3-BAND STERED RADIO CASSETTE RECDRDER

моде no. CS-880E, K

AIWA

[SERVICE MANUAL]

DISASSEMBLING CHART OF MAIN PARTS

- To avoid troubles when disassembling or replacing the main parts, follow the chart diagram as below.

DSL circuit board

(Including radio chassis, tuning, display MS, AF (pattern side) PC Boards)

MD-3 mechanism

DISASSEMBLY INSTRUCTIONS

Removing the Main Case

1) Remove 11 screws on the rear lid shown by arrows \leftarrow.

2) Remove 9 knobs.

Note 3) Open the cassette lid.
(It is not required to remove the cassette lid)

Installing the Main Case

1) Check that the fibre apper of the REC/PB PC Board (pattern die) is fixed properly.
Notes Firmly fix the fibre paper using two-sided tape, etc. because it is likely to lift up when it is peeled off once.
2) Lower all the lever switches in the direction of the arrow.

Note 3) Be sure to install in the order (1) - (3). Be careful: when it is mounted incorrectly, it may damage the dial plate and the display PC Boards, etc.

4) Match the knobs while performing item 3) and tapping the side.

1) Be sure to remove the level meter before starting work to prevent the pointer of the level meter from being damaged.

2)

Loosen the screw and lift up the hook.

3) Remove 3 screws and lift up the radio chassis in the direction of the arrow. The radio chassis, REC/PB, tuner, MS and display PC Boards are removed at that time.

Noter Installing the radio chassis

1) Hook the jack plate to the tab of the rear lid while paying attention not to pinch the wire. Compress the radio chassis against the direction of the arrow after checking that the tuner PC Board is inserted into the rib.

Removing Mechanism

1) Loosen the screw and remove the hook of the rod.

2) Remove 4 screws

Cautions on Disassembling MD-3 Mechanism

Disassemble or repair the MD-3 mechanism while paying attention to the springs and levers, etc. shown in the figure below.

Be sure to hook the T-spring (PLAY lever) to the cam of the gear when installing the gear PLAY.
Hook it from the inside of the gear using a clock screwdriver as shown in the figure. Perform the same for the gear FR and cam gear PAUSE.

DESCRIPTION OF THE MD-3 MECHANISM

Description of the PLAY Operation

With the plate button pressed, the trigger lever (PLAY) moves in the direction of the arrow $\leftarrow(1)$, the gear (PLAY) is released from the boss of the trigger lever (PLAY) engages with the gear flywheel and rotates in the direction of the arrow $\leftarrow(2)$, the boss (A) of the gear (PLAY) touches the trigger lever (PLAY) and the gear stops rotating.

When the gear (PLAY) rotates, the lever (PLAY) moves in the direction of the arrow \leftarrow (3) along the cam groove on the rear of the gear to push up the operation chassis in the direction of the arrow $\leftarrow\{4$).
The PLAY button which has been locked is released by pressing the STOP button, the trigger lever (PLAY) moves in the direction of the arrow $\leftarrow(5)$, the boss (A) of the gear (PLAY) is released and the PLAY operation stops.

Description of the FF Operation

When the FF button is pressed, the trigger lever FF moves in the direction of the arrow \leftarrow (1), the boss of the gear FR cam is released and engages with the gear wheel to rotate in the direction of the arrow. \leftarrow (2), the boss (A) touches the boss of the trigger lever $F F$
and the gear FR cam stops. The FR lever B moves in the direction of the arrow $\leftarrow(3)$ along the groove of the gear FR cam, the FR lever B moves in the direction of the arrow $\leftarrow(3)$, the $F R$ lever C compresses the gear of the FR lever Ass'V against the Take-up reel disc ass'V to perform the FF operation.

REW Operation

When the REW button is pressed, the trigger lever REW moves in the direction of the arrow $\leftarrow(1)$ and pushes the lever REW in the direction of the arrow $\leftarrow(2)$. The trigger lever FF releases the boss A of the gear at that time, the gear FR engages with the gear flywheel, rotates in the direction of the arrow $\leftarrow(3)$, boss B touches the trigger lever FF and rotation stops.

The FR gear B is moved in the direction the arrow $\leftarrow(4)$ by means of the cam of the gear FR following the rotation of the gear FR, pulls the FR lever C in the direction of the arrow $\leftarrow(5)$ and moves the FR lever ass'y in the direction of the arrow $\leftarrow(6)$ to rotate the Take-up reel disc reel disc ass'y to perform the REW operation.

Description of the PAUSE Operation

When the PAUSE button is pressed, the trigger lever PAUSE moves in the direction of the arrow $\leftarrow(1)$, the boss A of the gear PAUSE is released, enages with the gear flywheel and rotates in the direction of the arrow $\leftarrow(2)$, the boss B touches the trigger PAUSE and rotation stops.

REC Operation

When the REC and PLAY buttons are pressed simultaneousiy, the trigger lever REC moves in the direction of the arrow $\leftarrow(1)$.
The PLAY operation is performed simultaneously at that time, so the REC lever driver moves in the direction of the arrow $\leftarrow(2)$, pushes the lever REC A, B in the direction of the arrow $\leftarrow(3)$, the interlocked slide REC plate pulls the rod, the slide switch is operated and the unit enters the REC mode.

When one of the STOP, FF and REW buttons is pressed, the REC trigger lever is released from the REC lever driver and only the REC operation is released.

Description of the Auto-stop Operation

The motor rotation is transmitted to the gear auto-kick of the MD-3 mechanism via the slip pulley FR ass'y.
The slip disk presses the lever auto A in the direction of the arrow \leftarrow (1) when the Take-up reel disc ass'y is rotating, so the boss of the lever auto A moves along the cam (A) groove of the gear auto-kick.

