MODEL 360B
 VECTOR NETWORK ANALYZER
 SYSTEM MAINTENANCE MANUAL

TABLE OF CONTENTS

Chapter 1 - General Information

Provides general information about the 360B Vector Network Analyzer system, which includes a list of related manuals, service information, static handling procedures, and a list of recommended test equipment. Chapter contents are detailed immediately following the tab.

Chapter 2 - 360B VNA System

Describes overall operation, which includes an overall system block diagram. Chapter contents are detailed immediately following the tab.

Chapter 3-360B VNA System Performance Tests

Provides performance tests for the three system configurations based on test set model:
$361 \mathrm{XA} / 362 \mathrm{XA}, 3630 \mathrm{~A} / 3631 \mathrm{~A}$, and 3635 B . Chapter contents are detailed immediately following the tab.

Chapter 4 - 360B VNA System Troubleshooting

Provides system troubleshooting tables for isolating problems to the malfunctioning major assembly. Chapter contents are detailed immediately following the tab.

Chapter 5 - 360B VNA Information

Describes the VNA unit, which includes a block diagram. Also provides remove and replace procedures. Chapter contents are detailed immediately following the tab.

Chapter 6 - 36XXA Test Sets, General Information

Provides description and remove and replace procedures for the test sets covered in this manual. Chapter contents are detailed immediately following the tab.

Chapter 7 - 361XA/362XA Test Sets Information

Provides an overall description and block diagram of the Model 361XA/362XA Test Set, along with descriptions of individual PCBs and RF components. Chapter contents are detailed immediately following the tab.

Chapter 8 - 3630A/3631A Test Sets Information

Provides an overall description and block diagram of the Model 3630A/3631A Test Set, along with descriptions of individual PCBs and RF components. Chapter contents are detailed immediately following the tab.

Table of Contents (Continued)

Chapter 9 - 3635B Test Set Information

Provides an overall description and block diagram of the Model 3635B Test Set, along with descriptions of individual PCBs and RF components. Chapter contents are detailed immediately following the tab.

Chapter 10-360SSXX Signal Source Information

Describes the 360SS47 and 360SS69 Signal Sources. Chapter contains full service and troubleshooting information, which includes description, block diagrams, troubleshooting, performance tests, adjustments, and remove and replace procedures. Chapter contents are detailed immediately following the tab.

Appendix A - Model 363XA Test Set Operation

Provides operation information for the 3630A and 3631A Test Sets. Appendix contents are detailed immediately following the tab.

Appendix B - 360ACM Auxiliary Control Module Maintenance Information

Describes the 360 ACM . Appendix contains full service and troubleshooting information, which includes description, block diagrams, troubleshooting, performance tests, adjustments, and remove and replace procedures. Appendix contents are detailed immediately following the tab.

Subject Index

Provides a subject index.

Chapter 1
 General Information

Table of Contents

1-1 SCOPE OF MANUAL 1-3
1-2 INTRODUCTION 1-3
1-3 IDENTIFICATION NUMBER 1-3
1-4 RELATED MANUALS 1-3
$1-5$ SERVICE INFORMATION 1-5
1-6 RECOMMENDED TEST EQUIPMENT 1-12

Figure 1-1. Model 360B Vetor Network Analyzer System (Shown installed in Model 360C1 System Console

Chapter 1
 General Information

1-1 sCOPE OF MANUAL

1-2 INTRODUCTION

1-3 IDENTIFICATION NUMBER

1-4 related manuals

This manual provides general and service information for the Model 360B Vector Network Analyzer (VNA) system (Figure 1-1). (Throughout this manual, the terms 360 BVA and 360 B will be used interchangeably to refer to the system.) Manual organization is shown in the narrative Table of Contents that precedes this chapter. The information in this manual provides for fault isolation to the assembly level for system instruments. Covered instruments consist of network analyzer, signal (frequency) source, test sets, and 360 ACM used with the 3635 B mm -wave test set.

This chapter provides general information about the 360B VNA system. It also provides replaceable-assembly information and a listing of recommended test equipment for servicing 360 B VNA system instruments.

All WILTRON instruments are assigned a unique six-digit ID number, such as "701001." This number is affixed to a decal on the rear panel of each unit. In any correspondence with either WILTRON Customer Service or your Anritsu/Wiltron Service Center, please use this number.

NOTE
The system operating software is keyed to the analyzer identification number. For systems having certain option installed, the operating-system will only load on the serialnumbered 360 B for which the software is identified.

Manuals related to the operation and maintenance of the 360 B VNA system are listed in Table 1-1. This table also lists the 360B VNA optional equipment manuals.

Table 1-1. List of Related Manuals

Titie	Description	Part Number
Model 360B Vector Network Analyzer Operating Manual	Provides operating information for the 360 B VNA.	10410-00110
Model 360B Vector Network Analyzer Getting Started Guide	Provides a tutonal for quickly getting started making measurements with the 360 VNA system. Manual is bound with the 3608 OM , but can be ordered separately.	10410-00111
Model 360B Vector Network Analyzer GPIB Programming Manual	Provides programming information for the 360 B GPIB interface.	10410-00113
360B GPIB Quick Reference Guide	Alphabetically list and briefly describes all 3608 GPIB commands. Provides references to fuller command descriptions located in 360B GPI8 PM. Manual is bound with the 360B GPIB PM, but can be ordered separately.	10410-00114
Model 36XX Calibration and Veritication Kit Operation and Maintenance Manual	Provides operating instructions and maintenance information for the Models $3650,3651,3652,3653$, and 3654 Calibration Kits and the Models 3666 , 3667,3668 , and 3669 Verification Kits.	10100-00024

1-5 service information module Exchange Program.

WILTRON Customer Service and the Anritsu/Wiltron Service Centers provides an module exchange program that includes the parts and assemblies listed in Table 1-2.

Table 1-2. Exchangeable Subassemblies, 1 of 6

WILTRON Part Number	Description
	360 Vector Network Analyzer
D14364-3	At LO 1 Phase Lock PCB Assembly
014351-3	A2 LO2 Phase Lock PCB Assembly
D14366-3	A3 Cal3rd L.O. PCB Assembly
D14352-3	A4 AD Converter PCB Assembly
D34355-3	A5 10 MHz Aeference PCB Assembly
D34605-3	A6 Source Lock PCB Assembly
D14353-4	A7 Synchronous Detector A PCB Assembly
D14353-5	A8 Synchronous Detector B PCB Assembly
D14353-6	A9 Synchronous Detector R PCB Assembly
034624-3	Ato Blanking/Synchronous PCB Assembly
DS7995-3	A11 IOO VGA Processor PCB Assembly
D34520-3	A12 Main 2 Processor PCB Assembly
D38057-3	A13 Main 1 Processor PCB Assembly
D34680-3	A14 Power Supply Control PCB Assembly
D36965-3	A15 Power Supply Convertor PCB Assembly
D37574-3	A16 Test Set 10 PCB Assembly
D34656-3	A18 Power Supply Motherboard
D38112	Front Panel Assembly 360B, includes disk drive
D36993	Color Display VGA Assembly

Table 1-2. Exchangeable Subassemblies, 2 of 6

WILTRON Part Number	Description
	$36 \times \times$ A Series Test Sets
D30701-4	A1T IF Amplifier, Channel B PC8 Assembly
D34519-3	A2T IF Amplifier, Reference Channel PCB Assembly
D30701-5	A3T IF Amplifier, Channel A PCB Assembly
030704-3	A4TLO2PCB Assembly
034603-3	A5TLO 1 PCB Assembly
D34760.3	AST Power Distribution PCB Assembly, 3635B
D37611-3	A6T Digital Interiace PCB Assembly
D34636-3	A7T Attenuator Driver PCB Assembly
D35558-3	A27T Amplifier/Switch Driver PCB Assembly
	3600 RF Components, 20 GHz and below
D21852	A8T Buffer Arnplifier Assembly, Channel B, 3610A, 3620A
D21851	A10T Buffer Amplifier Assembly, Channel A, 3610A, 3620A
015320-1	A12T Power Amplifier Assembly
B19820-1	A13T Transter Switch, with cable, 3610A, 3620A
D20363	A14T/A15T Coupler, 3610A, 3620A
021586	A18T/A19T Bias Tee, Female - Female
C21587	A18T/A19T Bias Tee, Male - Female
4412 K	A20T/A21T/A22T Step Attenuator, $70 \mathrm{~dB}, 20 \mathrm{GHz}$
D34511	A24T Source Lock / Relerence Select Assembly
D17900	A25T RF Spliter
	3600 RF Components, 40 CHz and below
017929	A8T Buffer Amplifier Assembly, Channel B, 3611A, 3621A, 3630 A
D21854	ABT Buffer Amplifier Assembly Channel B, 3611A, 3621A, 3630A
D17928	AtoT Buffer Amplifier Assembly, Channel A, $3611 \mathrm{~A}, 3621 \mathrm{~A}, 3630 \mathrm{~A}$

Table 1-2. Exchangeable Subassemblies, 3 of 6

WILTRON Part Number	Description
D15320-1	A12T Power Amplifier Assembly
819821-1	A13T Transfer Swith, B19821 with cable, 3611A, 3621A
D15825	A14T/A15T Coupler, 3611A, 3621A
021586	A18T/A19T Bias Tee, Female - Female
C21587	A18T/A19T Bias Tee, Male - Female
4612 K	A20T/A21T/A22T Step Attenuator, $70 \mathrm{~dB}, 40 \mathrm{GHz}$
D34511	A24T Source Lock / Reterence Select Assembly
	3600 RF Components, 60 GHz
D21856	A8T Bufter Amplitier Assembly. Channel B
021421	ABT Bufter Ampliter Assembly, Channel B
D21855	A10T Butter Amplifier Assembly, Channel A
021420	A10T Buffer Amplifier Assembly, Channel A
D21405-1	A12T Power Amplifier / Multiplier Assembly, D21405 with cable
D21350-1	A13T Transfer Switch, D21350 with cable
D20600	A14T/A15T Coupler, 60 GHz
D22811	A14T/A15T Coupler 62.5 GHz
V250	A18T/A19T Bias Tee, 60 GHz
4712V	A20T/A21T/A22T Step Attenuator, $70 \mathrm{~dB}, 60 \mathrm{CHz}$
D34511	A24T Source Lock / Reference Select Assembly
D21395	A25T RF Splitter
D21360	A28T/A29T SPDT/Spliter
. 023356	A30T Channel B Tripler Assembly, 60 GHz , includes $1000-37$ Isolator, 1040-15 Tripler, D21319 Mux coupler, C21372 Amplifier and C21382 High Pass Filter. This must be replaced as an entire assembly.

Table 1-2. Exchangeable Subassemblies, 4 of 6

WLTRON Part Number	Description
C23361	A30T Channel B Tripler Assembly, 62.5 GHz . Includes $1000-37$ Isolator, 1040-15 Tripler, D21319 Mux coupler, C21372 Amplifier and C21382 High Pass Fiter. This must be replaced as an entire assembly.
023355	A31T Channei A Tripler Assembly, 60 GHz . Includes $1000-37$ Isolator, 1040-15 Tripler, D21319 Mux coupler, C21372 Amplifier and Ca 1382 High Pass Filter. This must be replaced as an entire assembly.
023360	A31T Channel A Tripler Assembly, 62.5 GHz includes $1000-37$ Isolator, 1040 -15 Tripler, D21319 Mux coupler, C21372 Armplifier and C21382 High Pass Fiter. This must be replaced as an entire assembly.
	3600 RF Components, 65 GHz
D39098-5	A27T Amplifiel/Switch Driver PCB Assembly
026220	A31T Channel A Tripler Assembly, 65 GHz . Includes 1040-17 Tripler, D26224 Mux coupler, C25593 Amplifier and other components. This must be replaced as an entire assembly.
026221	A30T Channel A Tripler Assembly, 65 GHz . Includes 1040-17 Tripler, D26225 Mux coupler, C25593 Amplifier and other components. This must be replaced as an entire assembly.
ND26237	A25T RF Splitter
D26219	A12T Power Amplifier / Multiplier Assembly
D26222	A10T Buffer Amplifier Assembly, Channel A
D26223	A8T Euffer Amplifer Assembly. Channel B
ND26180	A14T/A15T Coupler 65 GHz
ND26179	A20T/A21T/A22T Step Attenuator, $70 \mathrm{~dB}, 65 \mathrm{GHz}$
ND26181	A18T/A19T Bias Tee, 65 GHz
839096*	Cable Assembly, Auxiliary Power
551-1095*	Auxiliary Power Connector (rear panel)
$40.56 *$	Auxiliary Power Supply (USA)
$40-57^{*}$	Auxiliary Power Supply (UK)
40.58°	Auxiliary Power Supply (Europe)
* These components are not on the module exchange program; however, they may be ordered as standard replacement parts.	

Table 1-2. Exchangeable Subassemblies, 5 of 6
WILTRON
Part Number \quad Description

3635B Millimeter VNA RF Components

1091-87	A11T Power Spliter
C21660	A20T RF Input Amplifier, 11-20 GHz
D23385	A21T/A22T LO Amplifier, $8-15 \mathrm{GHz}$
D21925-1	A9T Transfer Switch
D22447	A10T Channel A Euffer/Amplifier Assembly
D20876	A8T Channel B Buffer/Amplifier Assembly

360 ACM

D37719-3	A100 PCB Assembly
837862	15 volt PSU Assembly
B37862	12 Volt PSU Assembly

360ss Series System Source

D32101-3	A1 GPIB PCB Assembly
ND34470	A4 ALC PCB and Coupler Assembly, 3605547
ND35979	A4 ALC PCB and Coupler Assembly, 360SS69
D32105-3	A5 Frequency Instruction PCB Assembly
D34710-11	A10 FM PCB Assembly
D32113-3	A13 Power Supply PCB Assembly
	360SS RF Components
60-102	Frequency Doubler Amplifier, 360 SS69
C8090-5	Down Converter Assembly, cabled D9157A
D13355	PIN Switch Assembly, $360 \mathrm{SS69}$
D13611	DPDT PIN Swith, 8-26.5 GHz
018696	PIN Switch Assembly, 3608547
ND31355	13.25 to 20 GHz Amplifier, 360 SS69
N019075	18 to 26.5 GHz Amplifier, 360 SS 69

Table 1-2, Exchangeable Subassemblies, 6 of 6

WILTRON Part Number	Description
ND35918	2 to 8 GHz Oscillator Assermbly, $360 \$ 847$
NO35919	2 to 8 GHz Oscillator Assembly, 3605869
ND35934	B to 12.4 GHz Oscillator Assembly, 360 SS 47
ND35935	8 to 12.4 GHz Oscilator Assembly, $360 \mathrm{SS69}$
ND35950	12.4 to 20 GHz Oscillator Assembly, $360 \mathrm{SS47}$
ND35951	12.4 to 18 GHz Oscillator Assembly, 360 SS69
ND35958	18 to 26.5 GHz Oscillator Assembly, $360 \$ 569$
C20812	Output Connector Assembly

Static	Figure 1-2 provides procedures that should be fol-
Handling	lowed when handling static sensitive parts.

CAUTION

WILITRON highly recommends that you use a grounded wrist strap when handling 360 B VNA System PCBs and components. The 360 B VNA system contains parts that can be damaged by static electricity.

SERVICE	GENERAL
INFORMATION	INFORMATION

1. Do not touch exposec contacts on any static sensitive component.

2. Wear a static-discharge wristband when working with static sensitive components.

3. Handle PCBs only by their edges. Do 8. not handle by the edge connectors.

4. Do not slide static sensitive component across any surface.

5. Label all static sensitive devices.

Litt \& hande solid state devices by their bodies - never by their leads.

3. Do not handle static sensitive components in areas where the floor or work surface covering is capable of generating a static charge.

6. Keep component leads shorted together whenever possible.

9. Transport and store PCEs and other static sensitive devices in staticshieded containers.
10. ADDITIONAL PRECAUTIONS:

- Keep workspaces clean and free of any objects capable of hoiding or storing a static charge.
- Connect soldering toots to an earth ground.
- Use only special anti-static suction or wick-type desoldering tools.

Figure 1-2. Static Handling Procedures

1-6 recommended test EQUIPMENT

Figure 1-3. WILTRON T1512 360B Test Fixture

Table 1-3 lists the recommended test equipment for maintaining and servicing the 360 B VNA system.

Table 1-3. Recommended Test Equipment (1 of 2)

Instrument	Critical Specification	Recommended Manufacturer/Model
Spectrum Analyzer, with Diplexer and External Mixers	Frequency: 0.01 to 60 GHz Resolution: 10 Hz	Tektronix, Inc. Model 494Pwith External Mixers: WM 490K (18 to 26.5 GHz) WM 490A (26.5 to 40 GHz) WM 490 U (40 to 60 GHz) WM 490 V (50 to 60 GHz) Diplexer PN: 015-0385-00
Power Meter, with Power Sensors	Range: -30 to +20 dBm ($1 \mu \mathrm{~W}$ to 100 mW) Other: GPIB-controllable	Hewlett-Packard Model 437B, with Option 22 (GPIB), and Power Sensors: $\mathrm{HP} \mathrm{E} 485 \mathrm{~A}(0.01 \text { to } 26.5 \mathrm{GHz})$ $\mathrm{HP} 8487 \mathrm{~A}(0.05 \text { to } 50 \mathrm{GHz})$
Digital Multimeter	Resolution: 4-1/2 digits DC Accuracy: $0.002 \%+2$ counts DC hput Z: $10 \mathrm{M} \Omega$ AC Accuracy: $0.07 \%+100$ counts (to 20 kHz) $A C$ input Z: $1 \mathrm{M} \Omega$	John Filuke, inc. Model 8840A, with Option 8840A-09 (True RMS AC)
Frequency Counter, with External Mixers	Range: 0.01 to 60 GHz input Z 500 , Resolution: 1 Hz Other: External Time Base input	EIP Microwave, Inc. Model 578A, with External Mixers: Option 91 (26.5 to 40 GHz) Option 92 (40 to 60 GHz) Option 93 (60 to 90 GHz)
Oscilloscope	Bandwidth: DC to 150 MHz Vertical Sensitivity: 2 mV t division Horiz Sensitivity: 50 ns / division	Tektronix, Inc. Madel 2445
Function Generator	Output Vohage Range: 300 mV to 10 V Functions: 200 Hz Sine Wave 100 Hz Square Wave	Hewlett-Packard Model 3325A
Local Oscillator (LO) Test Fixture	N/A	WILTRON T1512 (Figure 1-3)
PCB Extender Card	N/A	WILTRON Part Number: D30709-3

Table 1-3. Recommended Test Equipment (2 of 2)

Instrument	Critical Specification	Recommended Manufacturer/Model
Test Cabies	N/A	WITRON Par Number: N034060
Measurement Calibration Kit	Kit contains high-precision opens, shorts, broadband loads, and sliding toad	WILTRON Company Model 3650, 3651, 3652, 3653 or 3654/3654B* (Included with Model 360B VNA System)
Measurement Calloration Kit	Q-U, V. , or W-band waveguide components (For use with Model 3635B Test Set, only)	WILTRON Company $36550,3655 \mathrm{U}, 3655 \mathrm{~V}$, or 3655 W , depending on Model $384 \times 8-\times$ Module being used. fincluded with Model 360 B VNA System)
Microwave Cable	Frequency: $18,40,60$, or 65 GHz , depending on connector type	WILTRON Company $3670 \times 50^{*}-1$ and $-2(X=K, A$, or V, depending on test set connector type)
Assurance Air Line	Frequency: 60 GHz	WILTPON Company Part Number: T1519 (K Connector, female) T1520 (3.5 mm , female) T1521 (V Conn, temale-60 GHz) T1542 (V Conn, female-65 GHz)
Precision Ottset Termination	Frequency: 40 GHz	WILTRON Company 29×50-15 ($\mathrm{X}=\mathrm{K}, \mathrm{A}$, depending on test set connector type)
Precision Offset Termination	Frequency: 60 or 65 GHz	WILTRON Company Part Number: SC4417 (60 GHz) Pari Number: SC4732 (65 GHz)

* Operation to 65 GHz with " B " versions of these products

Chapter 2 360B VNA System

Table of Contents

$2-1$	INTRODUCTION .	$2-3$
$2-2$	SYSTEM DESCRIPTION .	$2-4$
$2-3$	SYSTEM COMPONENTS .	$2-4$
$2-4$	SYSTEM OPERATION . $2-7$	

Chapter 2 360B VNA System

2-1 introduction
This chapter describes the Model 360B Vector Network Analyzer System. The description is organized into an overall description, a description of system components, and a discussion on system operation. Chapters 3 and 4 respectively provide information for verifying performance and troubleshooting the system.

2-2 sYstem description

2-3 SYSTEM COMPONENTS

The 360B VNA system characterizes a device-under-test (DUT) through the measurement of its forward and reverse transmission and reflection characteristics as a function of frequency. These characteristics are referred to as scattering parameters, or S -parameters. There are four S-parameters:
$\mathrm{S}_{11}=$ Forward Reflection
S21 = Forward Transmission
$\mathrm{S}_{12}=$ Reverse Transmission
$\mathrm{S}_{22}=$ Reverse Reflection
The VNA system mathematically compares the relative magnitude and phase changes between the signal incident to the DUT and the reflected or transmitted signal from the DUT to derive the S-parameters. It then presents the S-parameters graphically on a color display, printer, or plotter.

The 360B VNA system consists of three main components:
Signal Source
Test Set
Vector Network Analyzer (VNA)
Figure 2-1 shows the 360B VNA system configuration and illustrates the interconnections between the signal source, test set, and VNA. The following paragraphs contain brief descriptions of each system component.

Signal Source The signal source provides the stimulus to the DUT via the test set. The frequency range of the signal source and the test set establish the frequency range of the VNA system. The signal source is controlled and phase-locked by the VNA and provides clean, phase-locked stimulus signals at programmed frequency points for precise test data. Frequency accuracy is assured by phase-locking both the signal source and the system local oscillators to the same 10 MHz reference time base. Frequency resolution is 100 kHz .

Two system signal sources are available: Model $360 \mathrm{SS} 47(10 \mathrm{MHz}$ to 20 GHz) and Model 360 SS 69 (10 MHz to 40 GHz). Frequency coverage to 60 GHz is available by using the Model 360SS69 Signal Source with a Model 3612A, 3622A, or 3631A Test Set that includes a frequency tripler. In addition, the WILTRON Series 66XXB Sweep Generators and Series 67XXB Swept Frequency Synthesizers can be used as system signal sources.

Figure 2-1. 360B VNA System Interconnections

The Test Set

VNA

The test set contains the measurement components for the 360B VNA system. The test set, under direct control of the VNA, performs the following:
\square Stimulus signal routing from the signal source to the DUT through one of the test ports (Port 1 or Port 2).

- Signal separation and down conversion of the incident, reflected, and transmitted signals at Ports 1 and 2 into four IF signals (Test A, Reference A, Test B, and Reference B).
- Amplification of the IF signals.

Test sets are available that allow vector measurements for different applications. The test set types include active and passive device test sets with automatic signal reversing, frequency conversion test sets, and a millimeter-wave test set. Coaxial test sets include multiple models that cover frequency ranges from 10 MHz to 60 GHz . The millimeterwave test set provides frequency coverage from 33 to 110 GHz in four waveguide bands (Q, U, V, and W).

The VNA is the system controller, signal processor, and display unit for all versions of the 360 B VNA system. Its front panel controls provide menu selections for test functions, test parameters, measurement enhancements, and frequencies. The VNA sends frequency, power, and sweep information to the signal source over the dedicated source control system (GPIB) bus. It controls the test set functions through a dedicated digital bus via the CONTROL and SIGNAL cable assemblies. The VNA analyzes the IF signals from the test set for phase and magnitude data. It displays the results of this analysis (measurement data) as well as test parameters and system status on a large color display. The data presented on the display can be output to a plotter or printer or routed to the rear panel (external) GPIB or Centronies interface.

