each rail independently adjustable between 5 and 15 volts for non-symmetrical operation.
220 mA .
250 mA .
10 mV peak-to-peak.
0.15% no load to full load.
0.02% for $\pm 10 \%$ input change.
Pye SMC3

Electron Tubes, A division of EMI Industrial Electronics Ltd. Bury Street, Ruislip, Middlesex, HA4 7TA, England. Tel: Ruislip 30771; Telex: 935261 EMIET G; Cables: Emitube, Ruislip, Middlesex.

PHOTOMULTIPLIER POWER SUPPLY

Type PM288

Operation Notes

EAI Industrial Electronics Lid Electron Tube Division Ruislip, Middlesex, England

Output voltage setting range Polarity

Maximum current
Overload protection

Load regulation
Line stability
Ripple and noise
Meter
Mains input limits

Voltage selection

Resolution
Calibration accuracy (with fine
control at zero)
Accuracy at fine control
Temperature coefficient
Drift with time (at constant line, load and temperature)
Output voltage float potential with
respect to chassis (either terminal)
Ambient temperature
Working
Storage
Auxiliary Supply
Overload protection
Ripple
Iine stability
Load stability
Output connectors

Net weight
Dimensions
Case
Overall

100 to 2800 Volts
Positive or negative with respect to ground depending on output lead provided.

5 mA

Current limit at 6mA, auto-reset. Foldback to approx. 3 mA on short circuit. Lamp indicates limiting.

10ppm for a no load to full load change.
10 ppm for a 10% change of mains voltage, within the permissible mains input limits. 2 mV peak to peak.
Scale length 70 mm (2.75in). Accuracy 3\%. 200 V to 250 V or 100 V to 125 V , 48 to 66 Hz . 50VA. Mains lead length 2 metres.
200 volt steps with a twelve position switch plus a 0-500 volt continucus control by a five turn potentiometer with digital dial indication.

150 mV .
1%
3% of indication.
50ppm/ ${ }^{\circ} \mathrm{C}$ typical.
$50 \mathrm{ppm} / \mathrm{hr}$ typical.
$100 \mathrm{ppm} /$ day typical.
250 V dc maximum.
0 to $45^{\circ} \mathrm{C}$.
$-20^{\circ} \mathrm{C}$. to $+70^{\circ} \mathrm{C}$.
± 5 to 15 Volts independently adjustable 220 mA max.
250 mA current limit.
10 mV p-p.
0.1% for 10% input charge.
0.8% from no load to full load.
3pin Fischer 400 series connector supplied pre-wired for either positive or negative output, with 2 metre length of UR70 coaxial cable.
Auxiliary ± 5 to 15 V supply 3 pin Pye sitc 3 connector provided.
6 Kg . (13 lbs).
$213 \mathrm{~mm}\left(8 \frac{3}{8}{ }^{\prime \prime}\right) \times 127 \mathrm{~mm}\left(5^{\prime \prime}\right) \times 260 \mathrm{~mm}$ ($10 \frac{1}{4}{ }^{\prime \prime}$).

Description

The Power Supply PM28B provides a stable well regulated output controllable from 100 V to 2800 V at up to 5 mA . Polarity is determined by the specially wired connecting lead provided. This is a convenient and safe method of permanently determining the polarity applied to a photomultiplier and obviates the dangers inherent in other methods of selecting polarity.

An auxiliary adjustable low voltage supply of ± 5 to 15 V is provided which is available from a three pin socket mounted on the front panel. This enables the operation of both photomultipliers and semiconductor head amplifiers from a single power unit.

The general design has been carried out to ensure the maximum convenience for users of photomultipliers. In particular the layout and ranges of the voltage controls have been chosen for this application.

Electrical Characteristics

The unit is provided with a 12 position switch controlling the output in 200 V steps from 100 V to 2300 V and a 5 tum potentiometer for fine voltage control giving a range of $0-500 \mathrm{~V}$. The power supply circuit employs solid state components which enable the output voltage to be available imnediately upon switching on the unit. The output voltage is displayed on a front panel meter and is free from switch-on surges, making the unit particularly suitable for photomultiplier applications.