When the reel discs (S, T sides) stop, the lever auto A stops in the condition being moves in the direction of the arrow $\leftarrow(2)$.
The cam (B) of the gear auto-kick moves the lever auto A in the direction of the arrow $\leftarrow(3)$, operates the plate auto-kick in the direction of the arrow \leftarrow (4) to release the plate lock and performs the AUTO STOP operation.

SPRING APPLICATION POSITION

-
T-spring, Plate lock

Ref. No.	Part No.	Part No. Changed to	Description	$\begin{gathered} \text { Common } \\ \text { Model } \end{gathered}$	O'ty	
1-1	09-017-850-01		Main case ass'y	*	1	
	82-587-001-01		Cabinet, Main		1	
	82-587-234-01		Damper A, Rubber	*	18	
	82-587-007-01		Panching	*	1	
	82-587-036-01		Badge	*	1	
	82-587-009-01		Side panel R	*	1	
	82-587-010-01		Side panel L	*	1	
	82-587-028-01		Panel, Front	**	1	
	82-563-032-01		Cassette plate	CS-990	1	
	82-587-003-01		Window, Dial	*	1	
	82-587-221-01		E-spring (tact)	*	1	
	82-587-239-01		P-spring, Tact A	*	1	
	87-321-097-21		$\mathrm{OT}_{1}+3-12$	*	6	
1-2	82-587-635-01		Drone cone ass'y	*	1	
1-3	82-587-227-01		P-spring, Earth	*	1	
$1-4$	82-576-241-01		E-spring, Earth	CS-350	1	
1-5	82-587-020-01		Tact push-key	*	13	
16	82-587-021-01		Push-button	*	2	
1-7	82-587-218-01		T-spring, Cassette lid	*	1	
1-8	82-587-202-01		Cassette box	*	1	
1.9	82-587-004-01		Window, Cassette	*	1	
1-10	82-587-011-01		Decorative panel, Cassette	*	1	
1-11	87-081-979-01		Decorative screw 3-12		2	
1-12	82-587-219-01		P-spring, Cassette holder	*	2	
1-13	09-017-851-01		Back cover ass'y	*	1	
	82-587-038-01		Back cover ass'y	*	1	
	82-587-213-01		C-spring, Terminal A	*	1	
	82-587-214-01		C-spring, Terminal B	*	1	
	82-587-216-01		C-spring, Terminal C	*	1	
	82-587-215-01		Terminal plate U_{1}	*	1	
	82-587-217-01		Terminal plate U_{3}	*	1	
	82-587-226-01		Sheet, Faiber	*	2	
	82-277-382-01		Spring, Terminal		1	
	81-235-211-01		Terminal plate D		1	
	87-349-095-21		$\mathrm{UT}_{1}+3-8$		1	
1-14	82-534-203-01		Click plate spring R		1	
1-15	82-587-212-01		Shaft, Handle	*	2	
1-16	82-587-231-01		Rubber bushing 6×10	*	1	
1-17	82-587-233-01		Rubber bushing 7×10	*	1	
1-18	87-038-039-01		Wire binder		2	
1-19	82-587-208-01		Rubber bushing 3×5	*	1	
1-20	82-587-013-01		Handle L	*	1	
1-21	82-587-014-01		Handle grip	*	1	
1-22	82-587-012-01		Handle R	*	1	
1-23	82-587-005-01		Battery room lid	*	1	
1-24	82-587-237-01		M cushion $14 \times 35 \times 5$	*	1	
1-25	82-587-247-01		M cushion $7 \times 281 \times 7$	*	2	
1-26	82-587-017-01		Knob	*	4	
1-27	82-563-014-01		Knob, TOGGLE	CS-990	4	
1-28	82-587-023-01		Knob, VOLUME (UP)	*	1	
1-29	82-587-024-01		Knob, VOLUME (DOWN)	*	1	
1-30a	82-587-030-01		Name plate, Spec. (E model only)	*	1	
1-30b	82-587-031-01		Name plate, Spec. (K model only)	*.	1	
1-31a	82-587-025-01		AC jack plate (E model only)	*	1	
1-31b	82-587-041-01		AC jack plate (K model only)	*	1	