During a typical measurement, the microwave signal source, under direct control of the VNA, outputs an RF signal to the test set to provide stimulus to the DUT (Figure 2-2). The system signal source is phase-locked with the VNA's internal 10 MHz crystal oscillator. An external 10 MHz frequency standard may be substituted for the system's internal 10 MHz oscillator for maximum attainable frequency accuracy.

In the test set, the stimulus signal is sent to the DUT through one of the test set's test ports (Port1 or Port 2). When there is any impedance mismatch between the test port and the DUT input port, some of the signal incident at the DUT input port is reflected back to the test set and some travels into the DUT. In the case of two port DUTs (that is, those having an input and output port) the portion of the stimulus sig. nal that travels through the DUT goes to the second test port for measurement.

In addition to stimulus signal routing from the signal source to the DUT, the test set also serves as the front end of the VNA receiver. Within the test set are signal separation and down conversion devices that separate and down convert the incident, reflected, and transmitted signals at Port 1 and Port 2 into four distinct intermediate (FF) signals. The incident signals are fed to Reference Channels A and B and the reflected or transmitted signals are fed to Test Channels A and B. Heterodyne frequency conversion is used to improve upon the inherent limitations of broadband diode detectors. It also provides sig* nificant improvement in dynamic range, harmonic rejection, and sensitivity.

Each of the four IF signals carries embedded magnitude and phase information relative to a reference signal. Down conversion of the signals does not affect the magnitude and phase relationship, only the frequency is changed. The IF signals go to selection switches in the test set that control (1) which signals are sent to the test set's IF amplifiers and then on to the synchronous detectors of the VNA, and (2) which reference signal will be used for phase-locking the system signal source.

The VNA source lock circuitry compares the selected reference signal's frequency and phase to that of a signal derived from the 10 MHz crystal oscillator in the VNA. If the system is not properly phase-locked, a correction voltage is generated that drives the FM \emptyset LOCK input to the system signal source, forcing it to source lock to the correct frequency and phase.

Additional signal processing is implemented within the VNA. The magnitude and phase information embedded on the analog IF signals is first detected, then converted to digital data. The VNA processors, controlled by embedded firmware coupled with system software, manipulate this digital data. Short-term system errors are normalized and digital compensation is generated and applied. The resultant Sparameter data characterizing the DUT is then presented on the VNA color display, output to a printer or plotter, or routed to the rear panel (external) GPIB interface.

Figure 2-2. 360 VNA System Block Diagram

Chapter 3
 360B VNA System
 Performance Tests and
 Adjustments

Table of Contents

3-1 INTRODUCTION 3-3
3-2
TEST EQUIPMENT 3-3
3-3
PERFORMANCE TESTS AND ADJUSTMENTS - GENERAL $3-3$
3-4 PERFORMANCE TESTS, MODELS 361XA362XA $3-5$
3-5
SAMPLER EFFICIENCY TEST, MODELS 361XA/362XA 3-6
3-6
HIGH LEVEL NOISE TEST, MODELS 361XA/362XA 3-11
3-7
SYSTEM DYNAMIC RANGE TEST, MODELS 361XA/362XA 3-14
3-8
EFFECTIVE DIRECTIVITY TEST, MODELS 361XA/362XA 3-18
$3-9$
EFFECIIVE SOURCE MATCH TEST, MODELS 361XA/362XA 3-23
3-10
ADJUSTMENTS, MODELS 361XA/362XA $3-27$
3-11 3-283-12PERFORMANCE TESTS, MODELS 3630A/3631A3-13FULL BAND PERFORMANCE TEST,MODELS 3630A/3631A3-34

Table of Contents (Continued)

3-14	SET SOURCE POWER LEVEL, MODELS 3630A/3631A . 3-38
$3-15$	COMPRESSION LEVEL TEST, MODELS 3630A/3631A . . . 3-41
3-16	NOISE FLOOR/ RECEIVER DYNAMIC RANGE TEST, MODELS 3630A/3631A . 3-44
3-17	MAGNITUDE TRACKING TEST, MODELS 3630A/3631A . 3-47
3-18	ADJUSTMENTS, MODELS 3630A/3631A 3-49
3-19	PERFORMANCE TESTS, MODELS 3635B/364XB MODULES 3-51
$3-20$	NON-RATIOED POWER LEVEL TEST MODELS 3635B/364X . 3-53
3-21	HIGH LEVEL NOISE TEST, MODELS 3635B/364X $3-57$
3-22	SYSTEM DYNAMIC RANGE TEST, MODELS 3635B/364XB . 3-61
3-23	SOURCE MATCH/DIRECITVITY TEST, MODELS 3635B/364XB . 3-64

Chapter 3 360B VNA System Performance Tests and Adjustments

3-1 inthoduction

3-2 testequipment
$3=3$ PERFORMANCETESTS AND ADJUSTMENTS GENERAL

This chapter provides performance tests and adjustments for the 360 B analyzer unit and test sets. Performance tests and adjustments for the 360XX Signal Source are provided in Chapter 10.

Recommended test equipment and manufacturer is listed in Chapter 1, Table 1-3. Equipment needed for individual model adjustments is listed with the model adjustments.

Performance tests are provided for the $361 \mathrm{XA} 362 \mathrm{XA}, 3630 \mathrm{~A} / 3631 \mathrm{~A}$, and 3635B. Adjustments are provided for the 361XA/362XA and $3630 \mathrm{~A} / 3631 \mathrm{~A}$. The performance tests and adjustment procedures are located behind tabs for the applicable test set model.

Chapter 3 360B VNA System Performance Tests and Adjustments

3-1 introduction

3-2 test Equipment

3-3 performance tests AND ADJUSTMENTS GENERAL

This chapter provides performance tests and adjustments for the 360 B analyzer unit and test sets. Performance tests and adjustments for the 360 XX Signal Source are provided in Chapter 10.

Recommended test equipment and manufacturer is listed in Chapter 1, Table 1-3. Equipment needed for individual model adjustments is listed with the model adjustments.

Performance tests are provided for the $361 \mathrm{XA} / 362 \mathrm{XA}, 3630 \mathrm{~A} / 3631 \mathrm{~A}$, and 3635 B . Adjustments are provided for the 361XA/362XA and $3630 \mathrm{~A} / 3631 \mathrm{~A}$. The performance tests and adjustment procedures are $10-$ cated behind tabs for the applicable test set model.

Anritsu VNA Performance Verification Software, part number 2300237 , supports 360 and 360 B systems with 361 xA and $362 \times \mathrm{A}$ models. This software is used to verify that the 360 B system is making accurate, traceable S-parameter measurements. Complete instructions are found in the User's Guide, which is shipped with the software and is automatically installed on the controller when the software is installed.

$3-4$
 PERFORMANCE TESTS, MODELS 361XA/362XA

Initial System Setup

The following equipment is required to perform the operation verification tests:

- Calibration kit, with Option 1: Sliding Termination.Flexible microwave cable (through line).
Precision air line for up-to 40 GHz measurements.
\square Precision offset for up-to 40 GHz measurements.
\square Assurance air line for 60 and 65 GHz measurements.
- 20 dB offset termination for 60 and 65 GHz measurements.

Perform the following steps before starting the performance tests.

Step 1. Verify that the 360B VNA system has been installed per Chapter 2-Installation of the Model 360B VNA Operation Manual (P/N 10410-00110).

Step 2. Install the 360B VNA system diskette into the disk drive of the network analyzer.

Step 3. Apply power to the frequency signal source then to the network analyzer. Loading of the system software takes approximately 1 minute (at which time the system is ready to make measurements).

NOTE
Allow the system to warm up for at least 60 minutes to ensure operation to performance specifications.

SAMPLER EFFICIENCY TEST, MODELS 361XA/362XA

Key	Menu Choice
SETUP MENU	START: 500 MHz STOP: High End Frequency
CHANNEL MENU	FOUR CHANNELS
GRAPH TYPE	LOG MAGNITUDE (All channels)
AUTO SCALE	ON (All charnels)
SPARAMS	Channel 1: REF A Channel 2: TST A Channel 3: TST B Channel 4: REF B (See Figure 3-1 or 3-2)

This test verifies that each individual receiver channel in the Model 361XA/362XA Coaxial Test Set operates properly. Measurement calibration of the system is not required for this test.

This test requires that you press a specified front panel keys and make choices from the displayed menu(s). The keys used in this test are shown below.

Test Setup
Setup 360B VNA as described below.
Step 1. Connect Test Ports 1 and 2 together (below.)
\qquad

Step 2. Set up the network analyzer as shown in table at left.

To independently measure the output of the individual test set channels, you must redefine the selected parameter for each display channel. You may redefine the parameters manually, as shown below for Channel 1, or automatically, as shown in Figure 3-2. The parameters are redefined as:.
$\frac{\mathrm{a}_{\mathrm{t}}}{1}=$ Test Set Channel 1 REF A
$\frac{b_{1}}{1}=$ Test Set Channel 2 TST A
$\frac{b_{2}}{1}=$ Test Set Channel 3 TST B
$\frac{a_{2}}{1}=$ Test Set Channel 4 REF B
Step 1. Press S PARAMS key.
Step 2. Make menu choices as shown in the following flow diagram.

SELECT PARAMETER	PARAMETER DEFINITION
S21	S11USER2
S11	PARAMETER ai 1
-	PHASE LOCK
\$12	
\$22	LABEL: "REF_A"
REDEFINE	CHANGE NUMERATOR
SELECTED PARAMETER	CHANGE DENOMINATOR
PRESS <ENTER> TO SELECT	CHANGE PHASELOCK
	Change LABEL
	PRESS <ENTER> TO SELECT OR SWITCH

Figure 3-1. Redefining Selected Parameter Manually for Sampler Efficiency Testing

To independently measure the output of the individual test set channels, you must redefine the selected parameter for each display channel. You may redefine the parameters automatically, as shown below, or manually, as shown in Figure 3-1. The parameters are redefined as:-
$\frac{a 1}{1}=$ Test Set Channel 1 REF A
$\frac{b_{1}}{i}=$ Test Set Channel 2 TST A
$\frac{\mathrm{b}_{2}}{1}=$ Test Set Channel 3 TST B
$\frac{a_{2}}{1}=$ Test Set Channel 4 REF B

Step 1. Press OPTION MENU key.
Step 2. Make menu choices as shown in the following flow diagram.
Step 3. Press SETUP MENU key, set START frequency to 500 MHz .

Figure 3-2. Redefining Selected Parameter Automatically for Sampler Efficiency Testing

Test Perform test as described below.
Procedure
Step 1. Observe sweep indicator (top left) and al low at least one complete sweep to occur.

Step 2. Verify that the maximum-value to mini-mum-value amplitude slope (Figure 3-3) meets the specifications shown below.

Frequency	Reference Channels	Test Channels
20 GHz	$<14 \mathrm{~dB}$	$<15 \mathrm{~dB}$
40 GHz	$<25 \mathrm{~dB}$	$<28 \mathrm{~dB}$
50 GHz	$<40 \mathrm{~dB}$	$<55 \mathrm{~dB}$
60 GHz	$<40 \mathrm{~dB}$	$<55 \mathrm{~dB}$
65 GHz	$<45 \mathrm{~dB}$	$<65 \mathrm{~dB}$

Step 3. Verify that the minimum amplitude meets the specifications shown below.

Test Set	REF A	REF B	TST A	TST B
3610 A	-40	-40	-42	-40
3620 A	-38	-38	-43	-34
3611 A	-42	-42	-52	-52
3621 A	-41	-41	-55	-47
3612 A	-53	-53	-78	-75
3622 A	-55	-55	-78	-76
3613 A	-53	-53	-78	-75
3623 A	-55	-55	-78	-76
3615 A	-53	-53	-78	-75
3625 A	-55	-55	-78	-76

NOTE
Use the MARKER MENU and READOUT MARKER keys (bottom left) and menus to obtain precise frequency and amplitude values.

(Titron

360 NETYOREAMALYER

MODEL:
DEVICE:

START: D.50D0 GHz
ST0P: $\quad 40.0000$ GHz STEP: 0.23706 Gz

OATE:
OPERATOR:

GATE START:
GATE STOP:
GATE:
WINOOW:

ERROR CORR: NONE
AVERAGING: 1 PTS
IF BNDWDTH:REDUCEO

Figure 3-3. Sampler Efficiency Test Waveforms

3-6 high level noise TEST, MODELS 361XA/362XA

Key	Menu Choice
SETUP MENU	START: 40 MHz STOP: High-end frequency
CHANNEL MENU	DUAL CHANNELS $1-3$
GRAPH TYPE	LOG MAGNITUDE (Both channels)
$\begin{gathered} \text { SET } \\ \text { SCALE } \end{gathered}$	RESOLUTION: $0.010 \mathrm{~dB} / \mathrm{DIV}$ REF VALUE: 0.0 dB (Both channels)
S PARAMS	Channel 1-512 Channel 3-S21
AVG/ SMOOTH MENU	AVERAGING 128 MEAS. PER POINT
Average	ON
$\begin{aligned} & \text { DATA } \\ & \text { POINTS } \end{aligned}$	NORMAL
VIDEO IF BW	REDUCEO
LIMITS	```LIMITY ON 0.020 dB (3610A20A, and 3611A/21A), or. 0.040 dB (3612A/22A 3613A/23A, and 3615A/25A) LIMIT 2 ON -0.020 dB (3610A20A and 3611A/21A) or. -0.040 dB (3612A/22A 3613A/23A, and 3615A/25A)```

The following test verifies that the high-level noise in the 360B VNA will not significantly affect the accuracy of subsequent measurements. High-level noise is the random noise that exists in the 360B VNA System. Because it is non-systematic, it cannot be accurately predicted or measured. Thus, it cannot be removed using conventional error-correction techniques. Calibration of the system is not required for this test.

This test requires that you press a specified front panel key and make choices from the displayed menu(s). The keys used in this test are highlighted below.

Test Setup
Setup 360B VNA as described in table at left.

SI2 REVERSE TRANSMISSION
LOGMAG. \quad RREF=0.000dB $0.010 d B / D I V$

$$
0.0400
$$

GHz
40.0000

S21 FORMARO TRANSMISSION
LOG MAG.
$\triangle R E F=0.000 d B$
$0.010 \mathrm{da} / \mathrm{DIY}$

0.0400

GHz

TRACE MEMORY FUNCTIONS

VIEW OATA
VIEH MERORY
VIEW OATA AND MEMORY

DVIEW
DATA \div MEMDRY
select
TRACE MATH

STORE DATA TO MEMORY

OISK
FUNCTIONS
MEMORY OATA REF. PLANE
0.0000 mm

PRESS <ENTER> TO SELECT

Figure 3-1. High Level Noise Test Waveform
$\begin{array}{ll}\text { 3-7 } & \text { sYSTEM DYNAMIC } \\ & \text { RANGE TEST, MODELS } \\ & 361 X A / 362 X A\end{array}$

This test verifies that the system dynamic range meets specifications. System dynamic range is the ratio of power incident on Port 2 in a through line connection to the noise floor at Port 2 (forward measurements only). The system must be calibrated and the error correction applied for this test.

This test requires that you press a specified front panel key and make choices from the displayed menu(s). The keys used in this test are highlighted below.

Key	Menu Choice
SETUP MENU	START: 40 MHz STOP: High-end frequency
CHANNEL MENU	SINGLE CHANNEL
GRAPH TYPE	LOG MAGNITUDE
$\begin{aligned} & \text { SET } \\ & \text { SCALE } \end{aligned}$	RESOLUTION: 10.0 dBIDIV AEF VALUE: -50.0 dB REF LINE:TOP
S. PARAMS	521
AVG: SMOOTH MENU	1024 M EAS. PER POINT
AVERAGE	ON
$\begin{gathered} \text { VIDEO IF } \\ \text { BW } \end{gathered}$	Minimum
OPTION MENU	SWEEP OPTIONS then POINTS DRAWN IN C.W.: 100

Step 3. Before pressing the ENTER key at the ISOLATION DEVICES menu prompt, press the AVG/SMOOTH MENU key and change averaging to 1024 MEAS. PER POINT.

Step 4. When the isolation measurement is complete, press the AVG/SMOOTH MENU key and change averaging to 32 MEAS. PER POINT; continue the calibration.

Step 5. Once the calibration process has finished, verify that the APPLY CAL key indicator is lit.

Step 6. Set up the network analyzer as shown in the table at top left.

Perform the test procedure as described below.
Step 1. Connect Broadband Terminations to Test Port 1 and Test Port 2 of the test set

Step 2. While observing the sweep indicator, allow two (forward and reverse directions) complete sweeps to occur, then press the HOLD key.

Step 3. Press the MARKER MENU key (bottom left), and select MARKER 1 to be ON.

Step 4. Press the SETUP MENU key, select the C.W.MODE to be ON, and set the frequency to 40 MHz .

Step 5. Press the READOUT MARKER key.
Step 6. Position the cursor to MARKER TO MAX, press the ENTER key, and record the value (Figure 3-5).

Step 7. Position the cursor to MARKER TO MIN, press the ENTER key, and record the value.

Step 8. Substract value in step 7 from that in step 6. To reduce measurement uncertainty, ensure that the difference is greater than 15 dB .

HILTROD

360 METMORK AMALYZER

```
MOEEL: 217001 OATE: O1JULI992
DEVICE: SYS_DYN_RNGEOPERATOR: G_GESSAMAN
```

START: 0.0400 GHz GATE START: ERRDR CORR:12 - TERM
STOP: 40.0000 GHz GATE STOP:
STEP: $X X X$. XXXX GHz GATE:
WINDOH:

CH 3 - S21
REF. PLAME
0.0000 mm

MARKER 1
POINT 59 $-86.743 \mathrm{~dB}$

DMARKER TO MAX MARKER TO MIN

Figure 3-5. Dynamic Range Test Waveform

Step 9. Substract 6 dB from the value measured in step 6. This is the system dynamic range. Verify that its value compares favorably with the Table 3-1 value for 0.04 GHz .

Step 10. Repeat steps 4 through 9 for remaining frequencies in Table 3-1.

Table 3-1. Dynamic Range Chacteristics

Test Set Model	Frequency (GHz)	Systern Dynamic Range (dB)
3610A Reversing Test Set	$\begin{gathered} 0.04 \\ 1.0 \\ 20.0 \end{gathered}$	$\begin{gathered} -91 \\ -108 \\ -101 \end{gathered}$
3611A Reversing Test Set	$\begin{gathered} 0.04 \\ 1.0 \\ 20.0 \\ 40.0 \end{gathered}$	$\begin{aligned} & -86 \\ & -102 \\ & -96 \\ & -96 \end{aligned}$
$\begin{aligned} & 3612 \mathrm{~A} \\ & \text { 3615A to } 50 \mathrm{GHz} \\ & \text { Reversing } \\ & \text { Test Set } \end{aligned}$	$\begin{gathered} 0.04 \\ 1.0 \\ 20.0 \\ 40.0 \\ 50.0 \\ 60.0 \end{gathered}$	$\begin{aligned} & -85 \\ & -101 \\ & -91 \\ & -83 \\ & -75 \\ & -70 \end{aligned}$
3613A Reversing Test Set	$\begin{gathered} 0.04 \\ 1.0 \\ 20.0 \\ 40.0 \\ 60.0 \\ 65.0 \end{gathered}$	$\begin{aligned} & -85 \\ & -101 \\ & -91 \\ & -83 \\ & -70 \\ & -62 \end{aligned}$
3620 A Active Device Test Set	$\begin{aligned} & 0.04 \\ & 1.0 \\ & 20.0 \end{aligned}$	$\begin{array}{r} -94 \\ -110 \\ -102 \end{array}$
3621 A Active Device Test Set	$\begin{gathered} 0.04 \\ 1.0 \\ 20.0 \\ 40.0 \end{gathered}$	$\begin{aligned} & -89 \\ & -105 \\ & -97 \\ & -85 \end{aligned}$
3622A 3625 A to 50 GHz Active Device Test Set	$\begin{gathered} 0.04 \\ 1.0 \\ 20.0 \\ 40.0 \\ 50.0 \\ 60.0 \end{gathered}$	$\begin{aligned} & -85 \\ & -101 \\ & -89 \\ & -79 \\ & -70 \\ & -65 \end{aligned}$
3523 A Active Device Test Set	$\begin{aligned} & 0.04 \\ & 1.0 \\ & 20.0 \\ & 40.0 \\ & 60.0 \\ & 65.0 \end{aligned}$	$\begin{aligned} & -85 \\ & -101 \\ & -89 \\ & -79 \\ & -65 \\ & -60 \end{aligned}$

EFFECTIVE DIRECTIVITY TEST, MODELS 361XA/362XA

Key	Menu Choice
SETUP MENU	START: 40 MHz STOP: High-end frequency
CHANNEL MENU	SINGLE CHANNEL Channel 1
GRAPH TYPE	LOG MAGNITUDE
$\begin{aligned} & \text { SET } \\ & \text { SCALE } \end{aligned}$	RESOLUTION: 1.0 dB idiv fef value: -15.0 dB (or value of termination offset) REFERENCE LINE: TOP
SPARAMS	S 11

This test verifies that the effective directivity of the system meets specifications. The system must be calibrated and the error correction must be applied for this test to be valid.

This test requires that you press a specified front panel keys and make choices from the displayed menu(s). The keys used in this test are shown below.

Step 1. Perform a full 12 -term calibration, or use the calibration performed in paragraph 37.

Step 2. Ensure that the APPLY CAL key indicator is on.

Step 3. Set up the network analyzer as shown in the table at left

Test

 ProcedurePerform the test procedure as described below.
Step 1. Connect an Air Line and an Offset to Test Port 1 (top left).

Step 2. While observing sweep indicator (middle left), allow at least one complete sweep to occur.

Step 3. Press MARKER MENU key (bottom left) and select MARKER 1, MARKER 2, and MARKER 3, to be ON.

Step 4. Using rotary knob, position markers 1 and 3 to adjacent peaks of the worst-case ripple (one with the greatest amplitude); position marker 2 to the bottom of the trough (Figure 3-6).

Step 5. Using the MARKER MENU and READOUT MARKER key menus, record the absolute value of markers 1 and 3 ; subtract one from the other, halve the difference and add it to the value of the marker at the lowest peak. This is the average value of the two peaks,

Step 6. Record the value of marker 2.
Step 7. Substract the value recorded in step 5 from that recorded in step 6 (Example: 0.24 dB). This is the "REF $\pm X$ Peak to Peak Ripple $\mathrm{dB}^{\text { }}$ value that you will use next in the Microwave Measurement Chart (Table 3-3, page 3-22).

Step 8. Turn to page 3-22 and find the "REF $\pm X$ Peak to Peak Ripple $\mathrm{dB}^{\prime \prime}$ value closest to your measured value 0.2454 for the example in step 7).

Step 9. Move your finger across to the "X dB Below Reference" column. Add the value from this column (Example: 37) to the $>$ REF $=$ value that appears on the 360 B measurement screen. This is the effective directivity value for PORT 1 (52 db for the example: $37+15=52$).
\qquad

(Mitron)

360 metwonk amityzer

ERROR CORR: 12 - TERM
AVERAGING: 1 PTS
IF GMDMOTH:REOUCEO

Figure 3-6. Effective Directivity Test Waveform

Table 3-2. Test Port Chacteristics

Connector	Frequency (GHz)	Directivity (dB)
GPC-7	0.04	>52
	1.0	>52
	18.0	>52
3.5 mm	0.04	>44
	1.0	>44
	20.0	>44
	26.5	>44
K	0.04	>42
	1.0	>42
	20.0	>42
	40.0	>38
V	0.04	>40
	1.0	>40
	20.0	>40
	40.0	>36
	50.0	>34
	60.0	>34
	65.0	>32

Step 10. Verify that the directivity value meets the specification in Table 3-2 for each band. If it does not, repeat steps 4 through 9 for each band.

NOTE

The procedure above measures the characteristics of Test Port 1 only. To measure the characteristics of Test Port 2, a second calibration must be performed with the test cable connected to Test Port 1 instead of Test Port 2. (This allows measurements at the Test Port 2 connector that are not influenced by the quality of the test port cable.