The auxiliary ± 5 to 15 V power supply is adjustable via two preset potentiometer mounted on the rear panel of the unit. These enable independent adjustment of each power rail for non-symmetrical applications. The OV rail of this auxiliary supply is connected to earth via a 50Ω resistor to minimise earth loop currents and therefore cannot be floated above earth potential. Should this supply be used with a photomultiplier in the earthed cathode configuration, the signal from the anode must be a.c. coupled to the head amplifier and suitable input protection diodes employed.

Polarity Selection

A coaxial output lead with connectors is provided. In this connector the screen of the coaxial cable is linked to ground. In the connector of a lead marked "positive output" the inner of the coaxial cable is connected to the positive output pin and the screen is connected to the negative output as well as to ground. The "positive output" lead is used for photomultipliers being used with the cathode grounded, for example, in pulse counting applications. In the connector of a lead marked "negative output" the inner of the coaxial cable is connected to the negative output and the screen is: connected to the positive output as well as to ground. The "negative output" lead is used for photomultipliers being run with the cathode at EHT-ve, for example in d.c. measurements. This method of polarity selection is particularly convenient for use with photomultipliers since it minimises the chances of the wrong polarity being used.

If earth loops prove to be a problem when the screen of the cable is also grounded at the photomultiplier housing, it may be desirable to remove the link joining the screen and the low potential output to ground in the
output connector. This will be necessary in any case if it is required to float the output voltage with respect to ground.

To avoid the risk of a lead so modified being inadvertently attached to any other photomultiplier circuit or load, it is recommended that each piece of equipment to be fed from the power unit be provided with its owm permanently attached lead. Additional leads can be supplied for this purpose.

CAUTION Except when deliberately floating the output, always ensure that one of the two output leads is securely connected to ground at some point. When deliberately floating the output one of the output leads should be connected to a source less than 250 V . At the same time care should be taken that no extemal parts become live.

Mechanical Characteristics

The unit measures 213 mm (83 B in) wide by 127 mm (5 in) high by 260 mm ($10 \frac{1}{4} \mathrm{in}$) deep. It may be used as a free standing unit, or as a half rack mounted unit.

Mounting Position

The unit should be mounted horizontally. Free circulation of air . should be maintained above and below the unit. For this reason, the plastic feet fixed to the unit should not be removed.

MATNS SUPPLY

Unless otherwise requested, the unit will have been wired for use on 200 to 250 volts r.m.s. a.c. mains, 48 to 66 Hz .

The factory should be consulted if operation on 110 V mains is required.

COLOUR CODE OF MAINS LEAD

Brow $=$ LIVE \quad Blue $=$ Neutral \quad Yellow/Green $=$ EARTH

OPERATING INSTRUCTIONS

Check that the unit is suitable for the mains supply voltage. Connect the appropriate output lead to the photomultiplier housing. Plug the lead into the output socket.
Select the output voltage required.
Switch the unit to ' Cn '.
The output voltage appears immediately, and is indicated by the panel meter.
Should the maximum output current of 5 mA be exceeded, the 'OVERLOAD' indicator will light, and a current limit circuit will operate at approximately 6 mA . The output current must be reduced to below 5 mA for correct operation. Should the power supply output become inadvertently short-circuit, a current foldback circuit limits the short-circuit current to approximately 3 mA . The selected output voltage will re-appear immediately on removal of the short-circuit.
Before using the auxiliaxy low voltage power supply the output voltage must be measured and set to the required levels using a suitable external voltmeter and the two adjustment potentiometers on the rear panel of the unit.

CAUTION

THE POWER SUPPLY CAN PRODUCE LETHAL VOLTAGES. ALWAYS S:ITTCH THE SUPPLY OFF AND WAIT UNTIL THE OUTPUT HAS FALLEN TO ZERO BEFORE CONNECTIING, DISCONNECTING, OR MAKING ADJUSTIENTS TO THE LOAD.