EXPLODED VIEW-2						
1	2	3	4	5	6	7

Ref. No.	Part No.	Part No. Changed to	Description	Common Model	Q'ty	
4-1	82-585-289-01		Shaft lock		1	
4-2	82-585-285-01		C-spring lock		1	
4-3	82-585-317-01		E-spring, Button lock		1	
4-4	82-585-306-01		T-spring, Play lever		1	
4-5	82-585-283-01		Slide plate, FR auto		1	
4-6	82-585-282-01		Slide plate, Motor switch		1	
4-7	82-585-327-01		Slide plate key ass'y		1	
4-8	82-585-268-01		Auto A lever		1	
4-9	82-585-269-01		Auto B lever		1	
4-10	82-585-270-01		Plate auto kick		1	
4-11	82-585-248-01		Lever, PAUSE		1	
4-12	82-585-264-01		FR lever D		1	
4-13	82-585-297-01		T-spring, FR lever A		1	
4-14	82-585-271-01		Auto eject lever		1	
4-15	82-585-299-01		T-spring, Auto eject		1	
4-16	82-585-262-01		$F R$ lever B		1	
4-17	82-585-263-01		FR lever C		1	
4-18	82-585-298-01		T-spring, FR lever B		1	
4-19	82-585-261-01		Trigger lever, REC		1	
4-20	82-585-260-01		Lever, REW		1	
4-21	82-585-303-01		T-spring, Trigger (REC)		1	
4-22	82-585-308-01		E-spring, REW lever		1	
4-23	82-585-341-01		E-spring, FR lever		1	
4-24	82-585-300-01		T-spring, FR cam		1	
4-25	82-585-217-01		Slip pulley FR ass'y		1	
4-26	82-585-216-01		Drive gear		1	
4-27	82-585-244-01		Play cam gear		1	
4-28	82-585-245-01		FR cam gear		1	
4-29	82-585-256-01		Trigger lever, PAUSE		1	
4-30	82-585-304-01		T-spring, Trigger (PAUSE)		1	
4-31	82-585-246-01		Gear, PAUSE		1	
4-32	82-585-247-01		Gear, Auto kick		1	
4-33	82-585-249-01		PLAY lever		1	
4-34	82-585-250-01		Lever, REC drive		1	
4-35	82-585-307-01		T-spring, REC lever		1	
4-36	82-585-266-01		REC A lever		1	
4-37	82-585-267-01		REC B lever		1	
4-38	82-585-314-01		E-spring, REC		1	
4-39	82-585-258-01		Trigger lever, PLAY		1	
4-40	82-585-259-01		Trigger lever, REW		1	
4-41	82-585-308-01		T-spring, REW lever		1	
4-42	82-585-331-01		C-spring, REW lever		1	
$4-43$	82-585-257-01		FF trigger lever		1	
4-44	82-585-301-01		E-spring, Trigger PLAY		1	
4-45	82-585-321-01		T-spring, Auto kick		1	
4-46	82-585-203-01		Mechanism chassis B ass'y		1	
4-47	82-585-315-01		E-spring, Slide plate		1	
4-48	82-585-332-01		E-spring, REC lock		1	
4-49	82-585-229-01		Flywheel ass'y		1	
4-50	82-585-243-01		Gear, Flywheel		1	
4-51	82-585-324-01		C-spring, Flywheel		1	
4-52	82-585-336-01		Rubber belt FR B		1	
4-53	82-585-287-01		Rubber belt, Flywheel		1	
4-54	82-585-323-01		Holder, Pause switch		1	
4-55	82-585-281-01		Holder, Motor		1	
4-56	82-585-242-01		Motor pulley		1	
4-57	82-585-326-01		Thrust bearing B		1	
4-58	82-588-206-01		Rubber cushion, REC lever	CS-770	1	
4-59	87-038-039-01		Wire binder		1.	
4-60	82-587-241-01		E-spring, Slide plate	*	1	
4-61	82-587-228-01		Slide plate REC ass'V	*	1	
4-62	82-585-335-01		T-spring, Plate lock		1	
4-63	87-087-029-01		Rubber cushion		3	
4-64	87-081-483-01		Motor screw, M2.6		3	
4-65	82-585-342-01		Rubber cushion, PAUSE lock		1	
4-66	82-587-232-01		Holder, REC switch	*	1	

Description of Circuitry

1. Block Diagram of Synthesizer Tuner

Fig. 1

2. Outline of PL.L. Frequency Synthesizer

The PLL (phase-locked loop) requency synthesizer is a cirucit which uses the extremely stable frequency of a crystal oscillator as the reference signal to produce the frequencies desired. For instance, to pick up a station broadcasting on a frequency of 100 MHz , a local oscillation frequency (f_{O} : output frequency of voltage-controlled oscillator) supplied to the mixer of 110.7 MHz $(100+10.7)$ is required. This particular unit adopts a prescaler which emplovs a pulse swallow system to divide the frequency, and send it to the programmable counter inside the contraller 1C. The output frequency f_{n} then enters the phase comparator. The frequency of the extremely stable 4.5 MHz crystal oscillator is counted down ($1 / 180$) at the same time and the reference frequency fref of 25 kHz is sent to the phase comparator. The phases of f_{n} and $f_{r e f}$ are compared and the difference between the two is detected. If there is no difference, the loop is locked; if there is a difference, the control voltage passes through the low-pass filter, it is fed out to the VCO and the VCO is controlled until f_{n} is made equivalent to 25 kHz .
The reference frequency $f_{\text {ref }}$ for $A M$ reception is 9 kHz (or 10 kHz). The VCO frequency signal is sent directly to the programmable counter.

2-1. Operation During FM Reception
The pulse swallow system is first outlined.
The relationship between $f_{o s c}$ and $f_{\text {ref }}$ is expressed as: $f_{\text {osc }}=N \times f_{\text {ref }}$
If N is assumed to be P notation:

$$
\begin{equation*}
f_{o s c}=\left(n_{1}+p n_{2}+P^{2} n_{3}+\ldots+p n^{-1} n_{n}\right) f_{\text {ref }} \tag{1}
\end{equation*}
$$

$$
=P\left(n_{1} / P+n_{2}+P n_{3}+\ldots+P n-{ }^{2} n_{n}\right) f_{r e f}
$$

If, now, the part including the second digit and above is made Np :
$f_{\text {osc }}=P\left(n_{1} / P+N p\right) f_{\text {ref }}$
This is modulated to become:

$$
\begin{align*}
f_{\text {OsC }} & =\left(n_{1}+P N p+P n_{1}-P n_{1}\right) f_{\text {ref }} \\
& =\left[\left(N p-n_{1}\right) P+n_{1}(P+1)\right] f_{\text {ref }} \tag{2}
\end{align*}
$$