Step 11. To measure the characteristics of Test Port 2, perform steps 12 through 14.

Step 12. Press the S PARAMS key and change to S22.

Step 13. Move the Air Line and Offset to Test Port 2.

Step 14. Repeat steps 4 through 10 for the S_{22} parameter.

Table 3.3. Microwave Measurement Chart

Conversion tables for return loss, reliection coeficient, and $S W$ Fi with tabular values for interaction of a smati phacr X with a lagge phase (unity reference) expressed in of rekted to reference.							
				Remative to Undy Reference			
	SWR	anflection Couertoitem	Petum Loss (4)	Relerente	$\begin{gathered} \text { REF }+\mathrm{x} \\ \mathbf{d B} \end{gathered}$	$\begin{array}{cc} \text { Rex - }-x \end{array}$	$\begin{aligned} & \text { AEF } \pm x \\ & \text { Pegk to Peak nipple } \\ & \text { dibl } \end{aligned}$
	17.3910	0.8913	1	1	5.5350	-19.2715	24.3085
	8.7242	0.7943	2	2	8.0780	-13.7365	18.8145
	5.8450	0.7079	3	3	4.8456	-10.6907	15.3402
	4.4194	0.6310	4	4	4.2489	-8.6585	12.9073
	3.560	0.5623	5	5	3.375	-7.1773	11.0528
	3.0095	0.5012	6	6	3.5287	-8.0412	9.569
	2.6146	0.4467	7	7	3.2075	-5.1405	8.3480
	2,3229	0.3981	8	8	2.9106	-4.4098	7.3204
	2.0999	0.3548	9	9	2.6376	-3.2063	6.4438
	1.9250	0.316	10	10	2.3866	-3.3018	5.6888
	1.7849	0.2898	11	11	2.1567	-2.7756	5.0328
	1.6709	0.2512	12	12	1.9465	-2.5126	4.4590
	4.5769	0.2238	13	13	1.7547	-2.2013	3.9561
	1.433s	0.1895	14	14	1.5808	-1.9331	3.5133
	1,4326	0.1778	15	15	1.4216	-1.7007	3.1224
	1.3767	0.1585	16	16	1.2778	-1.4883	2.776
	1.3290	0.1413	17	17	1,1476	-1.3227	2.4703
	1.2880	0.1259	16	18	1.0299	-1.1687	2.190\%
	1.2528	0.3122	19	19	0.9237	1.0337	1.5574
	$: 2222$	0.1000	20	20	0.8279	-0.9151	$1.74,50$
	8.1057	0.0891	21	21	0.7416	-2.8108	1.5524
x	$1,1726$	0.0794	22	22	0.8539	-0.7189	1.3828
	1,1524	0.0708	23	23	0.5941	-0.6378	1.2319
\checkmark	1.1347	0.0631	24	24	0.5314	-0.5661	1.0975
	1.1192	0.0562	25	25	0.4758	-0.5027	0.9779
	1.1055	0.050	26	26	0.4248	-0.4466	0.0714
(REF)	1.0935	0.047	27	27	0.3796	-6.3969	0.7785
	1.0829	0.0250	2	28	0.3391	-0.3529	0.6919
	1.0736	0.0955	29	29	0.3028	-0.3138	0.6166
PHASOR interdetion	1.0653	0.0316	30	30	0.2704	-0.279	0.5495
	1,055\%	0.0282	31	31	0.2414	-0.2483	0.4897
	1.0515	0.0251	32	32	0.215	-0.2210	0.4365
	1.0458	0.0224	33	33	0.198	-0.1967	0.3690
	1.0407	0.0200	34	34	0.1716	-0.1751	0.3467
	1.032	0.0178	35	35	0.1531	-0.1351	0.3090
	1.0322	0.0158	36	36	0.1366	-0.1369	0.2753
	1.0287	0.0141	37	37	0.1218	-0.1236	0.2454
	1.0255	0.0126	38	38	0.1087	-0.5100	0.2187
	1.0227	0.0112	39	39	0.0939	-0.0980	0.1949
	1.020\%	0.0100	40	40	0.0864	-0.0873	0.1737
	1.018	0.0089	41	41	0.0771	-0.0778	0.1548
	1.0150	0.0079	42	42	0.0667	-0.0693	0.1380
	1.0143	0.0071	43	43	0.0673	-0.0617	0.1230
	1.0127	0.0063	44	44	0.0546	-0.0550	0.1096
	1.0113	0.0056	45	45	0.0487	-0.0490	0.097
	1.0101	0.0050	46	46	0.0434	-0.0436	0.087
	1.0090	0.0045	47	47	0.0387	-0.0359	0.0776
	1,0080	0.0040	48	48	0.0345	-0.0346	0.0692
	1.0071	0.0035	49	49	0.0308	-0.0309	0.0616
	1.0063	0.0032	50	50	0.0274	-0.0275	0.0549
	1.0057	0.0028	51	51	0.0244	-0.0245	0.0450
	1.0050	0.0025	52	52	0.0218	-0.0218	0.0436
	1.0045	0.0022	53	53	0.0194	-0.0195	0.0389
	1.0040	0.0020	54	54	0.0173	-0.0173	0.0347
	1.0036	0.0018	55	55	0.0154	-0.015s	0.0309
	1.0032	0.0016	56	56	0.0138	-0.0138	0.0275
	1.0028	0.0014	57	57	0.0123	-0.0123	0.0245
	1.0025	0.0013	58	58	0.0109	-0.0109	0.0219
	$1.002 \mathrm{z}$	0.0011	59	59	0.0097	-0.0098	0.0155
	1.5020	0.0010	50	60	0.0087	-0.0087	0.0174

3-9
 EFFECTIVE SOURCE MATCH TEST, MODELS 361XA/362XA

Key	Menu Choice
SETUP MENU	START: 40 MHz STOP: 20 GHz (3610A20A) $40 \mathrm{GHz}(3611 \mathrm{~A} / 21 \mathrm{~A})$ $50 \mathrm{GHz}(3615 \mathrm{~A} / 25 \mathrm{~A})$ $60 \mathrm{GHz}(3612 \mathrm{~A} / 22 \mathrm{~A})$ $65 \mathrm{GHz}(3613 \mathrm{~A} / 23 \mathrm{~A})$
CHANNEL MENU	SINGLE CHANNEL
GRAPH TYPE	LOG MAGNITUDE
$\begin{gathered} \text { SET } \\ \text { SCALE } \end{gathered}$	RESOLUTION: $0.02 \mathrm{~dB} / \mathrm{DIV}$ REF VALUE: 0 dBm
S-PARAM	S11

This test verifies that the effective source match of the system meets specifications. The system must be calibrated and the error correction must be applied for these tests.

This test requires that you press a specified front panel keys and make choices from the displayed menu(s). The keys used in this test are shown below.

Step 1. Perform a full 12 -term calibration, or use the calibration performed in paragraph 3-7.

Step 2. Ensure that the APPLY CAL key indicator is on.

Step 3. Set up the network analyzer as shown in the table at left.

Perform the test procedure as described below.
Step 1. Connect an Air Line and a Short to PORT 1 of the test set (left).

Step 2. While observing sweep indicator (middle left), allow at least one complete sweep to occur.

Step 3. Press MARKER MENU key (bottom left), and select MARKER 1, MARKER 2, and MARKER 3, to be ON.

Step 4. Using rotary knob, position markers 1 and 3 to adjacent peaks of the ripple with the greatest negative trough; position marker 2 to the bottom of the trough (Figure 3-7).

Step 5. Using the MARKER MENU and READOUT MARKER key menus, record the absolute value of markers 1 and 3 ; subtract one from the other, halve the difference and add it to the value of the marker at the lowest peak. This is the average value of the two peaks.

Step 6. Record the marker 2 value.
Step 7. Substract the value recorded in step 5 from that recorded in step 6. This is the "REF \pm X Peak to Peak Ripple dB" value that you will use next in the Microwave Measurement Chart (Table 3-3, page 322.).

Step 8. Turn to page 3-22 and find the "REF $\pm X$ Peak to Peak Ripple $\mathrm{dB}^{\text {" }}$ value closest to your measured value.

Step 9. Move your finger across to the "X dB Below Reference" column. Add the value from this column to the $>R E F=$ value that appears on the 360 B measurement screen. This is the effective source match value for PORT 1.

```
MODEL:
DEVICE:
START: 0.0400 GHz GATE START:
STOP: 40.0000 GHz GATE STOP;
STEP: 0.2400 GHz
```

DATE:
OPERATOR:

GATE START:
GATE STOP;
GATE:
NINDOW:

ERROR CORR: 12 - TERM AVERAGING: 1 PTS
IF BNDNDTH:REDUCED

S22 REYERSEREFLECTION

106 MAG.

$\triangle R E F=-0.280 d B$

0.0400

GHz
40.0000

CH $4-S 22$
REF. PLANE
0.0000 mm

DMARKER 1 32.6800 GHz
$-0.255 d B$

MARXER TO MAX MARKER TO MIN
233.88006 GHz
$-0.525 d 8$
334.8400 GHz
$-0.283 d 8$

Figure 3-7. Effective Source Match Test Waveform

Table 3-4. Source Match Specifications

Connector	Frequency (GHz)	Source Match (dB)
GPC-7	0.04	>44
	1.0	>44
	18.0	>42
3.5 mm	0.04	>40
	1.0	>40
	20.0	>38
	26.5	>34
K	0.04	>40
	1.0	>40
	20.0	>38
	40.0	>33
V	0.04	>38
	1.0	>38
	20.0	>36
	40.0	>32
	50.0	>28
	60.0	>28
	65.0	>26

Step 10. Verify that the source match meets the specification in Table $3-4$ for each band. If it does not, perform steps 4 through 9 for each band.

NOTE

The procedure above measures the characteristics of Test Port 1 only. To measure the characteristics of Test Port 2, a second calibration must be performed with the test cable connected to Test Port 1 instead of Test Port 2. (This allows measurements at the Test Port 2 comnector that are not influenced by the quality of the test port cable.

Step 11. To measure the characteristics of Test Port 2, perform steps 12 through 14.

Step 12. Press the S PARAMS key and change to S22.

Step 13. Move the Air Line and Short to Test Port 2.

Step 14. Repeat steps 4 through 10 for the S_{22} parameter.

3-10
 ADJUSTMENTS, MODELS 361XA/362XA

Initial
System Setup Equipment

The only adjustments that can be performed in the field are to the A5T LO 1 PCB and the A4T LO 2 PCB. A detailed procedure for adjusting these two PCBs is provided in paragraph 3-11.

Required The following equipment is required to perform the A5T PCB and A4T PCB adjustments:

- 360B Test Fixture
\square PCB Extender
- Coaxial Adapter Cables
- Digital Multimeter

Perform the following steps before starting the performance tests.

Step 1. Verify that the 360 B VNA system has been installed per Chapter 2-Installation of the Model 360B VNA Operation Manual (P/N 10410-00110).

Step 2. Install the 360B VNA system diskette into the disk drive of the network analyzer.

Step 3. Apply power to the frequency signal source then to the network analyzer. Loading of the system software takes approximately 1 minute (at which time the system is ready to make measurements).

NOTE

Allow the system to warm up for at least 60 minutes to ensure operation to performance specifications.

3-11 astanda4t pcb ADJUSTMENTS, MODELS 361XA/362XA

This paragraph provides a detailed procedure for verifying and adjusting the A5T PCB and A4T PCBs.

Initial setup

From rear of console or cabinet, connect the T1512 Test Fixture in series with the SIGNAL connectors on the VNA and test set (top left).

Verification
To determine whether or not the A5T and A4T PCBs are operating properly, perform the following steps.

Step 1. Set the rotary knob on the T1512 to 01 (middle left).

Step 2. Press OPTION MENU key on VNA.
Step 3. Select DIAGNOSTTCS, then TROU. BLESFOOTING, then LOI VCO when the applicable menu appears.

Step 4. Check that waveform displayed on VNA is between the two limit lines (below). If it is, the A5T PCB is adjusted properly.

Step 5. Select LO 1 DAC on displayed VNA menu.

Step 6. Set the rotary knob on the T1512 to D/A 1 (bottom left).

Step 7. Check that the measured data (red cursor) is superimposed on the memory trace (green cursor) in the waveform displayed on the VNA (top left). Also, ensure the amplitude is +12 V (6 divisions). If it is, perform the LO 1 adjustment, below; if not, replace the A5T PCB.

Step 8. Set the rotary knob on the T1512 to 02 (middle left).

Step 9. Select LO2 VCO on displayed VNA menu.
Step 10. Check that waveform displayed on VNA is between the two limit lines (below). If it is, LO 2 is adjusted properly.

[^0]Step 11. Select LO 2 DAC on displayed VNA menu.

Step 12. Set the rotary knob on the T1512 to D/A 2 (middle left).

Step 13. Check that the measured data (red cursor) is superimposed on the memory trace (green cursor) in the waveform displayed on the VNA (bottom left). Also, ensure the amplitude is +12 V (6 divisions). If it is, perform the LO 2 adjustment, below; if not, replace the A4T PCB.

LO 2
Adjustment

Adjust LO 2 as follows:
Step 1. Turn off power to the 360 B system.
Step 2. Disconnect cabling and remove test set from console or cabinet.

Step 3. Reconnect cable between CONTROL connectors on VNA and test set.

Step 4. Reconnect T1512 in series with SIGNAL connectors on VNA and test set.

Step 5. Remove the top cover from the test set (paragraph 6-6).

Step 6. Remove the A4T PCB (paragraph 6-7) and place it on a PCB extender.

Step 7. Use coaxial adapter cables, if necessary, to connect RF output connector (J1) to mating connector on test set.

NOTE

You can leave connectors A4TJ2 55 disconnected for this adjustment.

Step 8. Turn on power to the 360 B system.
Step 9. Set the rotary knob on the T1512 to 02.
Step 10. Press OPTION MENU key on VNA.
Step 11. Select DIAGNOSTICS, then TROUBLESHOOTING, then LO2 VCO when the applicable menu appears.

Step 12. Adjust potentiometers R9, R12, R14, R17, and R31 (facing page) so that the VNAdisplayed waveform falls between the limit lines (left).

Step 13. Remove the T1512, replace test set covers, and reinstall test set in console or cabinet.

Step 14. Verify that LO 2 is still within the limit lines.

LO 1
Adjustment

Adjust LO 1 as follows:
Step 1. Turn off power to the 360 B system.
Step 2. Disconnect cabling and remove test set from console or cabinet.

Step 3. Reconnect cable between CONTROL connectors on VNA and test set.

Step 4. Reconnect T1512 in series with SIGNAL connectors on VNA and test set.

Step 5. Remove the top cover from the test set (paragraph 6-6).

Step 6. Remove the A5T PCB (paragraph 6-7) and place it on PCB extender.

Step 7. Use coaxual adapter cables, if necessary, to connect RF output connector to mating connector on test set.

Step 8. Turn on power to the 360B system.
Step 9. Set the rotary knob on the T1512 to 01.
Step 10. Press OPTION MENU key on VNA.
Step 11. Select DLAGNOSTICS, then TROUBLESHOOTING, then LO1 VCO when the applicable menu appears.

Step 12. Press SETUP MENU key on VNA.
Step 18. Select C.W. MODE on the displayed menu and set for 536.5 MHz .

Step 14. Connect digital multimeter between TP8 (+) and TP12(-) (below).

Step 15. Adjust R42 (above) on A5T for -12.00 $\pm 3 \mathrm{mV}$.

Step 16. Check that TP7 is between +11.85 V and +12.00 V .

Step 17. Adjust potentiometers R43, R59, R80, R83, and R86 (above) so that the VNA-displayed waveform falls between the limit lines (left).

Step 18. Remove the T1512, replace test set covers, and reinstall test set in console or cabinet.

Step 19. Verify that LO 1 is still within the limit lines.

3-12
PERFORMANCE TESTS, MODELS 3630A/3631A

This tab section contains five performance tests that can be used to verify Model 360B VNA system operation using the 3630A or 3631A Test Set. Setup instructions and performance procedures are included for each test. Test results can be compared with the specified limits that are provided for each test.

These tests do not establish measurement traceability; such verification requires using an appropriate WILTRON verification kit. Successful completion of these procedures indicates that your 360B VNA system is operating properly and is capable of making accurate measurements.

Required Equipment

Initial System Setup

The following equipment is required to perform the operation verification tests:

- Power Meter with Power Sensor to 40 GHz (60 GHz for 3631 A)
- Calibration kit, with Option 1: Sliding Termination.
- Flexible microwave cable (through line).

Perform the following steps before starting the performance tests.

Step 1. Verify that the 360B VNA system has been installed per Chapter 2-Installation of the Model 360 B VNA Operation Manual (P/N 10410-00110).

Step 2. Install the 360 B VNA system diskette into the disk drive of the network analyzer.

Step 3. Apply power to the frequency signal source then to the network analyzer. Loading of the system software takes approximately 1 minute (at which time the system is ready to make measurements).

NOTE

Allow the system to warm up for at least 60 minutes to ensure operation to performance specifications.

3-13
 FULL-BAND PERFORMANCE TEST, MODELS 3630A/3631A

This test verifies that each individual receiver channel in the Model 3630A/3631A Frequency Converter Test Set operates properly, and that all four channels exhibit similar power-slope characteristics.

This test requires that you press specified front panel keys and make choices from the displayed menus. The keys used in this test are shown below.

Step 2. Set up the network analyzer as shown in table at left.

To independently measure the output of the individual test set channels, you must redefine the selected parameter for each display channel. For this test, the parameters need to be redefined as shown below.
$\frac{T_{a}}{1}=$ Test Set Channel 1, Phase Lock $=$ Ra
$\frac{T_{b}}{1}=$ Test Set Channel 2, Phase Lock $=\mathrm{Ra}$
$\frac{R_{a}}{f}=$ Test Set Channel 3, Phase Lock $=\mathrm{Ra}$
$\frac{R_{b}}{1}=$ Test Set Channel 4, Phase Lock $=$ Rb
Step 1. Press S PARAMS key.
Step 2. Make menu choices as shown in the following flow diagram.

Figure 3-8. Redefining Selected Parameter for Full-Band Testing

Test Perform test as described below.
 Procedure

Step 1. Press CH 1 key.
Step 2. Observe that trace has power slope similar to that shown in Figure 3-9, and that no power holes (10 dB or greater) exists anywhere on trace.

NOTE

At the conclusion of the test, verify that all four channels exhibit similar slope characteristics.

Step 3. Move cable from connector T_{A} to connector TB.

Step 4. Press CH 2 key.
Step 5. Observe that trace has power slope similar to that shown in Figure 3-9, and that no power holes (10 dB or greater) exists anywhere on trace.

Step 6. Press CH 3 key.
Step 7. Observe that trace has power slope similar to that shown in Figure 3-9, and that no power holes (10 dB or greater) exists anywhere on trace.

Step 8. Move cable from connector SOURCE LOCK OUTPUT to connector RB SOURCE LOCK INPUT.

Step 9. Press CH 4 key.
Step 10. Observe that trace has power slope similar to that shown in Figure 3-9, and that no power holes (10 dB or greater) exists anywhere on trace.

MILTROIT

360 metyora analyzen

```
MODEL:
OEVICE:
START: 0.0100 GHz
STOP: 40.0000 6Hz
STEP: 0.2400 GHz
```

DATE:
OPERATOR:

GATE START:
GATE STOP:
GATE:
WINDOW:

ERROR CORR: NONE
AVERAGING: 1 PTS
IF BNOWOTH:REDUCED

Ta/ 1

SWEEP SETUP DSTART
0.0100 GHz

STOP
40.0000 GHz

168 DATA PTS.
240.0 MHz

STEP SIZE
C. W. MODE OFF

MARKER SWEEP
DISCRETE FILL
HOLD BUTTON
FUNCTION

TEST
SIGNALS
PRESS <ENTER> TO SELECT OR TURN ON/OFF

Figure 3-9. Full-Band Test Waveform

3-14
 SET SOUACE POWER LEVEL, MODELS 3630A/3631A

The following test uses a power meter to calibrate Source output power setting at four frequency points across the 0.01 to 40 or 60 GHz range. The adjusted power settings will be used in later procedures to verify compression setting, noise floor, and magnitude tracking.

Test Setup Setup 360B VNA as described below.
Step 1. Connect cable to RF OUT connector; leave other end unterminated.

Step 2. Connect power sensor on power meter to unterminated end of cable connected in Step 1 (below).

Step 3. Connect cable between SOURCE LOCK OUTPUT and RAISOURCE LOCK INPUT comnectors (below).

Test Procedure

Perform test as described below.
Step 1. Press SETUP MENU key.
Step 2. Select TEST SIGNALS.
Step 3. Select SOURCE 1 PWR, and set level for 5.0 dBm ; then select PREVIOUS MENU.

Step 4. Move cursor to C.W. MODE and press ENTER key.

Step 5. Set CW frequency for 0.01 GHz .
Step 6. Select TEST SIGNALS.
Step 7. Move cursor to SOURCE 1 PWR when next menu appears, and adjust level for $-10 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$, as indicated on power meter.

Table 3-5. Source 1 Power Settings

Frequency (GHz)	SOURCE 1 PWR Setting	Typical Setting
0.01		-2.3
1		-2.5
20		0.8
40		3.6
60		

Step 8. Record SOURCE 1 PWR setting in Table 3-5.

Step 9. Press SETUP MENU key.
Step 10. Move cursor to C.W. MODE and change frequency to 1 GHz .

NOTE
If unable to set frequency to exactly 1 GHz , select DISCRETE FILL and select four frequencies per the menu sequence shown in Figure 310.

Step 11. Select TEST SIGNALS.
Step 12. Select SOURCE 1 PWR, and adjust level for $-10 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$, as indicated on power meter.

Step 13. Record SOURCE 1 PWR setting in Table 3-5.

Step 14. Repeat steps 9 thru 13 for 20 GHz , 40 GHz , and 60 GHz - as applicable.

NOTE

Set Cal Factor on power meter as required for each frequency.

Using the discrete fill feature overrides the default frequency resolution and allows selected fill frequencies to be accurately set using C.W. MODE selection in SETUP menu. To set discrete fill frequencies, proceed as follows.

Step 1. Press SETUP MENU key.
Step 2. Make menu choices and press ENTER key as shown in the following flow diagram.

Figure 3-10. Using Discrete Fill Function

3-15 compression level TEST, MODELS 3630A/3631A

This test verifies that the compression level is 0.1 dB or less for a specified power input level.

This test requires that you press specified front panel keys and make choices from the displayed menus. The keys used in this test are shown below and on next page.

Test Setup
Set up 360B VNA as described below.
Step 1. Connect cable between SOURCE LOCK OUTPUT and RA/ SOURCE LOCK INPUT connectors; connect a second cable between RF OUT and T_{A} connectors (below).

Step 2. Set up network analyzer as shown in table at left.

Table 3-6. Compression Level for Channel TA

Frequency (GHz)	READOUT MARKER (dBm)	Typical Setting (dBm)
0.01		-0.02
1		-0.08
20		-0.05
40		-0.07
60		

Test Perform the test procedure as described below.
Step 1. Press SETUP MENU key.
Step 2. Move cursor to C.W. MODE and enter 0.010 GHz .

Step 3. Select TEST SIGNALS; then set SOURCE 1 PWR to 5 dB below the level recorded for 0.01 GHz in Table 3-5, on page 3-39. However, if the calculated level is lower than -7.0 , set power to -7.0 .

Example:

Table 3-5 level: -2.3 dBm .
Set power to -7.0 dBm $(-2,3)-(-5)=-7.3$, which is less than -7.0 .

Step 4. Press TRACE MEMORY key.
Step 5. Select in turn VIEW DATA and wait one complete sweep, STORE DATATO MEMORY, then VIEW DATA - MEMORY.

Step 6. Press SETUP MENU key, select TEST SIGNALS, then raise power level to that recorded for 0.01 GHz in Table 3-5 (-2.3 dBm for the Example).