RECALIBRATION

Equipment required: DVM, Load Resistor, Multimeter.
Full recalibration is carried out as follows:

1. Remove the top cover.
2. Connect the positive output firmly to ground.
3. Connect DVM, set to its 1 KV range to the negative output and chassis.
4. Select 900 V out, apply mains to the unit, switch on, and allow the unit to warm up for $\frac{1}{2}$ hour.

CAUTITON

DANGEROUS VOLTAGES EXIST. PROCEED WITH CARE. USE A FULLY INSULATED TRIMMITG TCOL.
ADJUSTMENTS TO BE CARRIED OUT ON PRINTED CIRCUIT BOARD FO. 1.
5. Set switch to 900 volts. Adjust RV1 for a reading on the DVI of 900.0 volts. (See diagram below).
6. Adjust RV2 for 9.0 ± 0.2 volts between TP1 and Pin 2 of Plug B (use $20,000 \mathrm{ohm} / \mathrm{volt}$ meter).
7. Rotate RV3 fully anti-clockwise. Draw 6mA load current. Rotate RV3 slowly clockwise until the overload lamp lights.
8. Adiust RV1 (on Bd 3 which is on the back of the meter) for correct meter reading at -2300 V set by the volts switch with the variable control at zero.

PRE-REGULATOR ADJUSTMENT

For correct circuit operation, the voltage across the series stabilizer transistors TR1 and TR2 on PCB2 is set to $300 \mathrm{~V} \pm 10 \mathrm{~V}$ by adjustment of potentiometer RV1 on PCB2. Re-adjustment of this is not normally necessary in the recalibration procedure.

OJTPUT VOLTAGE CALIBRATION ONLY

If it is not desired to reset the overload characteristic steps 6 and 7 above may be omitted.

Component Reference	Description	TYPE	QTY
R1	Resistor $1 \mathrm{~K} \frac{1}{2} \mathrm{w} 5 \%$ Carbon Film	CR 37	1
R7 a \& b	Resistor $270 \mathrm{~K} 1 \mathrm{w} 5 \% \mathrm{H} . \mathrm{S}$. Carbon Film	134-046	2
R6, R8	Resistor 560K 1w 5% H.S. Carbon Film	134-080	2
R5, R9	Resistor 1m2 1w 5\% H.S. Carbon Film	134-125	2
C1	Capacitor 0.047 ${ }^{\text {f }}$	345 CAPAC 660M	1
C2, C 3	Capacitor 1800 pf 4 Kv Ceramic	K120061 CD8	2
RV1	Potentiometer 5 turn 10K	DRG 25510 D13	1
FS1	20 mm Fuse 0.5A Anti-Surge	L2080	1
SK3	Earth Terminal (Black)	L1726/1	1
	Panel Fitting for Earth Terminal	04	1
	Fuseholder	L2006A	1
SK2	3 Pin Socket 2 ($5 / 15 \mathrm{~V}$ Supply)	SMC 3 Black	1.
PL2	3 Pin Plug)	SMC 3 Black	1
LP2	Lamp, Amber, 14 V	575-813	1
LP1	Lamp, Red, 14V	575-807	1
T1	Transformer	PM 28B T1-2	1
T2	Transformer	PM 28B T2 (EH/G2G)	1
S1	Switch Off-On	MSRC 33	1
S2	Switch - Range	25525 CE1 Iss 2	1
M1	Meter 3Kv 100 4 A FSD Type 38	DRG 25510 D14	1
	Multitum Dial dal $^{\text {a }}$	15-1-11	1
	Knob (Voltage Switch)	S210250	1
	Knob (On-Off Switch)	S151125	1
	Nut Cover	N151	1
	Knob Cap	C210	1
	Knob Cap	C150	1
	Dial Stator	25510 D2	1
	Strain Relief Bush (Mains Lead)	SRSL/ 1	1
PL1	Plug 3 Pin (EHT Supply)	S400A $002+\mathrm{E}$	1
	Cable Shroud for Plug	400-00-260	1
SK1	Socket 3 Pin	D400A $002+$ E	
SK D,E, J	Connectors 3 way	4003	
SK B, C	Connectors 5 way	4005	
SK A,H	Connectors 7 way	4007	
SK F,G	Connectors 9 way	4009	
	Stand-Off Insulator	W 4031 4BA	

NOTE: For PCB Board 5A connector and rear panel mounted items see Board 5A Parts List Page 12.