The above represents the principle of the pulse swallow system. In order to achieve the relationship expressed in formula (2) by physical means, this unit has a prescaler with two frequency division ratios, $1 / 16$ and 1/17. In formula (1), this corresponds to $P=16$. Actual operation is as follows: when the signal produced by dividing $f_{\text {osc }}$ by $(P+1)$ is counted down n_{t} times at the first programmable divider digit and n_{1} becomes 0 , the P-divided signal is counted down ($N p-n_{1}$) times equivalent to the number of the first digit subtracted from the number of the second and higher digits of the programmable divider, and the cycle ends. This cycle is performed with $f_{\text {ref equal }}$ to 25 kHz .
When $f_{S}=100 \mathrm{MHz}$ is received:
f_{IF} is 10.7 MHz and so therefore $\mathrm{f}_{\mathrm{OS}}=100+10.7=110.7 \mathrm{MHz}$
From formula (1): $\mathrm{N}=\frac{110.7 \mathrm{MHz}}{25 \mathrm{KHz}}=4428$
If this figure is reexpressed in the sexadecimal notation, and made to correspond with 114C formula (2):
$N p=114, n_{1}=C$
Therefore, $f_{\text {ref }} \times[(114-C) \times 10+C \times 11]=f_{\text {OSC }}$
If this is re-expressed in the decimal notation:
$25 \mathrm{kHz} \times\left[\left(16^{2}+16^{1}+4-12\right) \times 16+12 \times 17\right]=110.7 \mathrm{MHz}$ What happens is that the prescaler divides the frequency by $1 / 17$ for the first 12 counts and then by $1 / 16$ until 264 counts, and this switching operation is repeated. The swaliow counter is locked at 12 and the programmable counter is locked at 264.

CS-880E,K

2-2. Operation During AM Reception
When $f_{s}=594 \mathrm{kHz}$ is received:
$f_{s}=594 \mathrm{kHz}$ and $\mathrm{f}_{\mathrm{IF}}=450 \mathrm{kHz}$
Therefore $: \mathrm{f}_{\text {osc }}=594+450=1044 \mathrm{kHz}$
Since $f_{\text {ref }}=9 \mathrm{kHz}$ (or 10 kHz), (at $L W f_{\text {ref }}=1 \mathrm{kHz}$) $4.5 \mathrm{MHz} \div 9 \mathrm{kHz}=500$
$f_{\text {osc }}(1044 \mathrm{kHz}) \div 9 \mathrm{kHz}=116$
Therefore, the crystal oscillator frequency division is locked at 500 and that of the programmable counter at 116.
3. Description of ICs Used

Fig. 3 is a block diagram of the ICs in the PLL frequency synthesizer section and LCD indicator section.

Fig. 3
3-1. Prescaler μ PB553AC
This IC is energized during FM reception, it selects either the $1 / 16$ or $1 / 17$ frequency division ratio in accordance with the command from the swallow counter inside the codntroller, and it sends the signal to the controller's programmable divider.

3-1-1. Pin Configuration

Fig. 4

Pin no.	Name	Function
1	V $_{\text {cc }}$	Power supply
2	IN	VCO input pin
3	CHK	Check pin, connected to GND at all times
4	GND	Ground
5	OUT	Output pin
6	PSC	Frequency division ratio setting pin (frequency division setting input from controller)
7	NC	Not used
8	NC	Not used

3-2. Controller μ PD1703C-515
Contained in this IC are the conventional programmable divider section and control section.

3-2-1. Pin Configuration

Fig. 5

Pin no.	Name	Function
$\mathbf{1 , 2}$	EO1, E02	Charge pump output pins of phase detector; since signals are fed out during AM/FM re- ception, one or other is connected to LPF.
$\mathbf{3}$	CE	High: Normal operation Low: Memory held, operation stops
$\mathbf{4}$	PSC	Feeds out frequency division ratio switch- ing signal to prescaler.
5,6	X1, X2	Crystal oscillator pins
7	SD	High: Auto tuning stop mode Low: Auto tuning enable mode
$\mathbf{8}$	MUTE	Feeds out high level signal during key operation. (Used for muting of signal system)
$\mathbf{9 \sim 1 3}$	$\overline{\text { D1 } \sim \overline{D 5}}$	Display digit signal output pins Only D1 and D2 are used with this unit and are connected to LCD driver.
$\mathbf{1 4}$	VDD	Power supply pin
$\mathbf{1 5 \sim 2 1}$	Sa~Sg	Key matrix key return signal source pins
$\mathbf{2 2 \sim 2 5}$	K0~K3	Key matrix key return signal input pins
$\mathbf{2 6}$	FM	Input pin for FM prescaler output
27	GND	Ground
$\mathbf{2 8}$	AM	AM fosc input pin

3-2-2. Key Matrix Functions

- The function in parentheses is displayed by key operation based on a momentary switch (marked $\frac{1}{00}$).
- Manual/auto selection (*1)

Manual/auto selection is performed by a fixed switch but in th is unit the key operations are carried out with momentary switches which, thanks to the flip-flop circuit, have the same functions as fixed switches.
When connected: A uto tuning
When disconnected: Manual tuning

- LCD static/dynamic selection (*2)

This determines whether the LCD display system should be static or dynamic. In this unit, static specifications apply and so the diode is shorted.

- IF frequency selection (*3, *4)

Alignment is made with the FM IF frequency by $I F_{1}$ and $I F_{0}$ shorting and open combinations. The IF frequencies used by this unit are $10.675 \mathrm{MHz}, 10.700 \mathrm{MHz}$ and 10.725 MHz and so the combinations appear as follows:

IF offset frequency	IF $_{1}$	IF $_{0}$
10.675 MHz (blue)	Open	Shorted
10.700 MHz (red)	Open	Open
10.725 MHz (orange)	Shorted	Shorted

Color of ceramic filter indicated in parentheses.