Step 7. Press READOUT MARKER key (top left), and record value in the appropriate column of Table 3-6. The readout value should be less than 0.1 dB .

Step 8. Repeat steps 1 thru 7 for $1,20,40$, and 60 GHz - as applicable.

Step 9. Connect cable between SOURCE LOCK OUTPUT and R_{B} / SOURCE LOCK INPUT connectors; connect a second cable between RF OUT and T_{B} connectors (below).

Step 10. Press CH 2 key.
Step 11. Press S PARAMS key.
Step 12. Select USER 3 and set user-defined parameters to $\mathbf{T b} / \mathbf{R b}$ and Phase Lock to $\mathbf{R b}$.

Step 13. Repeat steps 7 thru 12 for the four frequencies in Table 3-7. Use this table to record READOUT MARKER key values.

3-16 noise floor/ RECEIVER DYNAMIC RANGE TEST, MODELS 3630A/3631A

This test verifies that the noise floor meets the guaranteed performance specifications.

This test requires that you press specified front panel keys and make choices from the displayed menus. The keys used in this test are shown below and on next page.

Test Setup

Set up 360B VNA as described below.
Step 1. Connect cable between SOURCE LOCK OUTPUT and Ra/ SOURCE LOCK INPUT connectors; connect a second cable between RF OUT and T_{B} connectors (below).

Step 2. Set up network analyzer as shown in table at left.

Tlest
 Procedure

Perform the test procedure as described below.
Step 1. Press the BEGIN CAL key.
Step 2. Select from displayed prompts to perform a STANDARD, COAXIAL, FREQUENCY RESPONSE ONLY, TRANSMISSION calibration at 0.010 GHz .

Step 3. When the CONFIRM CALIBRATION PARAMETERS menu appears, select TEST SIGNALS.

Step 4. Set the SOURCE 1 PWR selection to the power level recorded in Table 3-5, page 339 , for the applicable frequency; then select RESUME CAL.

Step 5. Follow the displayed prompts to complete the calibration.

Step 6. Disconnect the cable from TB ; connect 50Ω termination to connectors TB_{B} and the end of the cable connected to RF OUT.

Step 7. Set up network analyzer as shown in table at top left.

Step 8. Press TRACE MEMORY key.
Step 9. Select in turn VIEW DATA and wait one complete sweep, STORE DATA TO MEMORY, then VIEW DATA - MEMORY.

NOTE

Use SELECT TRACE MATH menu option to change to VIEW DATA-MEMORY.

Step 10. Allow one full sweep to occur, then press the HOLD key.

Step 11. Press MARKER MENU key (bottom left) and enable MARKER 1.

Step 12. Press READOUT MARKER key (bottom left), select MARKER TO MAX and record value in the "Dynamic Range" column of Table 3-8.

Table 3-8. Dynamic Range Measure. ment and Specification

Fre- quency (GHz)	Dynamic Range (dB)	Specification (dBm)	
		$3630 A$	3631 A
0.01		-107	-107
1		-107	-107
20		-105	-105
40		-97	-97
60			-77

Step 13. Repeat steps 1 thru 12 for $1,20,40$, and 60 GHz , as applicable.

Step 14. Calculate the noise floor and record it in Table 3-9. The formula is

Noise Floor $(\mathrm{dBm})=(-10 \mathrm{dBm} *)-$ Dynamic Range $(d B)$

NOTE

-10 dBm is the power level of the signal applied to the T_{B} input connector. This value is then used to derive the noise floor in absolute power units (dBm).

Table 3-9. Noise Floor Measurement and Specification

Fre- quency (GHz)	Noise Floor (dBm)	Specification (dBm)	
		3630 A	3631 A
0.01		-117	-117
1		-117	-117
20		-115	-115
40		-107	-107
60			-90

3-17 magnitude tRACKING TEST, MODELS 3630A/3631A

This test checks the tracking of the Port 2 Source step-attenuator and the resulting signal level. There is no specification for this signal level.

This test requires that you press specified front panel keys and make choices from the displayed menus. The keys used in this test are shown below and on next page.

Test Setup

Set up 360B VNA as described below.
Step 1. Connect cable between SOURCE LOCK OUTPUT and RA / SOURCE LOCK INPUT connectors; connect a second cable between RF OUT and T_{A} connectors (below).

Step 2. Set up network analyzer as shown in table at left.

Table 3-10. Port 2 Source Tracking, Signals T_{A} and R_{A}

Frequency (GHz)	Port 2 Source (dB)	Signal Level		
		$\mathrm{Ta} / \mathrm{Ra}$	Tb/Ra	$\mathrm{Rb} / \mathrm{Fa}$
0.01	0	0	0	0
	20			
	40			
	60			
1.0	0	0	0	0
	20			
	40			
	60			
20	0	0	0	0
	20			
	40			
	60			
40	0	0	0	0
	20			
	40			
	60			
60	0	0	0	0
	20			
	40			
	60			

Test Procedure

Perform the test procedure as described below.

Step 1. Press SETUP MENU key.
Step 2. Move cursor to C.W. MODE and enter 0.010 GFF .

Step 3. Select TEST SIGNALS; then set PORT 2 SOURCE to 0 dB .

Step 4. Press TRACE MEMORY key.
Step 5. Select in turn VIEW DATA, STORE DATA TO MEMORY, then VIEW DATA \div MEMORY.

Step 6. Press SETUP MENU key.
Step 7. Select TEST SIGNALS; then set PORT 2 SOURCEstep attenuator value to 20 dB .

Step 8. Press READOUT MARKER key (left), and record value in the appropriate column of Table 3-10.

Step 9. Repeat steps 6 thru 8 for 40 and 60 dB settings in Table 3-10.

Step 10. Repeat steps I thru 9 for remaining, applicable, Ta/Ra frequency and Port 2 Source settings in Table 3-10.

Step 11. Connect cable between RF OUT and T_{B} connectors.

Step 12. Press S PARAMS key and change user parameter setting to Tb/Ra.

Step 13. Repeat steps 1 thru 9 for applicable Tb/Ra frequency and Port 2 Source step attenuator settings in Table 3-10.

Step 14. Connect cable between RF OUT and RB/SOURCE LOCK INPUT connectors.

Step 15. Press S PARAMS key and change user parameter setting to $\mathrm{Rb} / \mathrm{Ra}$.

Step 16. Repeat steps 1 thru 9 for applicable Rb/Ra frequency and Port 2 Source step attenuator settings in Table 3-10.

3-18 adjustments, MODELS 3630A/3631A

The only adjustments that can be performed in the field are to the A5T LO1 PCB and the A4T LO2 PCB. A detailed procedure for adjusting these two PCBs is provided in paragraph 3-11 for the Models 361XA/362XA Test Sets. Refer to that procedure for adjustment instructions.

Table 3-8. Dynamic Range Measurement and Specification

Fre quency (GHz)	Dynamic Range (dB)	Specification (dBm)	
		3630 A	3631 A
0.01		102	107
1		102	107
10		98	107
20		98	105
30		87	105
40		87	97
50			85
60			80

Table 3-9. Noise Floor Measurement and Specification

Fre- quency (GHz)	Nolse Floor (dBm)	Specification (dBm)	
		-112	-117
1		-112	-117
10		-108	-117
20		-108	-115
30		-97	-107
40			-95
50			-90
60			

Step 11. Press MARKER MENU key (bottom left) and enable MARKER 1.

Step 12. Press READOUT MARKER key (bottom left), select MARKER TO MAX and record value in the "Dynamic Range" column of Table 3-8.

Step 13. Repeat steps 1 thru 12 for $1,20,40$, and 60 GHz , as applicable.

Step 14. Calculate the noise floor and record it in Table 3-9. The formula is

Noise Floor $(d B m)=(-10 \mathrm{dBm} *)-$ Dynamic Range $(d B)$

NOTE

-10 dBm is the power level of the signal applied to the T_{B} input connector. This value is then used to derive the noise floor in absolute power units (dBm).

3-19 performance TESTS, MODELS 3635B/364XB MODULES

This tab section contains five performance tests that can be used to verify Model 360B VNA mm-wave system operation. Setup instructions and performance procedures are included for each test. Test results can be compared with the specified limits that are provided for each test.

These tests do not establish measurement traceability; such verification requires using an appropriate WILTRON verification kit. Successful completion of these procedures indicates that your 360 Bmm -wave system is operating properly and is capable of making accurate measurements.
$\begin{array}{ll}\text { Required } & \text { The following equipment is required to perform the } \\ \text { Equipment } & \text { operation verification tests: }\end{array}$

- Calibration kit, with Option 1: Sliding Termination.

Initial System Setup

3-20 non-batioed power LEVEL TEST MODELS 3635B/364X

This test verifies that each individual receiver channel operates properly. Measurement calibration of the system is not required for this test.

This test requires that you press a specified front panel key and make choices from the displayed menu(s). The keys used in this test are shown below.

Key	Menu Choice
SETUP MENU	START: Low-end Freq STOP: High-end Freq
CHANNEL MENU	DUAL CHANNEL 1-3
GRAPH	LOG MAGNITUDE TYPE
(Both channels)	

Setup 360B VNA as described below.
Step 1. Install a flush short on the output of the $3640 \mathrm{~B}-\mathrm{X}$ module connected to PORT 1.

Step 2. Set up the network analyzer as shown in table at left.

Perform test as described below.
Step 1. Observe sweep indicator (top left) and allow at least one complete sweep to occur.

Step 2. Verify that the measurement traces fall within the limit line (Figure 3-10).

Step 3. If the second module to be tested is also a Model 3640B-X Transmission/Reflection module, change setup to that shown at middle left and perform step 4 (otherwise skip to step 6):

Step 4. Install a flush short to the output of the 3640 B module on PORT 2 .

Step 5. Verify that the measurement traces fall within the limit lines.

Step 6. If the second module to be tested is a Model 3641B-X, connect the two modules together and change the setup to that shown at bottom left.

Step 7. Verify that the measurement trace falls below the limit line (Figure 3-11).

Key	Menu Choice
CH 3	ON
CHANNEL MENU	SINGLE CHANNEL
S-PARAMS	USER DEFINED: Channel 3 for b2/1.

WILTOM

350 हETMORK AMALTEE臭

```
MODEL:
DATE: OEYICE:
OPERATOR:
```

START: 75.000000 GHzGATE START: STOP: 110.000004 GHZGATE STOP:
STEP; 0.210006 GHzGATE:
WINDOW:

ERROR CORR:NONE
AVERAEING: 1 PTS
IF BNOWOTH:MINIMUM

A1/1
LOGMAE. \quad REF=-10.000dB $3.000 \mathrm{~dB} / 01 \mathrm{O}$

SET LIMITS
$-L O G$ MAG

LIMIT $10 N$ 0.000 dB

DLIMIT $2 \quad 0 \mathrm{~N}$
-20.000 dB

REAOOUT LIMIT FREQUENCIES

OISPLAY ON LIMITS

PRESS<ENTER> TO SELEGT ORTURN ON/OFF

Figure 3-10. Non-Ratioed Power Level Test Dual Channel Waveform for a 3640B-X Module

(Itt700

360 HETMORE AMALTZER

```
MODEL:
DEVICE:
```

DATE:
OPERATOR:

ERROR CORR:MONE
AVERAGING: 1 PTS IF GNDWDTH:MINIMUM

B2/1

paraneter DEFINITION

S21/USER1
PARAMETER:
b2 11

PHASE LOCK:
a 1
LABEL:

* $\mathrm{B} 2 / 1$ "
$\triangle C H A M G E$ NUMERATOR

CHANGE
DENOMIMATOR
CHAMGE
PHASE LOCK
CHANGE
LABEL

PRESS <EMTER>
TO SELECT
OR SHITCH

Figure 3-11. Non-Ratioed Power Level Test Single Channel Waveform for a 3640B/3641B Module Set

HIGH LEVEL NOISE TEST, MODEL.S 3635B/364X

Key	Menu Choice
SETUP	START: Low-end freq. MENU
STOP: High-end freq.	
CHANNEL MENU	DUAL CHANNELS 1-3 (Wo 3640B-Xs) (wNGLE

This test requires that you press a specified front panel key and make choices from the displayed menu(s). The keys used in this test are shown below.

This test is not applicable if you are only using a single $3640 \mathrm{~B}-\mathrm{X}$ module on Port 1.
The following test verifies that the high-level noise in the 360 B VNA will not significantly affect the accuracy of subsequent measurements. High-level noise is the random noise that exists in the 360B VNA System. Because it is non-systematic, it cannot be accurately predicted or measured. Thus, it cannot be removed using conventional error-correction techniques. Calibration of the system is not required for this test.

NOTE

Test Procedure

Perform test as described below.
Step 1. Connect the two modules together.
Step 2. If using two 3640B-Xs, press CH 1 key and perform steps 3 through 9 . Otherwise, skip to step 10 .

Step 3. Press TRACE MEMORY key.
Step 4. Choose VIEW DATA from menu and press ENTER key.

Step 5. While observing sweep indicator (left), allow at least two complete sweeps to occur. (One complete sweep, if using single channel display.)

Step 6. Choose STORE DATA TO MEMMORY from menu and press ENTER key.

Step 7. Choose VIEW DATA - MEMORY from menu and press ENTER key.

Step 8. While observing sweep indicator (top left), allow at least two complete sweeps to occur. (One complete sweep, if using single channel display.)

Step 9. Verify that the peak-to-peak High Level Noise falls within the area between the two limit lines (Figures 3-12 and 3-13).

Step 10. Press CH 3 key.
Step 11. Repeat steps 4 thru 9 for channel 3.
Step 12. Change setup as shown in table at bottom left.

Step 13. Attach flush short to waveguide port on $3640 \mathrm{~B}-\mathrm{X}$ on PORT 1 (and PORT 2, if two are used); leave waveguide port on 3641BX unterminated.

Step 14. Repeat steps 2 thru 9.

MILTGOL


```
MODEL:
DEVICE:
DATE:
OPERATOR:
START: 75.000000 GHZ GATE START:
STOP: 110.000004 GHz GATE STOP:
STEP: \(\quad 0.210006\) GHZGATE: WINOOW:
```

ERROR CORR:NONE
AYERAGING: 128 PTS IF BNDHDTH:REDUCED

S21 FORWARD TRANSMISSION

Figure 3-12. High Level Noise Test, S_{21} Fonward Transmission

MITRON

```
MODEL:
DEVICE:
```

DATE:
OPERATOR:

```
STOP: 110.000004 GHz GATE STOP: STEP: 0.210006 GHZGATE: WINDOW:
```

ERROR CORR:NONE
AVERAGING: 128 PTS
IF BNDHOTH:REDUCED

SIL FORMARD REFLECTION

SETLIMITS

- LOG MAG-
$\begin{array}{rrr}\text { LIMIT } & 1 \\ 0.040 & 0 \mathrm{~B}\end{array}$

OLIMIT 2 ON
-0.040 dB
REAODUT LIMIT FREQUENCIES

DISPLAY ON LIMITS

PRESS <ENTER> TO SELECT OR TURN ON/OFF

Figure 3-13. High Level Noise Test, $S_{1 I}$ Forward Reflection

3-22 system dynamic range test, models 3635B/364XB

This test verifies that the system meets its dynamic range specifications. Dynamic range is defined as the ratio of the power incident on Port 2 in a through line connection to the noise floor at Port 2. This definition differs slightly from the classical definition of available receiver dynamic range, which takes into account the maximum signal level at Port 2 for 0.1 dB compression.

For this test, the system must be calibrated and the error correction must be applied for this test to be valid.

NOTE

This test is not applicable if you are only using a single $3640 \mathrm{~B}-\mathrm{X}$ module on Port 1.

This test requires that you press a specified front panel key and make choices from the displayed menu(s). The keys used in this test are shown below.

Test Setup
Perform the test setup procedures, as described below.

Step 1. Press BEGIN CAL key (left).
NOTHE
In step 2, use 12-term calibration if two $3640 \mathrm{~B}-\mathrm{Xs}$ are installed; otherwise, use 1 PATH 2 PORT (8-term) calibration.

Key	Menu Choice
SETUP MENU	START: Low-end freq. STOP: High-end freq.
CHANNEL MENU	DUAL CHANNELS 1-3 (two $3640 \mathrm{~B}-\mathrm{X}_{\mathrm{s}}$) SINGLE CHANNEL 3 (One 3640B-X and one $3641 \mathrm{~B}-\mathrm{X})$
GRAPH TYPE	LOG MAGNTUDE (Both channels)
$\begin{gathered} \text { SET } \\ \text { SCALE } \end{gathered}$	RESOLUTION: 20 dB DIV REF VALUE: 0.0 dB REFERENCE LINE: TOP (Both channels)
SPARAMS	Channel 1-S12 Channel 3-S21
AVG SMOOTH MENU	$\begin{aligned} & \text { AVERAGING } \\ & 1024 \text { MEAS. PER } \\ & \text { POINT } \end{aligned}$
AVERAGE	ON
DATA POINTS	NORMAL
VIDEO IF BW	MINIMUM
LIMITS	LIMIT 1 ON -98 dB (Q Band) -97 dB (U Band) -90 dB (V Band) -80 dB (W Band)

Test Procedure

Step 2. Using the menu prompts, perform a 12 -or 8 -term SLIDING LOAD calibration over the full system operating range. (If necessary, refer to the 360 B OM, Chapter 8, for detailed procedures.)

Step 3. Before pressing the ENTER key at the BROADBAND LOAD menu prompt, press the AVG/SMOOTH MENU key and change averaging to 1024 MEAS. PER POINT; then press the AVERAGE key to turn averaging on.

Step 4. When the broadband measurement is complete, press the AVG/SMOOTH MENU key and change averaging to 32 MEAS. PER POINT; continue the calibration.

Step 5. Ensure that the APPLY CAL key indicator is on.

Step 6. Set up the network analyzer as shown in the table at top left.

Perform the test procedure as described below.
Step 1. Attach a flush short to the PORT 1 module waveguide output.

Step 2. Connect a precision termination to the PORT 2 module waveguide output (if applicable).

Step 3. While observing sweep indicator (bottom left), allow at least one complete sweep to occur.

Step 4. Verify that the trace falls below the limit line at all frequencies (Figure 3-14).

(Mition


```
MODEL:
DEYICE:
DATE:
OPERATOR:
START: 50.000000 GHzGATE START:
STOP: 75.000000 GHZGATE STOP:
STEP: 0.150000 GHzGATE:
                                HINOOW:
```


S21 FORYARD TRANSMISSION

LOGMAG.
DREF=0.000dB
$20.000 \mathrm{~dB} / 01 \mathrm{~V}$

SET LIMITS

- LOG MAG-

DLIMIT 1 ON
-90.000 da
LIMIT 2 OFF

READOUT LIMIT FREQUENCIES

DISPLAY ON
LIMITS
PRESS <ENTER> TO SELECT OR TURN ON/OFF

Figure 3-14. System Dynamic Range Test Waveform

This test verifies that the source match and directivity of the system meet specifications. The system must be calibrated and the error correction must be applied for these tests.

NOTE

This test is not applicable if you are only using a single 3640B-X module on Port 1.

This test requires that you press a specified front panel keys and make choices from the displayed menu(s). The keys used in this test are shown below.

Test Setup Perform the test setup procedures, as described below.

NOTE

If measurement calibration is valid, skip to step 5.

Step 1. Press BEGIN CAL key (left).
NOTE
In step 2, use 12-term calibration if two 3640B-Xs are installed; otherwises, use reflection-only calibration.

Key	Menu Choice
SETUP MENU	START: Low-end trea. STOP: Highrend freq.
CHANNEL MENU	Single Channel Channel 1
GRAPH TYPE	LOG MAGNITUDE
$\begin{gathered} \text { SET } \\ \text { SCALE } \end{gathered}$	RESOLUTION: $0.0 \mathrm{~dB} / \mathrm{Div1}$ REF VALUE: 0.0 dB REFERENCE LINE: TOP
S. PARAMS	$\mathrm{SH1}$

Test Procedure

Step 2. Using the menu prompts, perform a 12 term or reflection only SIIDING LOAD calibration over the full system operating range. (If necessary, refer to the 360 B OM, Chapter 8, for detailed procedures.)

Step 3. Before pressing the ENTER key at the BROADBAND LOAD menu prompt, press the AVG/SMOOTH MENU key and change averaging to 1024 MEAS. PER POINT, then press ENTER key to resume calibration.

Step 4. When the broadband measurement is complete, press the AVG/SMOOTH MENU key and change averaging to 32 MEAS. PER POINT; continue the calibration.

Step 5. Ensure that the APPLY CAL key indicator is on.

Perform the test procedure as described below.
Step 1. Set up the network analyzer as shown in the table at top left.

Step 2. Attach a second high-precision waveguide section to the module on PORT 1.

Step 3. Attach a flush short to the PORT 1 module waveguide output.

Step 4. While observing sweep indicator (middle left), allow at least one complete sweep to occur.

Step 5. Press MARKER MENU key (left), and select MARKER 1, MARKER 2, and MARKER 3, to be ON.

Step 6. Using rotary knob, position markers 1 and 2 to adjacent peaks of the ripple with the greatest negative trough; position marker 3 to the bottom of the trough (Figure 3-15, page 3-67.

Step 7. Using the MARKER MENU and READOUT MARKER key (left) menus, record the absolute value of markers 1 and 2 ; subtract one from the other, halve the difference and add it to the value of the marker at the lowest peak. This is the average value of the two peaks.

Step 8. Record the marker 3 value.
Step 9. Substract the value recorded in step 7 from that recorded in step 8. This is the Peak to Peak Ripple value that you will use next in Table 3-13, below.

Table 3-13. Source Match/Directivity Peak-to-Peak Ripple

Band	Peak-to-Peak Ripple
Q	0.1548 dB
U	0.2187 dB
V	0.2753 dB
W	0.3467 dB

MITROM

350 METMORE AHALYZER

MODEL:
DEVICE:

DATE:
OPERATDR:

START: 50.000000 GHZ GATE START:
STOP: 75.000000 GHz GATE STOP:
STEP: 0.150000 GHZGATE:
WIHOOW:

ERROR CORR:REFL OMLY
AVERAGING: 1 PTS
IF BNDNDTH:REDUCED

SII FORWARD REFLECTION

> LOG MAG

DREF=0.010dB
$0.090 \mathrm{~B} / \mathrm{DIY}$

$\mathrm{CHI}=\mathrm{SII}$
REF. PLANE
0.0000 mm

DMARKER 3 52.400000 GHz $-0.415 \mathrm{~dB}$

MARKER TO MAX MARKER TO MIM
150.900000 GHz $-0.165 d B$
253.750000 GHz $-0.092 \mathrm{~d}$

Figure 3-15. Source Match/Directivity Test Waveform

Chapter 4 360B VNA System Troubleshooting

Table of Contents

4-1 INTRODUCTION 4-3
$4-2$ TEST EQUIPMENT 43
$4-3$ ERROR MESSAGES $4-3$
4-4 MALFUNCTIONS NOT DISPLAYING ERROR MESSAGES 4-3
4-5 TROUBLESHOOTING TABLES 4-3

Chapter 4
 360B VNA System Troubleshooting

4-1	INTRODUCTION	This chapter provides information and procedures for troubleshooting the 360 B analyzer unit and test sets. Troubleshooting information and procedures for the 360SSXX Signal Source are provided in Chapter 10 .
4-2	TEST EQUIPMENT	Recommended test equipment for troubleshooting is listed in Chapter 1, Table 1-3.
4-3	ERROR MESSAGES	The 360B VNA System uses messages to flag malfunctions and isolate them to one or more modules. These messages consist of those that identify malfunctions isolated to the 360 B VNA unit and those related to other units within the system. Refer to Tables 4-1 and 4-2 for listings.
4-4	MALFUNCTIONS NOT DISPLAYING ERROR MESSAGES	System malfunctions or abnormalities that do not display an error message include problems with the monitor, bias tee, and step attenuator. Trobleshooting procedures for these problems are provided in Tables 4-27 thru 4-29.
4-5	TROUBLESHOOTING TABLES	The troubleshooting tables that begin on page 4-9 provide help in isolating malfunctions to a replaceable subassembly. In cases where any of several subassemblies could be causing the problem, troubleshooting is by way of subassembly replacement. The list of replacement items is by order of most-likely to least-likely suspect.