Resistor 82R $\frac{1}{2}$ w 5\% Carbon Film Resistor $1 \mathrm{~K} 2 \frac{1}{2}$ w 5% Carbon Film Resistor $1 \mathrm{~K} 8 \frac{1}{2} \mathrm{w} 5 \%$ Carbon Film Resistor $4 \mathrm{~K} 7 \frac{1}{2} \mathrm{w} 5 \%$ Carbon Film Resistor $10 \mathrm{~K} \frac{1}{2} \mathrm{w} 5 ; 6$ Carbon Film Resistor $15 \mathrm{~K} \frac{1}{2} \mathrm{w} 5 \%$ Carbon Film Resistor $22 \mathrm{~K} \frac{1}{2} \mathrm{w} 5 \%$ Carbon Film Resistor $100 \mathrm{~K} \frac{1}{2} \mathrm{w}$ 5\% Carbon Film Resistor 220K $\frac{1}{2}$ w 5\% Cärbon Film Resistor $2 \mathrm{M} 2 \frac{1}{2} \mathrm{w} 5 \%$ Carbon Film Resistor 47K $\frac{1}{2} \mathrm{w} 5 \%$ Carbon Film Resistor 750R $\frac{1}{2}$ w 5% Carbon Film

132-466 1

Resistor $2 \mathrm{~K} 4 \frac{1}{2} \mathrm{w} 5 \%$ Carbon Film
132-589

Resistor 10R 1w 5% H.S. Carbon Resistor 5K6 1w 5\% H.S. Carbon Resistor 5M6 1v 5\% H.S. Carbon Resistor $2 \mathrm{~K} 2 \frac{1}{2} \mathrm{w} \frac{1}{4} \% 50 \mathrm{pmm} /{ }^{\circ} \mathrm{C}$ Metal Film FC65 1 Resistor $6 \mathrm{~K} 8 \frac{1}{2} \mathrm{~W} \frac{1}{2} \% 50 \mathrm{ppm} / \mathrm{C}$ Metal Film

Resistor $120 \mathrm{~K} \frac{1}{2} \mathrm{w} \frac{1}{4} \% 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Metal Film
Resistor 150K $\frac{1}{2} \mathrm{w} \frac{1}{4} / \mathrm{F} 50 \mathrm{ppm} /{ }^{\circ} \mathrm{S}$ Metal Film
FC65

Capacitor 100nf 30V Ceramic
124-1782-2BZY 88-C152
BZY 88-C6V8 1

P.C. BOARD 1 PARTS LIST Continued

Component Reference	Description	Type	Qty
CR1	Current Regulator Diode 2.8 mA	E 507	1
D21	Zener Diode	BZX 61030	1
$\left.\begin{array}{l} \text { D2-D7, D9-11, } \\ \text { D13:D15,D16 } \end{array}\right)$	Diode	IN 914	12
D17,D16,D19	Silicon Diode	IN 4003	3
D20	Silicon Diode	IN 4004	1
TR1	Transistor NPN 1W	2N3053	1
TR2	Transistor PNP 250 mW -	21×4058	1
TR3, TR4	Transistor NPN 360m//	2N3707	2
IC1, IC2, IC 3	Operational Amplifier I.C.	LM741 CN	3
IC4	Voltage Regulator	LM 399H	1
RV1	Potentiometer 1 K Lin 0.75W Cermet	Cermet 43P	1.
RV3	Potentiometer 100R Lin 0.75: ${ }^{\text {a }}$ Cermet	VA05V/100R	1
RV2	Potentiometer 10K Lin 0.75\% Cermet	VA05V/10K	1
\%	Dust Covers for RV2 \& RV3	99587x	2
	Heatsink for 2 N 3503	5 F 2	1
PLA,B,C \& E	PCB Pins	4910	22