- Japan/US use selection (*5)

When connected: US specifications
When disconnected: Japan specifications

- AMi frequency interval selection (*6)

The AM channel frequency intervals are selected to 10 kHz or 9 kHz .
When connected: 10 kHz
When disconnected: 9 kHz
3-3. LCD driver (MSM5829GS)
Indication is provided on the LCD by connecting the three serial output data from the controller (μ PD1703C-515)

Fig. 7

Pin n o.	Name	Function
$\begin{aligned} & 8,9,10,4 \\ & 5,7,6, \\ & 56,1,2,52 \\ & 53,55,54 \\ & 31,32,33,27 \\ & 28,30,29 \\ & 47,48,50,43 \\ & 44,46,45 \\ & 12,13 \\ & 11,3,51, \\ & 42,34, \\ & 41 \end{aligned}$	SEGMENT OUT A1, B1, C1, D1 E1, F1, G1 A2, B2, C2, D2 E2, F2, G2 A5, B5, C5, D5 E5, F5, G5 AA, BA, CA, DA EA, FA, GA F1, F2 DP1, DP2, DP3, DP4, DP5 CH	L.CD segment output pins (see Fig. 8*)
15	$\mathrm{V}_{\text {SS }}$	Ground Pin
16	OSC	LCD AC drive frequency pin; with this unit, the circuit is configured as below.
17	SERIAL OUT	Not used
18	SERIAL IN	Data indicated with shift register data input pins are fed into this pin in synchronization with clock pulses. (Connected to pin 19 of controller IC)
19	CLOCK	Sync. input pin when data is fed into, or fed out of shift register. (Connected to pin 9 of controller $\mid C)$
20	LOAD	Input pin for latching shift register contents. High: Shift register contents are transmitted to decoder. Low: Final contents at high level are held (Connected to pin 10 of controller IC)
21,49	VDD	Power supply pin
22	BI/RBO	Not used
23	SELECT	This function is not used and so pin is always at high level or, in other words, it is connected to VDD.
24	RBI	Pin for determining whether or not leftmost display digit is to indicate a numeral or not. In this unit, it displays only significant figures and so it is used at the low level, or in other words, it is connected to V_{SS} (ground).
25	RESET	Pin for switching display to segment or dot; since segment is used in this unit, it is set to high level or, in other words, it is connected to VDD.
26	COM	This pin feeds out an output with the reverse phase to that of COM. In this unit, it is not used for direct display but for AM and FM +B selection as mentioned later.
14	COM	This pin feeds out a signal with the reverse phase to that of output and 7 segments for AC drive of the LCD; it drives the LCD common pin.
$\begin{aligned} & 35,36,37 \\ & 38,39,40 \end{aligned}$		Not used

Fig. 8

4. Other Circuits

4-1. FM/AM +B Power Selector Circuit

Fig. 9

Switching is performed with a 4-NAND gate iC (IC2).

Fig. 10

When the FM band selector key is depressed, pulses with the same phase are fed out to IC3 (MSG5829G) DP4 and COM. As this output passes through the NAND gate IC (TC4011BP), a high level output is produced at NAND gate 1 output and th is causes Q20 to turn ON. As a result, Q19 turns ON and the FM $+B$ is obtained. With AM reception, no output appears at DP4, the NAND gate 1 output is set to the low level and with Q20 OFF, Q18 turns ON and the $A M+B$ is obtained.

4-2. Scan Auto Stop Circuit

Fig. 11

4-2-1. Operation During FM Reception

The S-curve output pin 10 and meter output pin 15 of IF IC (IC2, HA12413) are used. If pin 10 has a voltage where $V(B)$ $<\mathrm{V}(10)<\mathrm{V}(\mathrm{A})$ with respect to the preset point A and point B voltages (about $\pm 0.5 \mathrm{~V}$ with respect to pin 10 voltage during tuning), no output appears at point (C) and when there is an output at pin 15 , point (F) is set to a low level and no signal is fed out to point (C). A trigger pulse is produced at point (G) by the above two AND circuits, this is applied to the SD pin of the controller IC and the scanning is stopped.

4-2-2. Operation During AM Reception

The IF output from pin 12 is smoothed and point (F) is reduced to the low level by the output. As with FM reception, a trigger pulse is produced at point (G) and the scanning stops. [IC3 ($\mathrm{NJM4558D}$) does not work during AM reception.]
5. Dynamic Super Loudness (DSL) Circuit

If the DSL circuit is compared with the loudness circuit, it is seen that both function to boost the low-range (bass) and highrange (treble) frequencies with respect to the midrange frequencies but there are the following major differences.

5-1. Characteristics

Fig. 12
The loudness system functions to boost the midrange frequencies too. However, the DSL system keeps this increase down to the bare minimum.
With the loudness system, the characteristics do not change with the strength of the signal entering the volume control for providing a tape in the control [normally scale unit 5 (center position)], and the volume control's tap position is mechanical,
meaning that the characteristics change. At a scale position lower than the volume control's tap position, the loudness characteristics are provided regardless of the strength of the sound level and, in contrast, even when the sound level is low, the effect is impaired by the control's scale position.
However, the DSL system judges the strength of the sound level by electrical means and features a configuration which produces dynamic super loudness characteristics.

5-2. DSL Circuit Configuration

The DSL circuit comprises the equalizer circuit which produces the DSL characteristics, the detector circuit which judges the strength of the sound level and the control circuit which suppresses the DSL characteristics when the sound is high.