Table 4-1. Error Codes Isolated to the 360B VNA Unit (1 of 3)

Code	Message Text	Action
000	FIFO RESET FAILURE	Replace A12 PCB
002	PROM CHECKSUM FAILURE \#2	Replace A12 PCB
003	BATTERY BACKED RAM FAILURE	Replace A12 PCB
004	EXTENDED MEMORY FAILURE	Replace A12 PCB
005	DYNAMIC RAM FAILURE \#2	Replace A12 PCB
006	TIMER FAILURE \#2	Replace A12 PCB
007	INTERRUPT CONTROLLER FAILURE \#2	Replace A12 PCB
008	NUMERIC PROCESSOR FAILURE 2	Replace A12 PCB
009	FRONT PANEL INTERFACE FAILURE	See Table 4-3
010	PRINTER INTERFACE FAILURE	See Table 4-4
011	GRAPHICS DISPLAY INTERFACE FAILURE	See Table 4-5
012	GPIB INTERFACE FAILURE	Replace A12 PCB
013	RESPONSE TIMEOUT\#1	See Table 4-6
014	INTER-PROCESSOR COMMUNICATIONS FAILURE \#1	See Table 4-6
015	RESPONSE TIMEOUT I/O PROCESSOR	See Table 4-7
016	INTER-PROCESSOR COMMUNICATIONS FAILURE I/O	See Table 4-7
020	FIFO TO \#2 FAILED RESET	See Table 4-6
022	FIFO TO I/O FAILED RESET	See Table 4-8
023	PROM CHECKSUM FAILURE\#1	Replace A13 PCB
024	DYNAMIC RAM FAILURE \#1	Replace A13 PCB
025	TIMER FAILURE \#1	Replace A13 PCB
026	INTERRUPT CONTROLLER FAILURE \#1	Replace A13 PCB
027	DISK DRIVE CONTROLLER FAILURE	Replace A13 PCB

Table 4-1. Error Codes Isolated to the 360 B VNA Unit (2 of 3)

Code	Message Text	Action
028	DISK DAIVE FAILURE	See Table 4-9
029	NUMERIC PROCESSOR FAILURE \#1	Replace A13PCB
031	DISK DRIVE NOT READY FOR TEST	See Table 4-10
040	PROM CHECKSUM FAILURE I/O	Replace A11 PCB
041	RAM FAILURE I/O	Replace A11 PCB
042	TIMERUINTERRUPT LOOPBACK FAllure	Replace A11 PCB
043	GPIB INTERFACE FAILURE I/O	Replace A11 PCB
044	FIFO FAILURE I/O	See Table 4-7
050	A1 COMMUNICATIONS FAILURE	Replace A1 PCB
051	A2 COMMUNICATIONS FAILURE	Replace A2 PCB
052	A3 COMMUNICATIONS FAILURE	Replace A3 PCB
053	A4 COMMUNICATIONS FAILURE	Replace A4 PCB
054	A5 COMMUNICATIONS FAILURE	Replace A5 PCB
055	Á COMMUNICATIONS FAILURE	Replace A6 PCB
056	A 10 COMMUNICATIONS FAILURE	Replace A1O PCB
057	8 BIT AD CONVERTER FAILURE	Replace A4 PCB
058	STEERING DAC FAILURE	Replace A4 PCB
059	12 BIT A/D OR STEERING DAC FAllure	Replace A4 PCB
100	DISK DRIVE NOT READY	See Table 4-10
101	PROGRAM DATA ERROR	See Table 4-15
102	PROGRAM FILE MISSING	See Table 4-15
103	DISK ERROR	See Table 4-10
104	UNKNOWN DISK ERROR	Replace disk drive

Table 4-1. Error Codes Isolated to the $360 B$ VNA Unit (3 of 3)

Code	Message Text	Action
105	PROGRAM DATA ERROR ON \#2	See Table 4-16
114	PROGRAM ERROR	See Table 4-10
115	PROCESSOR COM ERROR	See Table 4-10
131	DISK READ ERROR	See Table 4-10
132	DISK WRITE ERROR	See Table 4-10
134	DISK NOT READY	See Table 4-10
170	PRINTER NOT READY	See Table 4-4
171	PLOTTER NOT READY	See Table 4-19
301	LOCK FAILURE ABCDE	See Table 4-20
302	ADD FAILURE	Replace A4 PCB

Table 4-2, Error Codes Relating to System Units Other Than 360B VNA (1 of 2)

Code	Message Text	Action
Error Codes Related to the 360B VNA or Test Set		
060	TEST SET NOT CONNEGTED OR NOT WORKING	See Table 4-11
061	TEST SET CHAN A CAL PHASING FAILURE	See Table 4-12
062	TEST SET CHAN A CAL LEVEL FAILURE	See Table 4-12
063	TEST SET CHAN A GAIN FAILURE	See Table 4-12
064	TEST SET CHAN A PHASE RANGING FAILURE	See Table 4-12
065	TEST SET CHAN B CAL LEVEL FAILURE	See Table 4-13
066	TEST SET CHAN B CAL PHASING FAILURE	See Table 4-13
067	TEST SET CHAN B GAIN FAILURE	See Table 4-13
068	TEST SET CHAN B PHASE RANGING FAILURE	See Table 4-13
069	TEST SET REF CHAN CAL PHASING FAILURE	See Table 4-14
070	TEST SET REF CHAN CAL LEVEL FAILURE	See Table 4-14
071	TEST SET REF CHAN GAIN FAILURE	See Table 4-14
072	TEST SET REF CHAN PHASE RANGING FAILURE	See Table 4-14
112	NO TEST SET	See Table 4-18
301	LOCK FAILURE-BCDE	See Table 4-21
301	LOCK FAILURE -B-DE	See Table 4-22
301	LOCK FAILURE --CDE	See Table 4-23

Table 4-3. Error Codes Relating to System Units Other Than 360B VNA (2 of 2)

Code	Message Text	Action
Error Codes Related to the 3608 VNA or Source		
110	SRC ID FAILURE	See Table 4-17
301	LOCK FAILURE - DEF	See Table 4-24
400	GPIB ERROR	See Table 4-26
Error Codes Related to the Test Set or Source		
303	RF OVERLOAD	See Table 4-25
Error Codes Related to the 360B VNA System		
301	LOCK FAILURE --DE	See Table 4-24
Error Codes Related to the 3608 VNA System With 3635A Test Set		
301	LOCK FAILURE --.DE	See Tables 4-30 and 4-31

Table 4.3. Troubleshoot Error Message 009 (1 of 1)

ERROR MESSAGE 009

Step 1. Turn the VNA off, then on again. Do not touch any controls or keys during the self test.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace the A12 PCB in the VNA, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Replace the front-panel-to-motherboard cable.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Call customer service.

Table 4-4. Troubleshoot Error Message 010 or 170 (1 of 1)

ERROR MESSAGE 010 or 170

Step 1. Try a different printer.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Try a different printer cable.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Replace the A12 PCB in the VNA (paragraph 5-25).
QUESTION: Error message gone?
YES: Problem is cleared.
NO: Call Customer Service.

Table 4-5. Troubleshoot Error Message 011 (1 of 1)

ERROR MESSAGE 011

Step 1. Replace the A12 PCB in the VNA (paragraph 5-25).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace the A13 PCB in the VNA (paragraph 5-25).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Call Customer Service.

Table 4-6. Troubleshoot Error Message 013, 014 or 020 (1 of 1)

ERROR MESSAGE 013, 014, OR 020

Step 1. Replace the A13 PCB in the VNA (paragraph 5-25).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace the A12 PCB in the VNA (paragraph 5-25).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Call Customer Service.

Table 4-7. Troubleshoot Error Message 015, 016, or 044 (1 of 1)

ERROR MESSAGE 015, 016, OR 044

Step 1. Replace the A11 PCB in the VNA (paragraph 5-25).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace the A12 PCB in the VNA (paragraph 5-25).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Replace the A13 PCB in the VNA (paragraph 5-25).
QUESTION: Is error message gone?
yES: Problem is cleared.
No: Call Customer Service.

Table 4-8. Troubleshoot Error Message 022 (1 of 1)

ERROR MESSAGE 022

Step 1. Replace the A13 PCB in the VNA (paragraph 5-25).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace the A11 PCB in the VNA (paragraph 5-25).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Call Customer Service.

Table 49. Troubleshoot Error Message 028 (1 of 1)

ERROR MESSAGE 028

Step 1. Turn the VNA off. Remove and reinstall the diskette, then turn the power back on.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace disk drive assembly (paragraph 5-26).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Call Customer Service.

Table 4-10. Troubleshoot Error Message 031, 100, 103, 114, 115, 131, 132, or 134 (1 of 2)
ERROR MESSAGE 031, 100, 103, 114, 115, 131, 132, OR 134

Step 1. Check that diskette is installed in drive.
QUESIION: Is diskette installed?.
YES: Go to step 2.
NO: Go to step 6.
Step 2. Try another diskette.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Try replacing motherboard-to-drive cables P1 and P3.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 4. Check whether +12 V and +5 V is present on motherboard connector P4, pins 1 and 4 (below).

Table 4-10. Troubleshoot Error Message 031, 100, 103, 114, 115, 131, 132, or 134 (2 of 2)
QUESTION: Are voltages incorrect?
YES: Troubleshoot +12 V Regulator and +5 V line on motherboard, and ask next question.

NO: Go to next step.
Step 5. Replace disk drive assembly.

QUESTION: Is error message gone?

YES: Problem is cleared.
NO: Replace A17 PCB in VNA (paragraph 5-25), and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Call Customer Service.
Step 6. Turn the VNA off. Remove and reinstall the diskette, then turn the power back on.
QUESTION: Does the message on the monitor read "LOADING PROGRAM FROM DISK"?
YES: Problem is cleared.
NO: Call Customer Service.

Table 4-11. Troubleshoot Error Message 060 (1 of 1)

ERROR MESSAGE 060

Step 1. Check that cable between CONTROL connector on Test Set and VNA is properly connected.
QUESTION: Is control cable connected correctly?
YES: Try a different cable, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
NO: Connect cable, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace the following items in the order shown. After each replacement, ask next question.

- A6T PCB in Test Set (paragraph 6-12)
- A16 PCB in VNA (paragraph 5-25)
- Control cable assembly in Test Set
- Control cable assembly in VNA

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 4-12. Troubleshoot Error Message 061, 062,063, or 064 (1 of 1)
ERROR MESSAGE 061, 062, 063, OR 064
Step 1. Check that cable between SIGNAL connector on Test Set and VNA is properly connected.
QUESTION: Is signal cable correctly connected?
YES: Go to next step.
NO: Connect cable, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace the following items in the order shown. After each replacement, ask next question.

- SIGNAL cable between Test Set and VNA
- A7 PCB in VNA (paragraph 5-25)
- A3T PCB in Test Set (paragraph 6-7)
- A10 PCB in VNA (paragraph 5-25)
- A6T PCB in Test Set (paragraph 6-9)
- A16 PCB in VNA (paragraph 5-25)
- A5 PCB in VNA (paragraph 5-25)
- A16T Power Divider Assembly in Test Set (paragraph 6-19)

QUESTION: Error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 4-13. Troubleshoot Error Message 065, 066, 067, or 068 (1 of 1)

ERROR MESSAGE 065, 066, 067, OR 068

Step 1. Check that cable between SIGNAL connector on Test Set and VNA is properly connected.
QUESTION: Is signal cable correctly connected?
YES: Go to next step.
NO: Connect cable, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace the following items in the order shown. After each replacement, ask next question.

- SIGNAL cable between Test Set and VNA
- A8 PCB in VNA (paragraph 5-25)
- AIT PCB in Test Set (paragraph 6-7)
- A10 PCB in VNA (paragraph 5-25)
- A6T PCB in Test Set (paragraph 6-9)
- A16 PCB in VNA (paragraph 5-25)
- A4 PCB in VNA (paragraph 5-25)
- A5 PCB in VNA (paragraph 5-25)
- A16T Power Divider Assembly in Test Set (paragraph 6-19)

QUESTION: Error message gone?

YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 414. Troubleshoot Error Message 069, 070,071, or 072 (1 of 1)
ERROR MESSAGE 069, 070, 071, OR 072

Step 1. Check that cable between SIGNAL connector on Test Set and VNA is properly connected.
QUESTION: Is signal cable correctly connected?
YES: Go to next step.
NO: Connect cable, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO. Go to next step.
Step 2. Replace the following items in the order shown. After each replacement, ask next question.

- SIGNAL cable between Test Set and VNA
- A9 PCB in VNA (paragraph 5-25)
- A2T PCB in Test Set (paragraph 6-7)
- A10 PCB in VNA (paragraph 5-25)
- A6T PCB in Test Set (paragraph 6-9)
- A16 PCB in VNA (paragraph 5-25)
- A4 PCB in VNA (paragraph 5-25)
- A5 PCB in VNA (paragraph 5-25)
- A16T Power Divider Assembly in Test Set (paragraph 6-19)

QUESTION: Error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 4-15. Troubleshcot Error Message 101 or 102 (1 of 1)

ERROR MESSAGE 101 OR 102

Step 1. Check that diskette is installed in drive.
QUESTION: Is diskette installed?
YES: Go to next step.
NO: Install diskette.
Step 2. Try another diskette.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace disk drive assembly, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.

NO: Call Customer Service.

Table 4-16. Troubleshoot Error Message 105 (1 of 2)

ERROR MESSAGE 105

Step 1. Check that diskette is installed in drive.
QUESTION: Is diskette installed?
YES: Go to step 2.
NO: Go to step 6.
Step 2. Try another diskette.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Try replacing motherboard-to-drive cables P1 and P3.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 4. Check whether +12 V and +5 V is present on motherboard connector P 4 , pins $\mathbf{1}$ and 4 (below).

Table 4-16. Troubleshoot Error Message 105 (2 of 2)
Step 5. Replace disk drive assembly.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Try replacing A17 PCB then A12 PCB in VNA (paragraph 5-25), and ask next question.

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Call Customer Service.
Step 6. Turn the VNA off. Remove and reinstall the diskette, then turn the power back on.
QUESTION: Does the message on the monitor read "LOADING PROGRAM FROM DISK"?
YES: Problem is cleared.
NO: Call Customer Service.

Table 4-17. Troubleshoot Error Message 110 (1 of 2)

ERROR MESSAGE 110

Step 1. Check that Signal Source is turned on.
QUESTION: Is Signal Source On?
YES: Go to next step.
NO: Turn on Signal Source.
Step 2. Check that GPIB cable is connected to 360 system bus.
QUESTION: Is GPIB cable connected?
YES: Go to next step.
NO: Connect cable.
Step 3. Try a different GPIB interconnect cable.
QUESTION: Is error message gone?
YES: Replace cable.
NO: Go to next step.
Step 4. Check that GPIB address within UTILITY MENU key menu matches address for Signal Source on rear panel.

QUESTION: Do addresses match?
YES: Replace GPIB cable.
NO: Reconfigure address, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.

Table 4-17. Troubleshoot Error Message 110 (2 of 2)
Step 5. Replace A1 PCB in Signal Source (paragraph 10-25).
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 6. Replace GPIB cable assembly in Signal Source.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace A11 PCB in VNA (paragraph 5-25), and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Call Customer Service.

Table 4-18. Troubleshoot Error Message 112 (1 of 1)

ERROR MESSAGE 112

Step 1. For 361X and 362X Test Sets, check and reset as necessary the switch settings on the A6T PCB in the Test Set (below), and ask next question. For all other models, go to next step.

QUESTION: Is error message gone?
YES: \quad Problem is cleared.
NO: Go to next step.
Step 2. Replace the following items in the order shown. After each replacement, ask next question.

- A6T PCB in Test Set (paragraph 6-9)
- A16 PCB in VNA (paragraph 5-25)
- A11 PCB in VNA (paragraph 5-25)
- Control cable between Test Set and VNA

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Call customer service.

Table 4-19. Troubleshoot Error Message 171 (1 of 1)

ERROR MESSAGE 171

Step 1. Check that GPIB cable is connected between the 360 SYSTEM BUS connector and the plotter.
QUESTION: Is cable connected.
YES: Go to next step.
NO: Connect cable.

Step 2. Check that plotter is on line; if not, turn it on.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Check that GPIB address within UTILITY MENU key menu matches plotter address on rear panel.
QUESTION: Doaddresses match?
YES: Replace A11 PCB in VNA (paragraph 5-25), and ask next question.
NO: Reconfigure address, and ask next question.
QUESIION: Is error message gone?
YES: Problem is cleared.

NO: Call Customer Service.

Table 4-20. Troubleshoot Error Message 301 ABCDE (1 of 1)

ERROR MESSAGE 301 ABCDE.

Step 1. Check VNA serial number on rear panel.
QUESTION: Is serial number 703015 or below?
YES: Go to next step.
NO: Replace 10 MHz oscillator assembly in VNA, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 2. Replace A5 PCB in VNA (paragraph 5-25).
QUESTIION: Is error message gone?
YES: Problem is cleared.
NO: Call Customer Service.

Table 4-21. Troubleshoot Error Message 301 -BCDE (1 of 1)

ERROR MESSAGE 301 -BCDE

Step 1. Check that intercomect cables are seated and connectors have no damaged pin.
QUESTION: Are cables OK?
YES: Go to next step.
NO: Connect cables and/or repair bent pins.
Step 2. Replace the items below in the order listed, then ask next question.

- A6T PCB in Test Set (paragraph 6-9)
- A16 PCB in VNA (paragraph 5-25)
- A11 PCB in VNA (paragraph 5-25)

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or troubleshoot Error Message 301 -CDE (Table 4-23) after last replacement.

Table 4-22. Troubleshoot Error Message 301 -B-DE (1 of 1)

ERROR MESSAGE 301 -B-DE.

Step 1. Check that interconnect cables are seated and connectors have no damaged pins.
QUESTION: Are cables OK?
YES: Go to next step.
NO. Connect cables and/or repair bent pins.
Step 2. Adjust the A5T PCB in the Test Set (paragraph 3-11), then ask next question.
QUESTION: ls error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Replace the items below in the order listed, then ask next question.

- A5T PCB in Test Set (paragraph 6-7)
- A1 PCB in VNA (paragraph 5-25)
- A16 PCB in VNA (paragraph 5-25)
- A6T PCB in Test Set (paragraph 6-9)

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 423. Troubleshoot Error Message 301 -CDE (1 of 1)

ERROR MESSAGE 301 -CDE.

Step 1. Check that interconnect cables are seated and connectors have no damaged pins.
QUESTION: Are cables OK?
YES: Go to next step.
NO: Connect cables and/or repair bent pins.
Step 2. Adjust the A4T PCB in the Test Set (paragraph 3-11), then ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Replace the items below in the order listed, then ask next question.

- A4T PCB in Test Set (paragraph 6-7)
- A2 PCB in VNA (paragraph 5-25)
- A16 PCB in VNA (paragraph 5-25)
- A6T PCB in Test Set (paragraph 6-9)
- A11 PCB in VNA (paragraph 5-25)

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 424. Troubleshoot Error Message 301 -DE/DEF (1 of 6)

ERROR MESSAGE 301 —DEJDEF

Step 1. Check for presence of signal in both forward and reverse directions.

- If failure occurs in both directions, go to next step.
- If failure occurs only in forward direction, go to step 3 .
- If failure occurs only in reverse direction, go to step 6.

Step 2. Determine the frequency band in which the failure occurs. Observe the sweeping indicator (below).

QUESTION: Does system fail only between 40 and 270 MHz ?
NO: Go to next question.
YES: Perform a confidence test on the Signal Source (paragraph 10-13), then ask next question.

QUESTION: Is the output power correct?
NO: Troubleshoot the Signal Source (paragraph 10-3).
YES: Replace the items below in the order listed. Check whether error message goes away after each replacement. If it does, the problem is cleared. If it does not, call Customer Service.

- A4T PCB in Test Set (paragraph 6-7)
- A2 PCB in VNA (paragraph 5-25)

QUESTION Does system fail between 40 and $270 \mathrm{MHz}, 600$ and $1000 \mathrm{MHz}, 40$ and 65 GHz , and in all four YIG bands?

Table 4-24. Troubleshoot Error Message 301-DE/DEF (2 of 6)
NO: Go to next question.
YES: Perform a confidence test on the Signal Source (paragraph 10-13), then ask next question.

QUESTION: Is the output power correct?
NO: Troubleshoot the Signal Source (paragraph 10-3).
YES: Replace the items below in the order listed. Check whether error message goes away after each replacement. If it does, the problem is cleared. If it does not, call Customer Service.

- A6 PCB in VNA (paragraph 5-25)
- A16 PCB in VNA (paragraph 5-25)
- A24T Source Lock/LRL module in Test Set (paragraph 6-20)
- A6T PCB in Test Set (paragraph 6-9)
- A13T Transfer Switch in Test Set (paragraph 6-14)
- A11 PCB in VNA (paragraph 5-25)

QUESTION Does system fail between 40 and $270 \mathrm{MHz}, 600$ and $1000 \mathrm{MHz}, 40$ and 65 GHz , in only certain oscillator bands, and/or in all four YIG bands?

NO: Go to next question.
YES: Perform a confidence test on the Signal Source (paragraph 10-13), then ask next question.

QUESTION: Is the output power correct?
NO: Troubleshoot the Signal Source (paragraph 10-3).
YES: Replace the items below in the order listed. Check whether error message goes away after each replacement. If it does, the problem is cleared. If it does not, call Customer Service.

- A5T PCB in Test Set (paragraph 6-7)
- A1 PCB in VNA (paragraph 5-25)
- A6T PCB in Test Set (paragraph 6-9)
- A11 PCB in VNA (paragraph 5-25)

Table 4-24. Troubleshoot Efror Message 301 —DE/DEF (3 of 6)

- A16T Power Divider PCB in Test Set (paragraph 6-19)
- A6T PCB in Test Set

QUESTION Does system only fail between 40 and 65 GHz ?
NO: Go to next question.
YES: Perform a confidence test on the Signal Source (paragraph 10-13), then ask next question.

QUESTION: Is the output power correct?
NO. Troubleshoot the Signal Source (paragraph 10-3).
YES: Replace the items below in the order listed. Check whether error message goes away after each replacement. If it does, the problem is cleared. If it does not, call Customer Service.

- A27T PCB in Test Set (paragraph 6-10)
- Ribbon cable from A27T PCB to motherboard in Test Set
- A6T PCB in Test Set (paragraph 6-9)

QUESTION Does system only fail in certain oscillator bands?
YES: Perform a confidence test on the Signal Source (paragraph 10-13), then ask next question.

NO: Call Customer Service.

Table 4-24. Troubleshoot Error Message 301 -DE/DEF (4 of 6)
Step 3. Determine frequency where failure occurs.
QUESTION: Does failure only occur between 40 and 65 GHz ?
YES: Go to step 5.
NO: Go to next step.
Step 4. Replace the items below in the order listed. Ask next question after each replacement.

- Control cable between Test Set and VNA
- A6T PCB in Test Set (paragraph 6-9)
- A13T Transfer Switch in Test Set (paragraph 6-14)
- A4T PCB in Test Set (paragraph 6-7)
- A10T Channel A Buffer Amplifier in Test Set (paragraph 6-16)
- A2T PCB in Test Set (paragraph 6-7)
- A24T Source Lock/LRL module in Test Set (paragraph 6-20)
- A27T PCB in Test Set (paragraph 6-10)
- A28T Secondary Channel A A13T Transfer Switch in Test Set (paragraph 6-14)
- A30T Channel A Tripler Assembly in Test Set (paragraph 6-15)
- Ribbon Cable between A27T PCB and Motherboard in Test Set
- Motherboard in Test Set

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.
Step 5. Replace the items below in the order listed. Ask next question after each replacement.