Component
Reference
R11
R10,R14,R15
R. 12
R.13
?15
R9
R1-R6
R8
R7
RV1

C1, C 2
C9-C13
C6
C7, C8
C3,C4
C5
D7, D3
D5
VDR1, VDR2
D1,D2
23
D6
D7
221
2R2, TR3
TR4
RLA

Descrintion

Resistor $22 \mathrm{~K} \frac{1}{2} \mathrm{~m}$ 5; Carbon Film Resistor $1 \mathrm{~K} \frac{1}{2} \mathrm{~W}$ 5, 0 Carbon Film
Resistor 6K8 $\frac{1}{2} \mathrm{~W}$ 5; ${ }^{6}$ Carbon Film
Resistor 10K
Resistor 330R $\frac{1}{2} w$ 5; Carbon Film
Resistor $56 \mathrm{~K} \frac{2}{2} \mathrm{~W}$ 5; Carbon Film
Resistor $1 \mathrm{MO} 1 \mathrm{w} 5 \% \mathrm{H} . \mathrm{S}$. Carbon
Resistor $3 \mathrm{M} 3 \frac{1}{2} \mathrm{w} 5 \% \mathrm{H} . \mathrm{S}_{\text {. }}$ Carbon
Resistor 5 KK 2w 5 活 H.S. Carbon
Potentiometer 2.2K Cermet
Cover for RV1
Capacitor 500nf 3 kV Plastic Film
Capacitor 22 nf 630V Plastic Film
Capacitor 2 N 263 V
Capacitor 100yf 63V Electrolytic
Capacitor 6 n 85 kV Ceramic
Capacitor . $1 \mu \mathrm{f}$ 100V Ceramic
Zener Diode 4.7V
Zener Diode 18V 1w
Zenamic Suppressor
Silicon Diode
Silicon Diode
Rectifier Bridge
Rectifier Bridge
Transistor TIPSO/BUX 86
Transistor
Transistor
Reed Relay
Hownting Pads for $215 / 3904$

Type
Qty
CR 37 1
CR 37 3

CR $37 \quad 1$
CR 37 1
CR 37 1
CR 37 -
134-119 . 6
133-273 1
134-844 1
VA $05 \mathrm{~V} / 2 \mathrm{~K} 2$ 1
99587 X . 1
CAP FACEL X3 2
PMT2 RO 22R 5
630-06222 1
017-18101 2
K 7900 HV CPб́ 2
344-21104 1
BZY88-C4V7 ? 2
BZX61-018 - 1
Z10L 3912
FII 75 . 2
IN $4004 \quad 1$
1 K AB 20 1
$1 \mathrm{~K} \mathrm{AB} 80 \quad 1$
BUX $86 \quad 1$
2N 39042
BFR 40 1
CD3377 1
10171 3

P.C. BOARD 3 PARTS LIST

Component Reference	Description	Type	Qty
R1, R2	Resistor 12M 2W 1\% Metal Film	4037 C	2
RV1	Potentiometer 10K 75W Cermet	$43 \mathrm{P} / 10 \mathrm{~K}$	1
	P.C.B. Pins	4010	$2:$

P.C. BOARD 4 PARTS LIST

Component Reference	Description	Type	Qty
T1	Transistor	BUX 84	1
R1	Resistor $10 \sim \frac{1}{2}$ w 5\% C.F.	CR 37	1
R2	Resistor $100 \mathrm{R} \frac{1}{2} \mathrm{w}$	5. C.F.	CR 37
	Pin	4010	1
	Thermal Conductive Pad	SK $28 \mathrm{B3}$	3.
			1

Component
Reference

* These items are mounted on the rear panel or incorporated in the cable form.