Fig. 13

5-2-1. Equalizer Circuit
An ordiany direct-coupled amplifier feedback circuit (T-type bridge circuit) is provided with time constants, and its characteristics generated.
Tow T-type bridge circuits are connected in series and the time constants are divided into the left side for bass [R361, 359, C359, 361] and right side for treble,
The characteristics of each of the twin filters connected to pins 3 and 8 of IC351 (TA7137P) are attenuated by frequency f_{1} determined by constants R1, R2 and C1.

5-2-2. Detector Circuit

The level of this circuit is set by the frequency division ratio of two resistors.

5-2-3. Control Circuit

This circuit is the same as an ALC circuit used for normal recording although it differes in that its attack time and recovery time are extremely short.
Because of the boosted level, the output must be not distorted. When a signal exceeding a certain fixed level is fed out, it is taken out by the Q49 emitter, the IC7 ALC circuit functions and the input of pin 2 is controlled.

Fig. 16

The DSL circuit with the above-mentioned configuration is mixed with a main amplifier. The ICI (AN7146) input has a differential amplifier configuration, and when a flat signal enters transistor Q1 at one side of the differential amplifier from the volume control, a flat signal also enters the DSL circuit simultaneously. Q2 is basically a negative feedback pin but when the output (signal with DSL characteristics) of the DSL circuit is fed into the Q2 input, differential operation is provided by Q 1 and 02.

The DSL block input transistor Q47 is used to invert the phase. As a result, the phase is inverted at the DSL block input and output sides and so the differential operation of Q1 and Q2 becomes a mixing operation. Meanwhile, the feedback from the output inside IC7 does not change and negative feedback operation results.
When the signal level is low in Fig. 13, there is a high degree of mixing by Q1 and Q2 inside IC1 so that the DSL feeds out a strong signal, and the bass nad treble are greatly boosted. However, when the signal level is high, the DSL block output is suppressed, the amount of mixing by $\mathrm{Q1}$ and Q 2 inside IC1 is reduced, and since the 02 input is reduced to a fraction, almost all of it becomes the signal fed in from Q1.
The resistor inserted across the ground and OFF side pin of the DSL. ON/OFF switch functions to compensate for the difference in the volume when the switch is selected.

Fig. 14

Fig. 15

ACCESSORIES/PACKAGE

Ref. No.	Part No.	Part No. Changed to	Description	Common Model	Q^{\prime} 'ty
1	82-587-855-01		Printed indiv., Packing	*	1
2	82-587-852-21		Cushion L, Printed indiv.	*	1
3	82-587-853-21		Cushion R, Printed indiv.	*	1
4	87-051-137-11		Poly-vinyl sack		1
5	87-056-626-01		Poly-vinyl sack		1
6 a	82-587-908-01		Instructions booklet (E model only)	*	1
6 b	82-587-909-01		Instructions bookelt (K model only)	*	1
7	82-587-907-01		Sticker, POP	*	1
8	87-051-171-11		Poly-vinyl sack (for instruction)		1
9	87-056-009.41		Distributors list		1
10	87-056-008-11		Label, AC power cord (K model only)		1
11	87-056-016-01		Tag, Main voltage (K model only)		1
12	82-916-740-01		Tape cassette, DMC-164		1
13a	87-034-883-01		AC power cord (E model only)		1
13b	87-034-871-01		AC power cord (K model only)		1