- A6T PCB in Test Set (paragraph 6-9)
- A27T PCB in Test Set (paragraph 6-10)
- A29T Secondary Channel B in Test Set (paragraph 6-14)
- A31T Channel B Tripler in Test Set (paragraph 6-15)
- Ribbon Cable between A27T PCB and Motherboard in Test Set
- Motherboard in Test Set

Table 4-24. Troubleshoot Error Message 301-DE/DEF (5 of 6)
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.
Step 6. Determine frequency where failure occurs.
QUESTION: Does failure only occur between 40 and 65 GHz?
YES: Go to step 8.
NO: Go to next step.
Step 7. Replace the items below in the order listed. Ask next question after each replacement.

- Control cable between Test Set and VNA
- A6T PCB in Test Set (paragraph 6-9)
- A13T Transfer Switch in Test Set (paragraph 6-14)
- A4T PCB in Test Set (paragraph 6-7)
- A8T Channel B Buffer Amplifier in Test Set (paragraph 6-16)
- A24T Source Lock/LRL module in Test Set (paragraph 6-20)
- A27T PCB in Test Set (paragraph 6-10)
- A29T Secondary Channel B Transfer Switch in Test Set (paragraph 6-14)
- A31T Channel B Tripler Assembly in Test Set (paragraph 6-15)
- Ribbon Cable between A27T PCB and Motherboard in Test Set
- Motherboard in Test Set

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 4-24. Troubleshoot Error Message 301 -DE/DEF (6 of 6)
Step 8. Replace the items below in the order listed. Ask next question after each replacement.

- A6T PCB in Test Set (paragraph 6-9)
- A27T PCB in Test Set (paragraph 6-10)
- A29T Secondary Channel B Transfer Switch in Test Set (paragraph 6-14)
- A31T Channel B Tripler Assembly in Test Set (paragraph 6-15)
- Ribbon Cable between A27T PCB and Motherboard in Test Set
- Motherboard in Test Set

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 4-25. Troubleshoot Error Message 303 (1 of 1)

ERROR MESSAGE 303

Step 1. Perform a confidence test on the Signal Source (paragraph 10-13), then ask next question.
QUESTION: Is the output power correct?
NO: Troubleshoot the Signal Source (paragraph 10-3).
YES: Go to next step.
Step 2. Determine which channel causes the error message to occur.
QUESTION: Does error message occur in all channels?
YES: Replace the A6T PCB in the Test Set (paragraph 6-9).
NO: Go to next question.
QUESTION: Does error message only occur in Test B channel?
YES: Replace the A1T PCB in the Test Set (paragraph 6-7).
NO: Go to next question.
QUESTION: Does error message only occur in Reference channel?
YES: Replace the A2T PCB in the Test Set (paragraph 6-7).
NO: Call Customer Service.

Table 4-26. Troubleshoot Error Message 400 (1 of 1)

ERROR MESSAGE 400

Step 1. Check that Signal Source is turned on.
QUESTION: Is Signal Source On?
YES: Go to next step.
NO: Turn On Signal Source.
Step 2. Check that GPIB address within UTILITY MENU key menu matches source address on rear panel.
QUESTION: Doaddresses match?
YES: Replace GPIB cable.
NO: Reconfigure address, and ask next question.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Check that plotter has paper loaded.
QUESTION: Is paper loaded?
YES: Go to next step.
NO: Install paper.
Step 4. Replace the following items in the order shown. After each replacement, ask next question.

- A1 PCB in Signal Source (paragraph 10-25)
- A16 PCB in VNA (paragraph 5-25)

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 4-27. Monitor Problems (1 of 1)

MONITOR PROBLEMS

Step 1. Replace the items below in the order listed. Ask next question after each replacement.

- A12 PCB in VNA (paragraph 5-25)
- A11 PCB in VNA (paragraph 5-25)
- A14 PCB in VNA (paragraph 5-25)

QUESTION: Is error message gone?
YES: Problem cleared.
NO: Replace next item, or replace monitor after last item.
Step 2. Replace the items below in the order listed. After each replacement, ask next question.

- A15 PCB in VNA (paragraph 5-25)
- A18 PCB in VNA (paragraph 5-25)

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or replace monitor after last item.

Table 428. Bias Tee Problems (1 of 1)

BIAS TEE PROBLEMS

Step 1. Check that the front panel fuses in the Test Set are not blown.
QUESTION: Are fuses blown?
YES: Replace fuses, and ask next question.
NO: Go to next step.
QUESIION: Did fuses blow again?
YES: Go to next step.
NO: Problem is cleared.
Step 2. Replace the A18T or A19T Bias Tee (paragraph 6-12).
QUESIION: Is problem corrected?
YES: Problem is cleared.
NO: Go to next step.
Step 3. Replace the items below in the order listed. After each replacement, ask next question.

- A7T PCB in Test Set (paragraph 6-10)
- A6T PCB in Test Set (paragraph 6-9)

QUESTION: Is problem corrected?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 4-29. Step Attenuator Problems (1 of 1)

STEP ATTENUATOR PROBLEMS

Step 1. Replace the items below in the order listed. After each replacement, ask next question.

- A7T PCB in Test Set (paragraph 6-10)
- A20T, A21, or A22T (as applicable) Step Attenuator in Test Set (paragraph 6-12)

QUESTION: Is problem corrected?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 4-30. Error Message 301 - DE for System With Model 3635B Test Set When Port 2 Module is a 3641 (1 of 1)

ERROR MESSAGE 301 —DE

Step 1. Replace the items below in the order listed. After each replacement, ask next question.

- A20T RF Input Amplifier in Test Set (paragraph 6-22)
- A9T Transfer Switch in Test Set (paragraph 6-14)
- A6T PCB in Test Set (paragraph 6-9)
- A5T PCB in Test Set (paragraph 6-8)
- A21T Port 1 L.O. Amplifier in Test Set (paragraph 6-24)
- A11T L.O. 1 Power Splitter in Test Set (paragraph 6-25)
- A24T Source Lock/LRL module in Test Set (paragraph 6-20)

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Table 4-31. Error Message 301 —DE for System With Model 3635B Test Set When Port 2 Module is a 3640 (1 of 2)

ERROR MESSAGE 301 -DE

Step 1. Check for presence of signal in both forward and reverse directions.

- If failure occurs in both directions, go to next step.
- If failure occurs in only one direction, go to step 3 .

Step 2. Replace the items below in the order listed. After each replacement, ask next question.

- A20T RF Input Amplifier in Test Set (paragraph 6-22)
- A9T Transfer Switch in Test Set (paragraph 6-14)
- A6T PCB in Test Set (paragraph 6-9)
- A5T PCB in Test Set (paragraph 6-7)
- A11T L.O. 1 Power Splitter in Test Set (paragraph 6-24)
- A24T Source Lock/LRL module in Test Set (paragraph 6-20)

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.
Step 3. Swap Port 1 and Port 2 364XB Modules.
QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Go to next question.
QUESTION: Does failure occur in the opposite direction?
YES: Replace defective module.
NO: Go to next step.

Table 4-31. Error Message 301 —DE for System With Model 3635B Test Set When Port 2 Module is a 3640 (2 of 2)
Step 4. Replace the items below in the order listed. After each replacement, ask next question.

- A9T Transfer Switch in Test Set (paragraph 6-14)
- A6T PCB in Test Set (paragraph 6-9)
- AñT PCB in Test Set (paragraph 6-7)
- A11T L.O. 1 Power Splitter in Test Set (paragraph 6-25)
- A24T Source Lock/LRL module in Test Set (paragraph 6-20)

QUESTION: Is error message gone?
YES: Problem is cleared.
NO: Replace next item, or call customer service after last item.

Chapter 5 360B VNA Information

Table of Contents

5-1 INTRODUCTION $5-3$
5-2 REPLACEABLE SUBASSEMBLIES 5-3
5-3 VNA DESCRIPTION 5-4
5-4 A1 LO 1 PHASE LOCK PCB CIRCUIT DESCRIPTION $5-8$
5-5
A2 LO 2 PHASE LOCK PCB CIRCUTT DESCRIPTION 5-105-6
A3 CAL/3rd LO PCB CIRCUIT DESCRIPTION 5-12
5-7 A4 AD CONVERTER PCB CIRCUIT DESCRIPTION 5-14
5-8
A5 10 MHz REFERENCE PCB CIRCUIT DESCRIPTION 5-18
5-9 A6 SOURCE LOCK PCB CIRCUIT DESCRIPTION 5-20
5-10 A7 SYNC DET "A" PCB CIRCUIT DESCRIPTION $5-22$
5-11 A8 SYNC DET "B" PCB CIRCUIT DESCRIPTION 5-24
5-12 A9 SYNC DET "R" PCB CIRCUIT DESCRIPTION 5-26
5-13 A10 PS/IF PCB CIRCUIT DESCRIPTION $5-28$
5-14 A111/O PROCESSOR PCB CIRCUIT DESCRIPTION 5-30
5-15 A12 MAIN 2 PROCESSOR PCB CIRCUIT DESCRIPTION 5-32
5-16 A13 MAIN 1 PROCESSOR PCB CIRCUIT DESCRIPTION 5-34
5-17 A14 POWER SUPPLY CONTROL PCB CIRCUIT DESCRIPTION 5-36
5-18 A15 POWER SUPPLY CONVERTER PCB CIRCUIT DESCRIPTION 5-38
5-19 A16 TEST SET I/O PCB CIRCUIT DESCRIPTION $5-40$
5-20 A17 SYSTEM MOTHERBOARD PCB CIRCUIT DESCRIPTION $5-40$
5-21
A18 POWER SUPPLY MOTHERBOARD PCB CIRCUIT DESCRIPTION 5-42
5-22 A19 FRONT PANEL, MAIN, PCB CIRCUIT DESCRIPTION 5-44
5-23 A20 FRONT PANEL CONTROL PCB CIRCUIT DESCRIPTION $5-46$
5-24 REMOVE AND REPLACE COVERS $5-49$
$5-25$ REMOVE AND REPLACE PRENTED CIRCUIT BOARDS $5-50$
5-26 REMOVE AND REPLACE FRONT PANEL AND DISK DRIVE ASSEMBLY 5-51
5-27 REMOVE AND REPLACE COLOR DISPLAY VGA ASSEMBLY 5-52

Chapter 5 360B VNA
 Information

5-1 inthoduction

$\begin{aligned} & \text { 5-2 } \\ & \\ & \begin{array}{l}\text { replaceable } \\ \text { subassemblies }\end{array}\end{aligned}$

This chapter describes the Model 360B Vector Network Analyzer (VNA). The information is organized as follows:

■ VNA Description. Provides an overall description and a block diagram of the VNA.

- Assembly Descriptions. Provides descriptions and block diagrams for the VNA major printed circuit boards (PCBs).
\square Remove and Replace. Provides removal and replacement procedures for the major assemblies.

WILTRON maintains a module exchange program for selected VNA modules. If a malfunction occurs in one of these modules, it can be exchanged. Upon request and typically within 24 hours, WILTRON or an Anritsu/Wiltron Service Center will ship an exchange module. The customer has 30 days in which to return the defective item. All exchange parts are warranted for 90 days from the date of shipment or for the balance of the original-part warranty-whichever is longer.

A listing of exchangeable subassemblies is provided in Chapter 1 , Table 1-2.

The 360 B VNA unit provides the control and display function for the system. Its front panel controls provide menu selections for test functions, test parameters, measurement enhancements, and frequencies. It sends frequency information to the signal source over a dedicated system (GPIB) bus. A large color screen displays test parameters, system status information, and measurement data. The VNA also supplies hard copy printouts to a printer or plotter. Figure 5-1, page 5-6, shows the assembly layout. Figure 5-2, page 5-7, is a block diagram of the VNA and test set.

As shown in Figure 5-2, the phase-locked output of the signal source feeds its RF energy to the A13T Transfer Switch in the test set. This switch, which is also a signal splitter, provides two functions. It ensures that the RF signal is applied to both the test and reference channels and it supplies RF out to the DUT for forward or reverse measurements.

In the forward direction the A13T Transfer Switch passes the RF signal to Port 1, via a directional coupler. This coupler is sensitive to the power that reflects into the port while it rejects the power that is transmitted from the port. This reflected signal (T_{A}) is measured and ratioed with the incident, or reference, signal (RA_{A}) and establishes the ratio of $\mathrm{T}_{\mathrm{A}} / \mathrm{RA}_{\mathrm{A}}$. This is the basic forward reflection S-parameter, S_{11}. The power that exits Port 1 passes through the DUT and into Port 2; there it is coupled into the Samplers as TB. The signal-level relationship of T_{B} / R_{A} is the basic forward transmission S-parameter, S_{21}. Similarly, when A13T is in the reverse position, the microwave energy passes to Port 2 and sets up signal-level relationships that go on to define $\mathrm{S}_{12}\left(\mathrm{~T}_{\mathrm{B}} / \mathrm{R}_{\mathrm{B}}\right)$ and $\mathrm{S}_{22}\left(\mathrm{~T}_{\mathrm{A}} / \mathrm{R}_{\mathrm{B}}\right)$, which are the reverse reflection and transmission terms.

The signals $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}, \mathrm{T}_{\mathrm{A}}$, and T_{B} are down converted by mixers in the sampler to 89 MHz and then by mixers in the buffer amplifiers to 2.25 MHz . Though changed to a lower frequency in this and succeeding frequency conversions, all magnitude and phase relationships of the input signals remain they were at the carrier frequency. The A24 Source Lock/LRL module multiplexes the Test A and Reference A/B signals to the channel amplifiers and source lock PCB in the VNA. The Test B signal goes directly to the A1T channel amplifier.

At the output of the three channel amplifiers, the signal is down converted a third time to $83-1 / 3 \mathrm{kHz}$ and applied to the $\mathrm{A} 7, \mathrm{~A} 8$, and A 9 PCBs in the VNA. Here, in the A7 - A9 PCB "Sync Det," the $83-1 / 3 \mathrm{kHz}$ signals are converted to de real and imaginary components. The sample-and-hold and multiplexer circuits in the PCBs route these signals to the AD converter for conversion to digital signals.

The magnitude vector coming from the detectors is represented by the vector sum of the real and imaginary components. The phase is represented by the arctangent of the imaginary divided by the real components. To reconstruct the S-parameter, the digital processing section computes the appropriate signal ratios.

The digital processing section consists of three 8088 -based microprocessor systems:

- Human Interface/Display Processor (Main \#2)
- Vector Processor (Main \#1)

ㅁ I/O Processor
I/O Processor The I/O processor controls the signal source and plotter via a dedicated GPIB. It controls the test set via a dedicated digital bus. It also controls all analog circuits and processes and corrects the data from the AD converter.

Vector Proces- The vector processor processes data received from sor (Main \#1) the I/O processor via FIF0 (first-in, first-out) registers. This includes the ratioing of the transmission/reflection variables to calculate the S parameters, along with the necessary error correction. Additionally, this processor provides accuracy enhancements and controls the operation of the 3.5 -inch diskette drive.

Human Inter. The human interface processor controls the interacface Processor (Main \#2) tion with the front panel, the external GPIB, and the parallel printer. It gives command and pixel addressing to the graphics control processor to create the various display functions and menus. Additionally, it is responsible for controlling the calibration sequencing, data formatting, frequency selection coordinate conversion, and scaling.

Graphics Control Processor

The graphics control processor receives commands and data from the human interface processor. It formats the data it receives. And it outputs the display information to the color monitor.

Figure 5-1 360B VNA Assembly Locations

Figure 5-2. 360B VNA System Block Diagram

5-4 A1 LO 1 PHASE LOCK PCB CIRCUIT DESCRIPTION

The A1 Phase Lock PCB (Figure 5-3) is the phase-lock circuit for the first local oscillator (LO1), which is located on the A5T board in the test set.

The input signal from the LO1 board goes through a divide by M divider. M is a programmable value between 714.0 and 1073.9. The output of the divider then passes to a phase/frequency comparator (ϕ). The phase/frequency comparator compares this signal with a reference frequency of 500 kHz . A divide by 20 divider (-20) divides a 10 MHz reference signal to derive the 500 kHz . A summing amplifier (Σ) sets the gain of the phase/frequency detector. The summing amplifier compares a dc reference voltage with the level of the V ϕ DET signal. The V ϕ DET level is proportional to the frequency of the LOI signal.

A second output from the phase/frequency detector goes to a lock detector. The lock detector informs the I/O processor whether or not phaselock has occurred.

If the frequency of LO1 is too low, a negative signal passes to the loop filter, this causes a corresponding positive output of the filter that signals the LO to increase the frequency.

If the frequency of the LO is too high, a positive signal passes to the loop filter, this causes a corresponding negative output of the filter that signals the LO to decrease the frequency.

The output of the loop filter has a 50 kHz notch filter to filter out the fractional N sidebands produced in the $\div \mathrm{M}$ divider.

A Level Detector circuit determines if the input LO signal is of adequate amplitude. The level detector then provides a status bit to the I/O processor.

The LOCK and LEVEL signals drive the STATUS line. If either of these signals are low the status output is set low. The I/O processor monitors this line, if it senses a low signal, it displays a $301:$ LOCK FAILURE error message. It also sends a message to the Main 1 Processor and uses the most recent valid data.

Figure 5-9. A1 LO 1 Phase Lock PCB Block Diagram

The A1 PCB and the A2 PCB are operationally similar. The only functional difference is the ability to disable the phase lock circuit when using a synthesizer. When the 360 powers up, it checks to see if a synthesizer is installed. If so, the A2PCB phase lock is disabled. When the A2 PCB is disabled, the A6 Source Lock PCB phase-locks the synthesizer.

The A2 LO 2 Phase Lock PCB (Figure 5-4) is the phase lock circuit for the second local oscillator (LO2) located on the A4T PCB in the test set. This circuit phase locks the LO2 oscillator.

The input signal from the A4T PCB goes through a divide by K divider. K is programmable between 196.0 and 544.5. The output of the divider then passes to a phase/frequency comparator (ϕ). The phasefrequency comparator compares this signal with a reference frequency of 500 kHz . A divide by 20 divider (+20) divides a 10 MHz reference signal to derive the 500 kHz . A summing amplifier (Σ) sets the gain of the frequency/phase detector. The summing amplifier compares a de reference voltage with the level of the $\mathrm{V} \phi$ DET signal. The $\mathrm{V} \phi$ DET is proportional to the frequency of the LO2 signal.

A second output from the phase/frequency detector goes to a lock detector. The lock detector informs the I/O processor whether or not phaselock is established.

If the frequency of LO2 is too low, a negative signal passes to the loop filter, this causes a corresponding positive output of the filter that signals the LO to increase the frequency.

If the frequency of the LO is too high, a positive signal passes to the loop filter. This causes a corresponding negative output of the filter that signals the LO to decrease the frequency.

The output of the loop filter has a 50 kHz notch filter to filter out the fractional N sidebands produced in the $\div \mathrm{K}$ divider

A Level Detector circuit determines if the input LO signal is of adequate amplitude. The level detector then provides a status bit to the I/O processor indicating if the level is adequate or not.

The LOCK and LEVEL signals drive the STATUS line. If either of these signals are low the status output is set low. The I/O processor monitors this line, if it sense a low signal, it displays a $301:$ LOCK FAILURE on the CRT. It also sends a message to the Main 1 Processor and uses the most recent valid data.

Figure 5-4. A2 LO 2 Phase Lock PCB Block Diagram

The A3 CAL/3rd LO PCB (Figure 5-5) has two modes of operation. One is the CAL mode, the other is the LO3 mode.

LO3 Mode In this mode the circuit is a phase-locked 2.333 MHz local oscillator. Two signals are input to the phase comparator (ϕ). One signal is taken from the 10 MHz reference signal. The reference signal is divided by the +15 circuit. The other signal is derived from the 9.33 MHz signal generated on the A3 PCB. This signal is divided by $14(\div 14)$ to derive a 666 kHz signal. The phase comparator performs two major functions:

It supplies the error amplifier with a voltage proportional to the phase difference between the LO3 signal and the reference signal. The error amplifier then controls the input to the 9.33 MHz VCO to adjust to the proper phase.

The phase detector provides the lock detector with a voltage level indicating whether or not the circuit is phase-locked. The lock detector then provides the appropriate level on the 2.333 MHz OK bit. This bit is then read by the I/O processor.

CAL Mode In CAL mode the divide-by-120 divider (+120)

 divides the 10 MHz reference signal. This produces an $831 / 3 \mathrm{kHz}$ output. The I/O processor sends incremental data to the divide-by-120 divider. The output of this divider drives a sine look-up ROM. The output of this circuit is input to the 8 -bit D/A converter. The output of the D/A converter is the approximation of an $831 / 3 \mathrm{kHz}$ sinewave. The 100 kHz lowpass filter filters out the sidebands that the D/A converter generates. The $831 / 3 \mathrm{kHz}$ sinusoidal signal is then applied to the IF amplifiers during CAL mode.

Figure 5-5. A3 CAL 3rd LO PCB Block Diagram

The A4 AD Converter PCB (Figure 5-6) has two modes of operation, calibration and normal. (A calibrate cycle is completed approximately every three minutes to guarantee absolute accuracy.) The A4 PCB performs a 19 -bit analog to digital conversion. The input range of the overall circuit is -5 V to +5 V . The linearity of the circuit is better than 1 part in 2^{16}. The following paragraphs describe the circuit operation in normal and cal modes.

Normal	Input signals are multiplexed into the $A D$ circuit by
Mode	an analog multiplexer. Six of these signals are vol-
tages corresponding to the real and imaginary com-	
ponents of the Test A, Test B, and Reference	
channels. The other three are used during the	
calibration cycle.	

Two A/D converters combine to provide 19 bits of resolution. An 8 -bit D/A converter, a summing amplifier, and a successive approximation register (SAR) combine to form an 8 -bit A/D converter. This $\mathrm{A} D \mathrm{D}$ converter provides the most significant eight bits of the 19 -bit word. Upon completion of the 8 -bit conversion, a ± 1-bit residue exists at the output of the analog summing amplifier. A64-gain amplifier amplifies this signal then passes it to a 12 -bit A / D for conversion into the least significant twelve bits. The I/O processor then reads these two digital words and combines them into a single 19 -bit word. The most significant bit of the 12 -bit word and the least significant bit of the 8 -bit word overlap to guarantee continuity. Hardware linearity is severely limited by the $\pm 1 / 2 \mathrm{LSB}$ accuracy of the 8 -bit D/A converter. However, a software calibration algorithm measures the nonlinearity and mathematically compensates.

The overall A/D circuit has several functional modes. These include:

- Eight-bit conversion only (most significant byte).
- Twelve- bit conversion only (least significant byte).
- Eight- bit followed by twelve bit (full 19 bits).

Figure 5-6. A4 A/D Converter PCB Block Diagram

A4 A/D CONVERTER PCB CIRCUIT DESCRIPTION
 A/D Control Signals

360B VNA INFORMATION

Cal Mode
Once every 3 minutes the VNA performs a calibration cycle. During this cycle it measures and corrects errors or drifts that occur in the system. Two calibrations related to the A / D circuits are:

- Measurement of the 8 bit D/A's bit weights to allow for software compensation of any nonlinear effects
- Measurement of the voltage standards allowing software compensation for gain and offset effects.

The analog multiplexer selects the input channel connected to the steering DAC. This is summed with the output of the 8 -bit DAC. The I/O processor adjusts the steering DAC to keep the sum of its output and the output of the 8 -bit D/A within the acceptable range of the 12 -bit A/D's input.

The VNA, using the I/O processor and 12 -bit A / D converter, measures the bit weights of the 8 -bit DAC using the following procedure:
\square Sets the 8 bit DAC to $2 \mathrm{~N}-1$.