ELECTRICAL MAIN PARTS LIST

Symbol No.	Part No.	Description	Symbol No.	Part No.	Description	Symbol Nc	
C77,78	87-015-313-01	$0.33 \mu \mathrm{~F} \quad 10 \mathrm{~V}$ Aluminum solid	PIN-3	87-049-034-01	Pin, 4P	S12	
					< Capacitors >	S13	
<CONTROL CIRCUIT BOARD SECTION \gg			C361,362	87-015-311-01	$0.1 \mu \mathrm{~F} \quad 10 \mathrm{~V}$ Aluminum solid	CON-4	
PCB-C	82-587-604-11	Control circuit board	C359,360	87-015-313-01	$0.33 \mu \mathrm{~F}$ 10V Aluminum solid	CON-3	
(4) IC1	87-027-750-01	IC, μ PD1703C514	C359,360	87-015-313-01	$0.33 \mu \mathrm{~F}$ 10V Aluminum solid	CON-2	
(4) IC2,4	87-027-564-01	IC, TC4011BP	<REC AMP CIRCUIT BOARD SECTION》			CON-1	
(4) 103	87-027-751-01	IC, MSM5829GS	PCB-F	82-588-617-11	REC amp circuit board		
Q1,2,3,4	89-318-154-01	Transistor, 2SC1815 (Y)	Q23,24,25,	89-318-154-01	Transistor, 2SC1815 (Y)		
Q5	89-500-303-01	FET, 2SK30 (O)	26 ${ }^{\text {2 }}$,	89-318-154-01	Transistor, 2SC1815 (Y)	C1,2	
D1,2,3,4,	87-027-097-01	Diode, 1S1555	L5,6	87-005-088-01	Micro inductor, 5.6 mH		
$\begin{aligned} & \text { 5,6,7,11, } \\ & \text { 12,13,14,15, } \end{aligned}$			SFR9,10	87-021-672-01	Semi-fixed resistor, $50 \mathrm{k} \Omega$-B		
16,17,18,19,					< Capacitor >	\triangle Safety	
20,21,22,23,			C81,82	87-015-311-01	$0.1 \mu \mathrm{~F} \quad 10 \mathrm{~V}$ Aluminum solid	This symbol	
24,25,26						the safety of	
D27,29	87-027-716-01	LED, GL-PPR22 (AUTO OPERATE/FM STEREO)	\ll MONITOR CIRUCIT BOARD SECTION $>$			safety specif this symbol,	
			PCB-G	82-588-633-21	Monitor circuit board		
D28	87-027-758-01	LED, GL-9PG 22 (DOLBY-NR)	Q9,10	89-322-405-01	Transistor 2SC2240 (GR)		
D30	82-587-603-01	LCD (FREQUENCY INDICATOR)	Q11,12,13,	89-318-154-01	Transistor, 2SC1815 (Y)	C-MOS IC ha The C-MOS	
$\times 1$	87-030-083-01	Crystal resonator	14,15,16		Pin, 4P		
S19,20,21,	87-031-498-01	Push-switch (TUNING, DOWN, UP,	PIN	87-032-634-01		by static ele ing articles.	
22,23,24,		MEMORY, 1, $2,3,4,5,6$, FM, MW,LW)	<REC MUTE CIRCUIT BOARD SECTION $>$				
28,29,30,			PCB-H	82-587-618-21	REC mute circuit board	1. Need to and to deposit. 2. To use	
31 ,			072	89-1 10-154-01	Transistor, 2SA1015 (Y)		
PL1,2	82-587-605-01	Piiot lamp	D1	87-027-097-01	Diode, 1St555		
	82-587-606-01	Electric conduction rubber	S9	82-587-642-01	Push-switch (REC MUTE)	2. To use s consump	
$\ll \mathrm{MS} \mathrm{CIRCUIT} \mathrm{BOARD} \mathrm{SECTION}>$			$\ll L E D$ CIRCUIT BOARD SECTION $>$			3. Do not the circui 4. The ICs MOS IC s	
PCB-D	82-587-615-21	MS circuit board	PCB-I	82-587-619-21	LED circuit board		
(4) 1 C 6	87-027-713-01	IC, TC9138P	D1	87-027-731-01	LED, SR-535D (RECORD)		
Q401,402,403, $404,405,411$	89-327-854-01	Transistor, 2SC2785 (E)	<LIGHT SWITCH CIRCUIT BOARD SECTION $>$				
404,405,411,			PCB-J	82-587-648-21	Light switch circuit board		
415,416			S33	86-992-604-01	Push-switch (LIGHT)		
Q406	89-111-154-51	Transistor, 2SA1115 (E,F) <POWER CIRCUIT BOARD SECTION \gg					
Q407,409	89-313-834-01	Transistor, 2SC1383 (S)	APCB-K ${ }^{\text {a }}$ \| 82-551-672-21		SECTION $>$		
Q408	89-106-834-51	Transistor, 2SA683 (RS)	\triangle PCB-K	82-551-672-21	Power circuit board		
D401	87-027-756-01	LED, SL-1160L (MS PROGRAM)	D501	87-027-609-01	Encapsulated diode		
D402	87-027-365-01	Diode, S5277B	$\sim^{110,11}$	87-032-958-01	AC-DC jack		
D403	87-027-332-01	Zener diode, HZ6B1L	\triangle S16	87-031-466-01	Slide switch		
D404,405,	87-027-097-01	Zener diode, HZ6B1L Diode, 1S1555	AF1		(VOLTAGE SELECTOR)		
406,407,				87-035-192-01	Fuse, 'T'' 4A		
408,409,			$\triangle \mathrm{A} 2$	87-098-022-01	Fuse lable, "T' 4 A		
410,411,				87-035-219-01	Fuse, "'T'' 500 mA		
415				87-098-013-01	Fuse clamp		
D412,413,	87-027-716-01	LED, GL-9PR22 (PEAK $0,+3,+7$)	0	87-033-147-01			
414					<Resistor >		
D416	87-027-228-01	Zener diode, 05Z-7.5U	R501	87-025-194-01	$220 \Omega 2 \mathrm{w}$ Metal film resistor		
S17,18	87-031-496-01	Tact switch (PROGRAM, RESET)					
SFR401,402	87-021-624-01	Semi-fixed resistor, $50 \mathrm{k} \Omega$-B < Capacitors >	< MISCELLANEOUS $>$				
			$\triangle T_{1}$	82-587-651-01	Power transformer (E model only)		
C412	87-015-318-01	$\begin{array}{lll}0.1 \mu \mathrm{~F} & 10 \mathrm{~V} & \text { Aluminum solid } \\ 1 \mu \mathrm{~F} & 25 \mathrm{~V} & \text { Aluminum solid }\end{array}$	$\widehat{\triangle}{ }^{\text {T1 }}$	82-587-652-01	(E model only)		
C407	87-015-425-01				Power transformer (K model only)		
\ll DSL CIRCUIT BOARD SECTION》			RPH	87-046-159-01	REC/PB head		
PCB-E	82-587-617-21	DSL circuit board	EH	87-046-189-01	Erase head		
1C7,8	87-027-176-01	IC, TA-7137P Stereo type	SOL1SP1,2	82-585-601-21	Solenoid		
Q47,48,49,	89-318-154-01	Transistor, 2SC1815 (Y)		82-587-644-11	Speaker (Woofer)		
50,51,52,			SP3,4	82-563-602-01	Speaker (Tweeter)		
73,74			SP5	82-587-635-11	Passive radiator ass'y		
D351	87-027-097-01	Diode, 1S1555	LM1,2	82-588-642-01	Level meter		
L10	82-587-610-01	Coil, DC-DC	- ECM1,2	87-041-015-01	ECM, ESN:-10PB		
PIN-4	87-049-038-01	Pin, 3P	M1	87-045-135-01	Motor DC EG		
PIN-2	82-481-647-01	Pin, 4P	$\begin{aligned} & \$ 10,14 \\ & \text { S11 } \end{aligned}$	87-031-548-01	Leaf switch (MOTOR, SYNCRATE) Micro switch (PLAY)		
				87-031-537-01			

\&REC AMP CIRCUIT BOARD SECTION \gg

- 82-588-617-11 \quad REC amp circuit board

89-318-154-01 \quad Transistor, 2SC1815 (Y)

L5,6 \quad 87-005-088-01 \quad Micro inductor, 5.6 mH 87-021-672-01 Semi-fixed resistor, $50 \mathrm{k} \Omega$-B 87.015-311.01 $0.1 \mu \mathrm{~F}$ 10V

PCB-G \mid 82-588-633-21 \mid Monitor circuit boar
by static ele, ing articles.

1. Need to : and to b deposit.
2. To use s consump1 second.
3. Do not F the circui
4. The ICs MOS IC s

Symbol No．	Part No．	Description
PIN－3	87－049－034－01	Pin，4P
		$<$ Capacitors $>$
C361，362	$87-015-311-01$	$0.1 \mu \mathrm{~F} \quad$ 10V Aluminum solid
C359，360	$87-015-313-01$	$0.33 \mu \mathrm{~F}$
		10V Aluminum solid

＜REC AMP CIRCUIT BOARD SECTION \gg

PCB－F	82－588－617－11	REC amp circuit board
$\begin{aligned} & \mathrm{Q} 23,24,25, \\ & 26 \end{aligned}$	89－318－154－01	Transistor，2SC1815（Y）
L5，6	87－005－088－01	Micro inductor， 5.6 mH
SFR9，10	87－021－672－01	Semi－fixed resistor，50k Ω－B
		＜Capacitor＞
C81，82	87－015－311－01	$0.1 \mu \mathrm{~F}$ 10V Aluminum solid

《MONITOR CIRUCIT BOARD SECTION \gg

PCB－G	$82-588-633-21$	Monitor circuit board
Q9，10	89－322－405－01	Transistor，2SC2240（GR）
Q11，12，13， $14,15,16$	$89-318-154-01$	Transistor，2SC1815（Y）
PIN		
	$87-032-634-01$	Pin，4P

《REC MUTE CIRCUIT BOARD SECTION \gg
PCB－H

O72	89－110－154－01	Transistor，2SA1015（Y）
D1	87－027－097－01	Diode，1S1555
S9	$82-587-642-01$	Push－switch（REC MUTE）

《LED CIRCUIT BOARD SECTION \geqslant

PCB－I	82－587－619－21	LED circuit board
D1	$87-027-731-01$	LED，SR－535D（RECORD）

«LIGHT SWITCH CIRCUIT BOARD SECTION \gg

PCB－J	$82-587-648-21$	Light switch circuit board
S33	$86-992-604-01$	Push－switch（LIGHT）

\ll POWER CIRCUIT BOARD SECTION \gg

D501

J10，11
$\triangle S_{1}$
$\triangle F 1$
$\triangle F_{2}$
\triangle
82－551－672－21 87－027－609－01 87－032－958－01 87－031－466－01

87－035－192－01 87－098－022－01 87－035－219－01 87－098－013－01 87－033－147－01

R501 87－025－194－01
Power circuit board Encapsulated diode AC－DC jack Slide switch （VOLTAGE SELECTOR
Fuse，＂T＂4A
Fuse lable：＂T＂4A
Fuse，＂T＂ 500 mA Fuse label；＂T＂ 500 mA Fuse clamp
＜Resistor＞
$220 \Omega 2 w$ Metal film resistor

《MISCELLANEOUS \gg
$\widehat{\Delta T}$
$\triangle T 1$
82－587－651－01
82－587－652－01 （E model only）

RPH EH SOL1 SP1，2 SP3，4 SP5 LM1，2 ECM1，2 M1 S10，14 S11

87．046－159－01 87－046－189－01 82－585－601－21 82－587－644－11 82－563－602－01 82－587－635－11 82－588－642－01 87－041－015－01 87－045－135－01 87－031－548－01 87－031－537－01 Micro switch（PLAY）

Symbol No．	Part No．	Description
S12	$87-031-615-01$	Leaf switch（MUSIC SENSOR）
S13	$87-031-361-01$	Leaf switch（PAUSE）
CON－4	$82-587-623-11$	Connector ass＇y，3P
CON－3	$82-587-622-11$	Connector ass＇y．4P
CON－2	$82-587-646-01$	Connector ass＇y，4P
CON－1	$82-587-613-11$	Connector ass＇y，12P
	$87-033-166-01$	Antenna terminal（EXT－ANT）
		CCapacitor＞
C1，2	$82-918-610-01$	$3.3 \mu \mathrm{~F} \quad$ 5OV Electrolytic BP

Safety component symbol
This symbol is given to important parts which serve to maintain the safety of the product，and which are made to conform to special safety specifications．Therefore，when replacing a component with this symbol，make absolutely sure that you use a designated part．

C－MOS IC handling precaution
The C－MOS IC＇s construction makes this part susceptible to damage by static electricity and so take sufficient care in regard to follow－ ing articles．
1．Need to be put on conductive sheet，to be put in a metallic box and to be wrapped by aluminium foil for transportation and deposit．
2．To use solder iron less than 40 W （less than $260^{\circ} \mathrm{C}$ ）of power consumption for soldering．But do not overheat more than 10 second．
3．Do not perform a conductivity test with a tester，etc．Refer to the circuit voltages of each part．
4．The ICs on the electrical parts which are indicated by an C－ MOS IC symbol mark（（4））．


```
|5:
```


Itict: on	
TPP1,2 1 Strought 0 ote	
Bisc curron Adisumen!	
arimg:	
${ }_{\text {M }}^{\text {LTAL }}$	

\mid

[^0] I
I

[^0]: y