- Adjusts the steering DAC's output.
- Changes the 8 bit DAC's output to 2 N .
\square Measures the bit-weight difference $[2 \mathrm{~N}-(2 \mathrm{~N}-1)]$.
- Compensates for the difference from ideal using software correction algorithms. This algorithm minimizes nonlinearities in the step sizes.

The AD linearity is dramatically improved using the above algorithm. However, the performance of the 12 bit A / D limits the overall circuit's stability and accuracy. Temperature and aging affect the performance of the 12 bit A / D converter. This can result in gain and offset errors. To compensate for these errors, the 360 B measures two reference voltages as part of the calibration cycle. These two voltages provide information that allows for software correction of the gain and offset errors.

5-8
 A5 10 MHz REFERENCE PCB CIRCUIT DESCRIPTION

The A5 10 MHz Reference PCB (Figure 5-7) generates the system reference signal. The 10 MHz reference signal can come from either of two sources:

- The EXT 10 MHz REF connector on the rear panel. This input is for using an external reference source.
- The internal 10 MHz crystal oscillator in the 360 B VNA.

The presence detector monitors the EXT 10 MHz input. When the presence detector detects an external input signal, it sets a bit that informs the I/O processor of the external signal. It also switches the input to the EXT 10 MHz input.

Regardless of the source, the 10 MHz sine wave then passes through a Schmidt trigger converting it to a square wave signal.

The signal branches to two places, as shown below:
\square PCBs that require the 10 MHz reference signal. These include: $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 6, \mathrm{~A} 7, \mathrm{~A} 8, \mathrm{~A} 9$, and A10.

- 12 MHz lowpass filter. This circuit filters the 10 MHz square-wave signal to a sine wave by removing the harmonics. The sinusoidal signal is then available on the rear panel 10 MHz OUT connector.

The level detectors are ANDed together to provide the I/O processor with a 10 MHz OK status bit.

Figure 5-7. A5 10 MHz Reference PCB Block Diagram

The A6 Source Lock PCB (Figure 5-8) provides source lock control. Its purpose is to phase-lock the source to the desired frequency and phase. A 10 MHz reference signal is divided to 1 MHz by a divide-by- 10 circuit. This signal is phase-compared with a 1 MHz signal from a 9 MHz internal VCO that has been divided by nine. If the signals are in phase, the lock detect circuit sets a bit that relates this fact to the I/O processor.

The 9 MHz signal is also divided by 4. This results in a 2.25 MHz signal. Two phases - zero and ninety degrees - of this 2.25 MHz squarewave signal are then supplied to the phase-detect and lock-detect mixers.

The source-lock input is supplied to both of these mixers. The result of mixing produces the sums and differences of the signals. The sums, harmonics, and fundamental frequencies are filtered out of the lock detect mixer's output using a 3 MHz lowpass filter. When the frequencies are both 2.25 MHz , the difference is 0 Hz , or dc. The magnitude of the dc is proportional to the phase difference between the signals.

Depending on the polarity input from the I/O Processor, the dc is then either inverted or not inverted. This level is then compared with a threshold voltage (VTH). If the level is greater than the threshold voltage, the output disables the search oscillator and signals the I/O processor that the sweeper is phase-locked. If the level is not equal to the threshold voltage, the search oscillator will increase or decrease the level resulting in a change in the FM phase lock level provided to the sweeper. This will change the output signal frequency. This process repeats itself until the sweeper locks to the correct frequency and phase.

Figure 5-8. A6 Source Lock PCB Block Diagram

The A7 Sync Det "A" PCB is a synchronous detector circuit. The V/O processor sends a phase byte to the divide-by-120 circuit ($\div 120$). This byte addresses two look up tables. One produces the sine of the number from the divider. The other produces the cosine of the number from the counter.

Two multiplying D/A converters convert the outputs of the sine and cosine look-up ROMS to analog form. The multiplying D/A performs two functions-converting the digital signals to analog and producing sums and differences of the $831 / 3 \mathrm{kHz}$ signals.

Since the frequencies of the converted signals and the input from the IF are both $831 / 3 \mathrm{kHz}$, the sum is 166.66 kHz and the difference is 0 Hz , or dc. The harmonics are filtered out with 100 kHz lowpass filters.

The outputs of the filters represent the sine and cosine functions and contain a dc element that is proportional to the magnitude and phase of the signals. These dc signals are then filtered out by the selection of the various bandpass filters ($10 \mathrm{kHz}, 1 \mathrm{kHz}$, and 100 Hz).

The outputs are buffered and applied to a sample-and-hold circuit. The output of the sample and hold circuit represents the magnitude of the IF signal's real and imaginary components.

Figure 5-9. A7 Sync Det "A" PCB Block Diagram

5-11 As SyNC DET "B" PCB CIRCUIT DESCRIPTION

The A8 Sync Det "B" PCB (Figure 5-10) is a synchronous detector circuit. The I/O processor sends a phase byte to the divide-by- 120 counter $(+120)$. This byte addresses two look up tables. One produces the sine of the number from the divider. The other produces the cosine of the number from the counter. Two multiplying D/A converters convert the outputs of the sine and cosine look-up ROMS to analog form. The multiplying A/D performs two functions, which are converting the digital signals to analog form and producing sums and differences of the $831 / 3$ kHz signals.

Since the frequencies of the converted signals and the input from the IF are both $831 / 3 \mathrm{kHz}$, the sum is 166.66 kHz and the difference is 0 Hz , or dc. The harmonics are filtered out with 100 kHz lowpass filters.

The outputs of the filters represent the sine and cosine functions and contain a dc element that is proportional to the magnitude and phase of the signals. The de signals are then filtered out by the selection of the various bandpass filters ($10 \mathrm{kHz}, 1 \mathrm{kHz}$, and 100 Hz).

The outputs are buffered and applied to a sample-and-hold circuit. The output of this circuit represents the magnitude of the IF signal's real and imaginary components.

Figure 5-10. A8 Sync Det "B" PCB Block Diagram CIRCUIT DESCRIPTION

The A9 Syne Det "R" PCB (Figure 5-11) is a synchronous detector circuit. The 1/O processor sends a phase byte to the divide-by- 120 counter $(+120)$. This byte addresses two look up tables. One produces the sine of the number from the divider. The other produces the cosine of the number from the counter.

Two multiplying D / A converters convert the outputs of the sine and cosine look-up ROMS to analog form. The multiplying A/D performs two functions, which are converting the digital signals to analog form and producing sums and differences of the $831 / 3 \mathrm{kHz}$ signals. Since the frequencies of the converted signals and the input from the IF are both $831 / 3 \mathrm{kHz}$, the sum is 166.66 kHz and the difference is 0 Hz , or de.

The harmonics are filtered out with 100 kHz lowpass filters. The outputs of the filters represent the sine and cosine functions and contain a dc element that is proportional to the magnitude and phase of the signals. These are then filtered out by the selection of the various bandpass filters ($10 \mathrm{kHz}, 1 \mathrm{kHz}$, and 100 Hz).

The outputs are buffered and applied to a sample and hold circuit. The output of the sample and hold circuit represents the magnitude of the IF signal's real and imaginary components.

Figure 5-11. A9 Sync Det *R" PCB Block Diagram

The A10 PSIF PCB (Figure 5-12) is the external digital control board. This board has many functions including:
\square Power supply synchronization

- IF synchronization
\square Pulse catching of external digital control pulses
- Serial number identification
$\square \pm 10 \mathrm{~V}$ external voltage generation
The power supply synchronization consists of two circuits. A divide-by45 divider reduces the 10 MHz reference signal to the necessary 222 kHz signal required for power supply synchronization. A presence detector circuit informs the I/O processor that the 222 kHz signal is present.

Similarly, the IF synchronization consists of two circuits. A divide-by120 divider reduces the 10 MHz reference signal frequency to the necessary $831 / 3 \mathrm{kHz}$ required for synchronization. A presence detector informs the I/O processor of the presence of this signal.

The pulse catching circuit performs three basic functions. It converts any external input pulses to the absolute value of the input pulse. This means that regardless of the polarity of the pulse it will be converted to the proper polarity by the absolute value (ABS) circuit.

A Schmitt trigger cleans up the edges of this pulse. The pulse catching circuit stores the pulse until the I/O processor has time to read it. After the pulse is read, the microprocessor tells the IO processor if more than one pulse has been received since the I/O processor last read the output of the catching circuit. This eliminates the need for synchronization between the external pulse generator and the I/O processor. Additionally it frees the I/O processor from having to constantly poll the external pulse input.

The mainframe serial number ID is factory set and addresses a number that is unique to each instrument. It is important to note that the switch bank should never be changed or application programs designed for operation on the specific unit will not function.

The ± 10 volt output to the rear panel is provided for an analog output to the VNA. This voltage level is derived from a 12 -bit D / A converter that converts a digital word from the I/O processor into the desired voltage level out.

Figure 5-12. A10 P.S./IF. PCB Block Diagram

5-14 A11 IO PROCESSOR PCB CIRCUIT DESCRIPTION

The A11 VO Processor PCB (Figure 5-13) controls the operation of the signal source and plotter through a dedicated GPIB interface bus. It controls the test set through a dedicated digital bus. This processor also controls all analog circuits and processes and corrects the data from the AD converter.

The I/O processor is an 8088 microprocessor based systern. It has 128 K bytes of on-board RAM. A UPD7210C GPIB bus controller IC controls the talker, listener, and controller functions of the GPIB. This IC combined with two bus transceiver ICs perform the necessary handshaking and interface to the GPIB bus. Two FIFOs interface to the A13 PCB processor. One FIFO is responsible for storing data to be read from the A13 PCB, the other stores data that is to be sent to the A13 PCB. In addition to the 128 K bytes of on-board RAM, 192 K bytes of RAM is dedicated as graphics memory. A UPD7220ADC graphics processor controls the interface to the CRT. All inputs and outputs to the V/O processor are buffered, this includes interface to the following:

- Pixel Data to the CRT
- A12 Data
- Mainframe Data
- Test Set Control
- 16 K bytes of EPROM for internal self-test and booting

Figure 5-13. Al1 $1 / O$ Processor PCB Block Diagram

The A12 Main 2 Processor PCB (Figure 5-14) is the human interface processor. It is one of three microprocessor based circuits. The human interface processor controls the interaction with the front panel, the external GPIB bus, and the parallel printer. Additionally it gives commands to the graphics control processor to create the various display functions.

The heart of the circuit is an 8088 microprocessor chip. An 8087 numeric coprocessor complements the 8088 and performs the numerical calculations. This greatly improves speed and frees the 8088 for other tasks.

The 8088 addresses 1024 K (1 M byte) of volatile RAM and 32 K of bat-tery-backed nonvolatile RAM. The interface to the GPIB is handled through a UPD 7210 C dedicated GPIB controller.

An 8254 programmable timer generates interrupts on a 10 -second interval. This allows for update of a counter for real-time clock emulation. The read and write FIFOs carry information between the processors on the A11, A12, and A13 PCBs.

Data can also be transferred to and from the A11 PCB (I/O Processor) using a buffer.

16 K bytes of EPROM are provided for self-test and boot-up.

Figure 5-14. A12 Main 2 Processor PCB Block Diagram

5-16 at3 main 1 PROCESSOR PCB CIRCUIT DESCRIPTION

The A13 Main 1 Processor PCB (Figure 5-15) is the vector processor. It is also called the Main \#1 processor. The vector processor processes data received from the I/O processor via the FIFO registers. This includes the ratioing of the transmission/reflection variables to calculate the S-parameters and the necessary error correction and accuracy enhancements.

The Main \#1 Processor has an 8088 microprocessor that works in conjunction with an 8087 numeric co-processor. An MC3201 floppy disk controller chip interfaces to the 3.5 inch floppy disk drive. The system has 512 K of internal RAM. An 8259A generates interrupts for the disk drive and timer. 16 K bytes of EPROM are provided for self-test and boot-up. Time domain hardware (DSP and 32 K byte of static RAM) are also on this PCB.

Figure 5-15. A13 Main 1 Processor PCB Block Diagram

5-17
 A14 POWER SUPPLY CONTROL PCB CIRCUIT DESCRIPTION

The A14 Power Supply Control PCB (Figure 5-16) controls the power supply. It has the following functions:

- Controlling the regulation of the switching power supply
\square Over-voltage protection
- Over-temperature protection
- Over-current Protection
- Line voltage level detection
- Level translation for the video monitor

The controlling element is the pulse width modulator (PWM). The dutycycle of its output pulse directly controls output voltage. It has two outputs that drive the power FETs on the A15 PCB. It has four inputs;

- 111 kHz reference signal. This signal is derived from the 222 kHz signal. $\mathrm{A} \div 2$ circuit divides this signal in half.
- Shut Down. This input tells the PWM to shutdown the power supply. Three levels are OR'ed together to produce this output. They are the over-temperature, overvoltage, and regulationdetect. If any of these levels are high the shut-down level will be HIGH.
- +18 VDC . This voltage starts the PWM. The 18 V level comes from the rectified 18 VAC winding of the 60 Hz transformer. It provides the PWM with the necessary startup voltage until the 18 V dc output voltage stabilizes. The 18 Vac signal from the 60 Hz input transformer is also sensed by the Hi-Low Line Detector. This sends data to the I/O processor indicating the condition of the ac line voltage.
- V Control. This input controls the duty cycle of the PWM. The duty cycle of the PWM controls the on and off time of the power FETs on the A15 PCB. This controls the output voltage of the power supply regulator.

The loop amplifier has a 5.3 Vdc reference voltage on the non-inverting input. The operational amplifier changes the output such that the voltage on the inverting input matches that on the non-inverting input. This changes the input to the voltage-control pin of the PWM. The voltage change causes a change in the PWM output duty-cycle. The dutycycle change results in a change of the regulated output voltage.

Figure 5-16. A14 Power Supply Control PCB Block Diagram

5-18 A15 POWER SUPPLY CONVERTER PCB CIRCUIT DESCRIPTION

The A15 Power Supply Converter PCB (Figure 5-17) is a dc-to-dc converter that converts $\pm 165 \mathrm{~V}$ from the A18 PCB to a variety of filtered de voltage levels. These filtered voltages are then regulated on the PCBs that use them.

Two power MOSFETs drive the primary of transformer T1. They are biased with a $\pm 165 \mathrm{~V}$ dc voltage. This gives adequate drive voltage to drive the primary of the transformer. The pulse-width modulated signals from the A14 PCB turn the power MOSFETs on and off.

The secondary circuits are typical power supply rectifier and filter circuits. Each of them use the appropriate taps off the secondary of T1. The drive signals to the power MOSFETs are approximately 111 kHz . This produces very high frequency, easily filtered ripple signals.

A thermistor is physically mounted on the heat sink of the power MOSFETs. This provides feedback to the over-temperature detector circuit on the A14 PCB. The over-temperature detector shuts the power supply down when the temperature crosses a pre-defined threshold.

The PWM on A14 PCB performs the shutdown of the signals driving the power MOSFETs. The functional block diagram illustrates the waveforms at various points in the circuit.

Figure 5-17. A15 Power Supply Converter PCB Block Diagram

5-19 A16 TEST SET VO PCB CIRCUIT DESCRIPTION

5-20
A17 SYSTEM MOTHERBOARD PCB CIFCUIT DESCRIPTION

The A16 Test Set I/O PCB (Figure 5-18) provides fused dc voltages to the test set. The A18 PCB supplies the raw dc voltages to the A16 PCB.

The voltage values are $+8 \mathrm{~V}, \pm 18 \mathrm{~V}$, and $\pm 27 \mathrm{~V}$. Additionally the A16 PCB generates a timing strobe that synchronizes activities between the test set and the analyzer mainframe.

This PCB also monitors the voltage levels of the dc power. These circuits are called power detect circuits.

The A17System Motherboard PCB acts as a conduit between all of the other PCBs in the system. Additionally it has circuitry that ensures the proper power-up sequence of the 3.5 inch diskette drive.

Figure 5-18. A16 Test Set I/O PCB Block Diagram

5-21 A18 POWER SUPPLY MOTHERBOARD PCB CIRCUIT DESCRIPTION
The A18 Power Supply Motherboard PCB (Figure 5-19) the following functions:
- Provides power supply bus and connectors for the power supply PCBs.
- Contains the rectifiers and filters for the $\pm 165 \mathrm{Vdc}$ that biases the power MOSFETs on the A15 PCB.
- Provides the interface to the rear-panel line fuse.
- Provides interface to the rear-panel $110 / 220 \mathrm{~V}$ line voltage selector.
- Provides the step-down 18V start-up transformer.
- Provides EMI filtering.
\square Regulates the monitor voltage from the A 15 PC .

Figure 5-19. A18Power Supply Motherboard PCB Block Diagram

5-22 A19 FRONT PANEL, MAIN, PCB CIRCUIT DESCRIPTION

The A19 Front Panel, Main, PCB (Figure 5-20) is the main front panel circuit board. It contains the switch matrix of all front panel switches. It also has the front panel LEDs mounted on it, as well as the digital front panel knob.

The information coming to and from the front panel interfaces to the A 20 PCB.

Figure 5-20. A19 Front Panel, Main, PCB Block Diagram

5-23 A20 FRONT PANEL CONTROL PCB CIRCUIT DESCRIPTION

A20 Front Panel Control PCB (Figure 5-21) is the digital front-panel control board. It contains all of the decode logic and key-scan circuitry for the front panel switches and the digital rotary knob.

Additionally it contains the necessary drivers and buffers for the beeper as well as all of the front-panel LEDs.

An Intel 8279 acts as a key-scan decoder to decode the front-panel switches.

Figure 5-21. A20 Front Panel Control PCB Block Diagram

5-24 REMOVE AND REPLACE COVERS

This paragraph provides instructions for removing top, bottom, and side covers. To replace covers, reverse the removal process.

Procedure Top and Bottom Covers

Step 1. On rear panel, loosen screws and remove the feet from the four corners.

Step 2. Slide the top and bottom covers toward the rear and remove.

Side Covers

Step 1. Remove top and bottom covers.
Step 2. Grasp rack-slide handle at front, and slide side panels to the rear and remove.

CAVTION

All of the PCBs contain staticsensitive components. Refer to Figure 1-2, page 1-10, for precautionary instructions. Failure to follow these instructions may result in damage to the PCB.

This paragraph provides instructions for removing and replacing printed circuit boards (PCBs). To replace PCBs, reverse the removal process. Refer to Figure 5-1, on page 5-6, for PCB locations.

Preliminary Remove top cover (paragraph 5-24).

Procedure A1 thru A10 PCBs

Step 1. Remove RF cables by pulling straightaway.

Step 2. Loosen the top-mounted, phillips-head retaining screws.

Step 3. Grasp handle and pull PCB up and out of card cage.

A11 thru A13, and A21 PCBs

Step 1. Slide retaining clasp on each of eight cover latces toward center and remove cover.

Step 2. Lift up on edge tabs and remove PCB from motherboard connector.

A14 PCB

Step 1. Unsnap retaining clip on A14P2 housing and disconnect ribbon cable connector.

Step 2. Lift up on edge tabs and remove PCB from motherboard connector.

A15 PCB

Step 1. Remove 10 screws, lock washers, and flatwasher, and remove cover.

Step 2. Lift up on edge tabs and remove PCB from motherboard connector.

A16 PCB

Lift up on edge tabs and remove PCB from motherboard connector. REPLACE FRONT PANEL AND DISK DRIVE ASSEMBL.Y

This paragraph provides instructions for removing and replacing the front panel and disk drive assembly. To replace the assembly, reverse the removal process.

Preliminary Remove top, bottom, and side covers (paragraph 524).

Procedure

Step 1. Remove four screws (1), flat washers (2), and lockwashers (3) from right side.

Step 2. Remove two screws (4), flat washers (5), and lockwashers (6) from left side.

Step 3. Remove three screws (7) from the inside of top casting (not shown).

Step 4. Remove two screws (8) from the inside of the bottom casting.

Step 5. Slide the front panel out from the front.

5-27 removeand REPLACE COLOR display vga ASSEMBLY

This paragraph provides instructions for removing and replacing the color display VGA assembly. To replace the assembly, reverse the removal process.

Preliminary Remove top, bottom, and side covers (paragraph 524).

Step 1. Remove the following connectors from the color display housing and PCB mounted on its rear.

- 3 ea ribbon cable connectors from PCB.
- 1 ea 4 -pin molex connector from right side of housing.

ㅁ 1 ea 2-pin molex connector from left side of housing.

- 1 ea line-power plug from housing.

NOTE
Loosing the thrumbscrews and pulling the PCB away from the housing will facilitate removing the cables.

Step 2. Remove four bolts from the underside of the chassis.

Step 3. Lift the color display housing out through the top of the analyzer.

NOTE

You do not have to remove the front panel.

Chapter 6 36XXA Test Sets, General Information

Table of Contents

6-1 INTRODUCTION $6-3$
$6-2$ REPLACEABLE SUBASSEMBLIES $6-3$
$6-3$
OVERALL CIRCUIT DESCRIPTION 6-4
6-4
TEST SET SIGNAL DESCRIPTIONS 6-7
$6-5$
REMOVE AND REPLACE PROCEDURES $6-9$
6-6
REMOVE AND REPLACE COVERS 6-9
6-7 REMOVE AND REPLACE A1T THRU A5T PCBS 6.10
6-8
REMOVE AND REPLACE A5T PCB (3635B) 6-11
6-9
REMOVE AND REPLACE A6T PCB 6-12
6-10 REMOVE AND REPLACE A7T OR A27T PCB 6-12
6-11
REMOVE AND REPLACE COMPENSATION CABLE ASSEMBLIES $6-13$
6-12 REMOVE AND REPLACE A20T THRU A22T ATTENUATORS AND A18T/A19T BLAS TEES 6-14
6-13 REMOVE AND REPLACE A30T AND A31T TRIPLERS $6-15$
6-14 REMOVE AND REPLACE
A13T (A9T) TRANSFER SWITCH $6-16$
6-15 REMOVE AND REPLACE A25T RF SPLITTER $6-17$

6.16	REMOVE AND REPLACE A8T
	AND/OR A10T BUFFER AMPLIFIERS 6-18
6-17	REMOVE AND REPLACE A12T POWER AMPLIFIER 6-19
6-18	REMOVE AND REPLACE A13T AND
	A17T INTERFACE ASSEMBLIES 6-20
6.19	REMOVE AND REPLACE A16T POWER DIVIDER 6-21
$6-20$	REMOVE AND REPLACE
	A24T SOURCE LOCK ASSEMBLY 6-22
6-21	REMOVE AND REPLACE
	A14TA15T COUPLER CONNECTORS 6-23
6-22	REMOVE AND REPLACE A20T RF INPUT
	AMPLIFIER (MODEL 3635B) 6-24
$6-23$	REMOVE AND REPLACE A22T PORT 2 LO
	AMPLIFIER (MODEL 3635B) 6-26
$6-24$	REMOVE AND REPLACE A21T PORT 1 LO
	AMPLIFIER (MODEL 3635B) 6-27
6-25	REMOVE AND REPLACE Al1T LO 1
	POWER SPLITTER (MODEL 3635B) 6-28

Chapter 6 36XXA Test Sets, General Information

6-1 introduction

6-2 REPLACEABLE SUBASSEMBLIES

This chapter provides general information for the test sets. It also includes remove and replace procedure for test set assemblies.

WILTRON maintains a module exchange program for selected signal source modules. If a malfunction occurs in one of these modules, it can be exchanged. Upon request and typically within 24 hours, WILTRON or an Anritsu/Wiltron Service Center will ship an exchange module. The customer has 30 days in which to return the defective item. All exchange parts are warranted for 90 days from the date of shipment or for the balance of the original-part warranty-whichever is longer.

A listing of exchangeable subassemblies is provided in Chapter 1, Table 1-2.

An overall functional description of the test set is given below. This description is organized into a general description of the test set and operation of the test set within the system.

General The test set contains the measurement components for the 360B VNA system. The test set, under direct control of the VNA, performs the following:

- Stimulus signal routing from the signal source to a device-under-test (DUT) through one of the test ports (Port 1 or Port 2).
- Signal separation and down conversion of the incident, reflected, and transmitted signals at Ports 1 and 2 into four IF signals (Test A, Reference A, Test B, and Reference B).
\square Amplification of the IF signals.
There are test sets available that allow vector measurements for different applications. The test set types include active and passive device test sets with automatic signal reversing, frequency conversion test sets, and a millimeter-wave test set. Most test set types include multiple models covering differing frequency ranges from 10 MHz to 60 GHz . The mil-limeter-wave test set provides frequency coverage from 33 to 110 GHz in four waveguide bands $(\mathrm{Q}, \mathrm{U}$, V , and W).

System Operation

During a typical measurement, the microwave signal source, under direct control of the VNA, outputs an RF signal to the test set to provide stimulus to the DUT. The system signal source is phase-locked with the VNA's internal 10 MHz crystal oscillator. An external 10 MHz frequency standard may be substituted for the system's internal 10 MHz oscillator for maximum attainable frequency accuracy.

In the test set, the stimulus signal is sent to the DUT through one of the test set test ports (Port 1 or Port 2). When there is any impedance mismatch between the test port and the DUT input port, some of the signal incident at the DUT input port is reflected back to the test set and some travels into the DUT. In the case of two port DUTs - those having an input and output port - the portion of the stimulus signal that travels through the DUT goes to the second test port for measurement.

In addition to stimulus-signal routing from the signal source to the DUT, the test set also serves as the front end of the VNA receiver.

Within the test set there are signal separation and down conversion devices that separate and down convert the incident, reflected, and transmitted signals at Port 1 and Port 2 into four distinct intermediate frequency (IF) signals. The incident signals are fed to Reference Channels A and B and the reflected or transmitted signals are fed to Test Channels A and B.

Heterodyne frequency conversion is used to improve upon the inherent limitations in broadband diode detectors. It also provides significant improvement in dynamic range, harmonic rejection, and sensitivity.

Each of the four IF signals carries embedded magnitude and phase information relative to a reference signal. Down conversion does not affect the magnitude and phase relationship, only the frequency is changed. The IF signals go to selection switches in the test set. These switches determine the following:

ㅁ Which signals are sent to the test set IF amplifiers and then on to the synchronous detectors of the VNA.

- Which reference signal will be used for phaselocking the system signal source.

The VNA source lock circuitry compares the selected reference signal frequency and phase to that of a signal derived from the 10 MHz crystal oscillator in the VNA. If the system is not properly phase-locked, a correction voltage is generated that drives the FM \varnothing LOCK input to the system signal source. This signal forces the source to lock to the correct frequency and phase.

Additional signal processing is implemented within the VNA. The magnitude and phase information embedded on the analog IF signals is first detected; then it is converted to digital data.

The VNA processors - controlled by firmware coupled with downloadable software - manipulate this digital data according to theoretical modelling
techniques. Short-term system errors are normalized and digital compensation is generated and applied. The resultant S-parameter data that characterizes the DUT is then
\square presented on the VNA color display,
\square output to a printer or plotter, or
[] routed to the rear panel (external) GPIB interface.

All test sets use the same signal designations. The following is a description of the test set signals, their derivation, and their relationships. To aid understanding, use the overall block diagram for your model of test set - Figures $7-3$ or $7-4$ (in Chapter 7), Figure $8-1$ (in Chapter 8), or Figure 9-2 (in Chapter 9) - while reading the following discussion.

The test sets have two front panel ports that are used for connection to the DUT. They are designated Port 1 and Port 2. When the DUT stimulus signal originateg at Port 1, an LED next to that port lights. This indicates a measurement in the forward direction. When the DUT stimulus signal originates at Port 2, an LED next to that port lights. Conversely, this indicates a measurement in the reverse direction.

The VNA controlled switching of the stimulus signal between Ports 1 and 2 eliminates the need to physically reverse the DUT during the measurement process. This VNA system feature is referred to as fullyreversing.

Within the test sets, signal separation and down conversion of the incident, reflected, and transmitted signals at Ports 1 and 2 results in four IF signals. They are defined as:

- R (Reference, Channel A) - this signal contains information about the stimulus signal in the forward direction (incident signal) from Port 1 to the DUT.
$\square T_{A}$ (Test, Channel A) - in the forward measurement mode, this signal contains information about the reflected signal from the DUT back to Port 1. In the reverse measurement mode, this signal contains information about the transmitted signal from the DUT to PORT 1.
- R_{B} (Reference, Channel B) - this signal contains information about the stimulus signal in the reverse direction (incident signal) from Port 2 to the DUT.
- Ts (Test, Channel B) - in the forward measurement mode, this signal contains information about the transmitted signal from the DUT to Port 2. In the reverse measurement mode, this signal contains information about the reflected signal from the DUT back to Port 2.

The four IF signals maintain these channel definitions as they are down-converted to the second IF while passing through the A8T and A10T Buffer Amplifiers. Before processing by the A1T, A2T, and A3T IF Amplifiers, the desired relationship of Channels A, B, and R is established by the selection switches in the A24T Source Lock/Reference Select assembly, as is the choice of source lock signal.

The VNA's display menus are designed for use with all VNA test set models. Therefore, to accommodate those test sets that do not contain front-end signal separation devices, signal paths are designated by the names used in the definitions of multi-port devices. The VNA menus for test ports are:
$\square a_{1}$ - normally equivalent to R_{A} (depending on the configuration selected via menu control)
$\square a 2$ - normally equivalent to RB (depending on the configuration selected via menu control)
$\square b_{1}$ - normally equivalent to T_{A} (depending on the configuration selected via menu control)
$\square \mathrm{b}_{2}$ - equivalent to TB_{B}.
The VNA system mathematically compares the relative magnitude and phase changes between the reference and test channels to derive the S-parameters used to characterize a DUT. Table $6-1$ shows the relationship between the multi-port device definitions and the VNA system measurement channels in deriving the S-parameters. (Do not confuse the four measurement channels with the four display channels, CH1 thru CH4, selected by the push buttons at the right of the VNA display.)

Table 6-1. S-parameter Definitions

S Parameter	Multi-Port Device Definition Ratio	VNA Measurement Channel Ratio	Measurement Definition
S_{11}	$\frac{\mathrm{~b} 1}{\mathrm{a} 1}$	$\frac{T_{A}}{T_{B}}$	Forward Reflection
S_{12}	$\frac{\mathrm{~b} 1}{\mathrm{a} 2}$	$\frac{\mathrm{TA}_{A}}{\mathrm{R}_{B}}$	Reverse Transmission
S_{21}	$\frac{\mathrm{~b} 2}{\mathrm{a} 1}$	$\frac{\mathrm{~T}_{B}}{\mathrm{R}_{A}}$	Fonward Transmission
S_{22}	$\frac{\mathrm{~b} 2}{\mathrm{a} 2}$	$\frac{\mathrm{~TB}_{B}}{\mathrm{R}_{B}}$	Reverse Reflection

6-5 REMOVE AND REPLACE PROCEDURES

6-6 REMOVE AND REPLACE covers

Procedures for removing and replacing subassemblies listed in Table 12 are provide in subsequent paragraphs.

This paragraph provides instructions for removing top, bottom, and side covers. To replace covers, reverse the removal process.

Procedure Top and Bottom Covers

Step 1. On rear panel, loosen screws and remove the feet from the four corners.

Step 2. Slide the top and bottom covers toward the rear and remove.

Side Covers

Step 1. Remove top and bottom covers.
Step 2. Grasp rack-slide handle at front, and slide side panels to the rear and remove.

6-7
 REMOVE AND REPLACE AIT THRU A5T PCBS

CAUTION

All of the referenced PCBs contain static-sensitive components. Refer to Figure 1-2, page 1-10, for precautionary instructions. Failure to follow these instructions may result in damage to the PCB.

This paragraph describes how to remove the A1T thru A5T PCBs. The A1T thru A4T procedures are applicable for all models; the A5T procedure applies to all except 3635 B . To replace PCBs , reverse the removal process.

NOTE

Refer to Figures 7-1, 7-2, 8-2, or 9-3 (as applicable) for component locations.

Preliminary Remove all four system covers (paragraph 6-6).

Procedure Step 1. Loosen connector and remove attached

 coaxial cables.Step 2. Remove 14 screws and lockwashers from outer edges of cover plate.

Step 3. Tug on cover plate handle to lift PCB straight up and out.

NOTE

After replacing cables, torque connectors to 8 inch-pounds.

6-8 REMOVE AND REPLACE
A5T PCB (3635B)

CAUTION

All of the referenced PCBs contain static-sensitive components. Refer to Figure 1-2, page 1-10, for precautionary instructions. Failure to follow these instructions may result in damage to the PCB.

This paragraph describes how to remove the A5T Power Distribution PCB on Model 3635B. To replace PCB, reverse the removal process.

NOTE
Refer to Figure 9-3 for PCB location.
Preliminary Remove the top cover (paragraph 6-6).

Procedure

Step 2. Remove 6 screws and pull PCB straight up and out.

NOTE

- These screws are accessible through the bottom of the instrument - through holes in the A23T Motherboard.
- After replacing cables, torque connectors to 8 inch-pounds.

6-9 remove and replace AGT PCB

CAUTION

The referenced PCB contains static-sensitive components. Refer to Figure 1-2, page 1-10, for precautionary instructions. Failure to follow these instructions may result in damage to the PCB.

6-10
 REMOVE AND heplace att Or A27T PCB

This paragraph describes how to remove the A6T Power Distribution PCB . To replace PCB , reverse the removal process.

NOTE

Refer to Figures 7-1, 7-2, 8-2, or 9-3 (as applicable) for component locations.

Preliminary Remove the top cover (paragraph 6-6).
Procedure Step 1. Loosen thumbscrew, located in the middletop of the PCB, by turning it counterclockwise.

Step 2. Lift up on the the two edge tabs and pull PCB straight up and out.

This paragraph describes how to remove the A7T Attenuator Driver PCB or A27T Amplifier Switch/Driver PCB on Model 362XA test sets. To replace PCB, reverse the removal process.

NOTE
Refer to Figures $7-1$ or 7-2 (as applicable) for component locations.

Preliminary Remove the top cover (paragraph 6-6).
Procedure Step 1. Loosen thumbscrew, located in the middletop of the PCB, by turning it counterclockwise.

Step 2. Lift up on the the two edge tabs and pull PCB straight up and out.

This paragraph describes how to remove the compensation cable assemby on the Model 3610A. To replace this assembly, reverse the removal process.

NOTE

Refer to Figure 7-1 for assembly location.
Preliminary Remove the top cover (paragraph 6-6).
Procedure
Step 1. Loosen four connectors, as described
below:
\square A14J2, connected to J 2 on coupler.
\square A11J2, connected to J2 on Sampler A.
$\square \quad \mathrm{A} 17 \mathrm{~J} 1$, connected to rear panel.
$\square \quad$ A13J4, connected to transfer switch.
Step 2. Remove two screws, lockwashers, and flat washers and standoffs on either side of cable assemblies.

Step 3. Lift the two semi-rigid cables up and out.
NOTE
After replacing cables, torque connectors to 8 inch-pounds.

6-12 removeand REPLACE A2OT THRU A22T ATTENUATORS AND A18T/A19T BIAS TEES

This paragraph describes how to remove the A20, A21, and A22 Attenutor assemblies and A18T and A19T Bias Tees on Model 362XA. To replace the attenuator(s), reverse the removal process.

NOTE

Refer to Figures 7-1 or 7-2 (as applicable) for component locations.

Preliminary Remove the top cover (paragraph 6-6).

Procedure Step 1. Loosen connectors and remove cables be-

 tween attenuator input (or bias tee input) and coupler/connector output.Step 2. Loosen connector and push cable back from attenuator output connector.

Step 3. Remove appropriate ribbon cable connector from A7J1, A7J2, or A7J3.

Step 4. Loosen connector and remove cables from top of bias tee, if applicable.

Step 5. Remove two screws, lockwashers, and flat washers from bottom of bracket.

Step 6. Lift attenuator and bracket straight up and out.

Step 7. If applicable, remove bias tee by loosening connector, then removing screw, lockwasher, and flatwasher.

Step 8. Remove remaining screw(s) and separate attenuator from bracket.

NOTE
After replacing cables, torque connectors to 8 inch-pounds.

6-13 remove and replace abot and A31T TRIPLERS

This paragraph describes how to remove the A30T and A31T Tripler assembly on the Models 3612A, 3613A, 3615A, 3622A, 3623A, 3625A, and 3631 A Test Sets. To replace the tripler(s), reverse the removal process.

NOTE

Refer to Figures 7-1, 7-2, or 8-2 (as applicable) for component locations.

Preliminary Remove the top cover (paragraph 6-6).
Procedure Step 1. Loosen connectors and remove three cables from connectors stated below:

- J1 and J2 on Mux CouplerRF IN on Amplifier.
Step 2. Remove black and white twisted-pair connector from motherboard.

NOTE

Remove black and white twistedpair from cable clamps and ties as applicable.

Step 3. Remove two screws, lockwashers, and flat washers from bottom of bracket.

Step 4. Lift tripler assembly and bracket straight up and out.

NOTE
After replacing cables, torque connectors to 8 inch-pounds.

This paragraph describes how to remove the A13T (A9T on 3635B) Transfer Switch-or, for models 3612A, 3613A, 3615A, 3622A, 3623A, and 3625A; the A13T Transfer Switch, and A28/A29 Splitter Switch assemblies. To replace the assemblies, reverse the removal process.

NOTE

Refer to Figures 7-1, 7-2, or 9-3 (as applicable) for component locations.

Preliminary Remove the top cover (paragraph 6-6).
Procedure Step 1. Loosen connectors and remove cable from transfer switch (or transfer-SPDT switches on 3622A).

Step 2. Remove applicable twisted-wiring harness connector(s) from motherboard connector(s).

Step 3. Remove two screws and lockwashers from bracket, and remove transfer switch assembly.

NOTE
After replacing cables, torque connectors to 8 inch-pounds.

6-15 REMOVE AND REPLACE A25T RF SPLITTER

This paragraph describes how to remove the A25T RF Splitter assembly on Models 361X/362X. To replace the splitter, reverse the removal process.

NOTE
Refer to Figures 7-1 or 7-2 (as applicable) for component locations.

Preliminary Remove the top cover (paragraph 6-6).
Procedure
Step 1. Loosen connectors at both ends of cables W11 thru W14.

Step 2. Remove two screws and lockwashers and lift cable-tie-bracket assembly up and out.

Step 3. Remove eight screws from Sampler A/ Sampler B cover plate and lift plate up and out.

Step 4. Loosen connector and remove RF splitter.
NOTE
After replacing cables, torque connectors to 8 inch-pounds.

6-16
 REMOVE AND REPLACE ABT ANDIOR A10T BUFFER AMPLIFIERS

This paragraph describes how to remove the A8T and A10T Buffer Amplifier Assemblies. To replace the buffer amplifiers, reverse the removal process.

NOTE

Refer to Figures 7-1, 7-2, 8-2, or 9-3 (as applicable) for component locations.

Preliminary Prepare for removing the buffer amplifiers as described below.

Step 1. Remove the top cover (paragraph 6-5).
Step 2. Remove the compensation cable assemblies, if applicable for your model (paragraph 6-11).

Step 3. Remove the attenuator assemblies if applicable for your model (paragraph 6-12).

Step 4. Remove the tripler assemblies if applicable for your model (paragraph 6-13).

Step 5. Remove the transfer switch or transfer switch/splitter, if applicable for your model (paragraph 6-14).

Step 6. Remove the RF splitter, if applicable for your model (paragraph 6-15).

Procedure Remove the A8T and A10T assemblies as described below.

Step 1. Remove all coaxial cable connectors.
Step 2. Remove two shielded-harness connectors from motherboard connectors.

Step 3. Remove three screws from the top of the A8T or A10T assembly.

Step 4. Slide the assembly out from under the support brackets, being careful not to damage the power supply feedthroughs.

NOTE
After replacing cables, torque connectors to 8 inch-pounds.

This paragraph describes how to remove the A12T Power Amplifier assembly. To replace the power amplifer, reverse the removal process.

NOTE

Refer to Figures 7-1, 7-2, 8-2, or 9-3 (as applicable) for component locations.

Preliminary Remove the top cover (paragraph 6-6).
Procedure
Step 1. Remove coaxial connectors from input and output connectors.

Step 2. Remove shielded-pair wiring harness from motherboard connector.

Step 3. Remove two hex-head screws, lockwashers, and flat washers from bracket.

Step 4. Slide power amplifer to rear and lift up and out.

NOTE
After replacing cables, torque connectors to 8 inch-pounds.

6-18
 REMOVE AND REPLACE A13T AND A17T INTERFACE ASSEMBLIES

This paragraph describes how to remove the A13T and A17T Front Panel Port Interface Assemblies on Model 3635B. To replace these assemblies, reverse the removal process.

NOTE
Refer to Figure 9-3 for component locations.
Preliminary Remove the top cover (paragraph 6-6).
Procedure Step 1. Remove the appropriate cable harness plug from the A5T Power Distribution PCB at connector A5J1 (for the A13T) or connector A5J2 (for the A17T).

Step 2. Remove the two semi-rigid coaxial cables at the rear of the A13T or A17T assembly.

Step 3. Remove the two flexible coaxial cables at the rear of the A13T or A17T assembly.

Step 4. Remove four screws and pull assemblies away from panel.

NOTE
After replacing cables, torque connectors to 8 inch-pounds.

36XXA TEST SETS	REMOVE AND REPLACE
GENERAL INFORMATION	A16T POWER DIVIDER

6-19 removeand REPLACE A16T POWER DIVIDER

This paragraph describes how to remove the A16T Power Divider. To replace power divider, reverse the removal process.

NOTE

Refer to Figures 7-1, 7-2, 8-2, or 9-3 (as applicable) for component locations.

Preliminary Remove the top cover (paragraph 6-6).
Procedure Step 1. Remove four coaxial cables from assembly top.

Step 2. Remove the four screws and lockwasher and lift power divider up and out.

NOTE
After replacing cables, torque con* nectors to 8 inch-pounds.

This paragraph describes how to remove the A24T Source Lock/LRL Assembly. To replace this assembly, reverse the removal process.

NOTE

Refer to Figures 7-1, 7-2, 8-2, or 9-3 (as applicable) for component locations.

Preliminary Remove the top cover (paragraph 6-6).

Procedure
 Step 1. Remove the two shielded-cable harness

connectors from mating connectors on motherboard.

Step 2. Remove six coaxial cables connected to the A24T assembly.

Step 3. Remove cable assemblies W18, W20, W22, and W40, to obtain unobstructed access.

Step 4. Remove six screws and lockwashers and lift assembly up and out.

NOTE
After replacing cables, torque connectors to 8 inch-pounds.

6-21
 REMOVE AND REPLACE A14T/A15T COUPLER CONNECTORS

This paragraph describes how to remove the A14T and A15T
Coupler/Connector Assemblies on Models 361X and 362X. To replace these assemblies, reverse the removal process.

NOTE
Refer to Figures 7-1 or 7-2 (as applicable) for component locations.

Preliminary Remove top cover (paragraph 6-6).
Procedure Models 3610 and 3620
Step 1. Remove compensation cable assembly (3610) (paragraph 6-11).

Step 2. Remove the remaining cable from A14T, the two cables that attach to A15T, and the cable that attaches to the RF IN connector.

Step 3. Remove large nuts from front side of connectors.

Step 4. Remove three hex-head screws and lockwashers from rear side of connectors.

Step 5. Remove the two serews, lockwashers, and flat washers that secure the couplers to the brackets.

Step 6. Remove the two screws, lockwashers, flat washers, and rubber grommets from the bottom of the brackets; remove the brackets.

Step 7. Slide the couplers back and lift up and away.

Models 3611, 3621, 3612, and 3622
Step 1. Remove the two cables that attach to each coupler.

Step 2. Remove large nuts from frontside of connectors.

Step 3. Remove three hex-head screws and lockwashers from rearside of connectors.

Step 4. Remove two screws, lockwashers, and flat washers that secures coupler to bracket.

Step 5. Rotate couplers to clear brackets and remove.

6-22 removeand REPLACE A2OT RF INPUT AMPLIFIER (MODEL 3635B)

This paragraph describes how to remove the A20T RF Input Amplifier on Model 3635B Test Set. To replace this assembly, reverse the removal process.

NOTE

Refer to Figure 6-1 for component locations.
Preliminary Remove top and side covers (paragraph 6-6).
Procedure Step 1. Remove two RF cables.
Step 2. Remove the connector from A 5 J 3 , and free the black/white twisted-wire pair for removal.

Step 3. Tag wires red and black wires and desolder from pins.

Step 4. From side, remove four screws from bracket and remove amplifier.

Figure 6-1. RF Component Locations, Model 3635B

6-23 REMOVE AND REPLACE A22T PORT 2 This paragraph describes how to remove the A22T Port 2 LO Amplifier on Model 3635B Test Set. To replace this assembly, reverse the removal LO AMPLIFIER (MODEL 3635B) process.

	NOTE
Refer to Figure 6-1 for component locations.	
Preliminary	Remove top cover (paragraph 6-6).
Procedure	Step 1. Remove two RF cables.
	Step 2. Tag and desolder five wires.
	Step 3. Remove four screws and remove amplifier.

6-24
 REMOVE AND REPLACE A21T PORT 1 LO AMPLIFIER (MODEL 3635B)

This paragraph describes how to remove the A21T Port 1 LO Amplifier on Model 3635B Test Set. To replace this assembly, reverse the removal process.

NOTE
Refer to Figure 6-1 for component locations.
Preliminary Remove top cover (paragraph 6-6).
Procedure Step 1. Remove two RF cables.
Step 2. Tag and desolder six wires.
Step 3. Remove four screws and remove amplifier.

This paragraph describes how to remove the A11T LO 1 Power Splitter on Model 3635 B Test Set. To replace this assembly, reverse the removal process.

NOTE
Refer to Figure 6-1 for component locations.
Preliminary Remove top cover (paragraph 6-6).
Procedure Step 1. Remove two RF cables.
Step 2. Remove connector from backside of LO1 INPUT connector.

Step 3. Remove splitter.

Chapter 7 361XA/362XA Test Sets Information

Table of Contents

$7-1$ INTRODUCTION $7-3$
7.2 OVERALL FUNCTIONAL DESCRIPTION 7.3
$7-3$ TEST PORT CONVERTERS 7-6
7-4 FUNCTIONAL DESCRIPTION, 3610A/11A AND 3620A/21A TEST SETS $7-7$
7-5 FUNCTIONAL DESCRIPTION, 3612A, 3613A, 3615A, 3622A, 3623A, AND 3625A TEST SETS 7-13
$7-5$ A1T, A2T, and A3T CHANNEL IF AMPLIFIER PCB CIRCUIT DESCRIPTION 7-15
7-6
A4T LO 2 PCB CIRCUIT DESCRIPTION 7-18
$7-7$ A5T LO 1 PCB CIRCUIT DESCRIPTION 7-20
$7-8$
A6T DIGITAL INTERFACE PCB CIRCUIT DESCRIPTION 7-22
7.9 A7T ATTENUATOR DRIVER PCB CIRCUIT DESCRIPTION 7-24
$7-10$ A23T MOTHERBOARD PCB CIRCUIT DESCRIPTION 7-26
7-11 A24T SOURCE LOCK/REFERENCE SELECT ASSEMBLY CIRCUIT DESCRIPTION $7-27$
7-12 A27T AMPLIFIER/SWITCH DRIVER PCB CIRCUIT DESCRIPTION 7-28
7-13 RF DECK ASSEMBLY DESCRIPTIONS 7-30

Chapter 7 361XA/362XA Test Sets Information

7-1 introduction

7-2

OVERALL FUNCTIONAL DESCRIPTION

This chapter describes the series 361XA and 362XA Test Sets. It provides an overall functional description and descriptions of major PCB's, subassemblies, and RF deck assemblies for these units.

Models 3610A through 3615A are Reversing Test Sets, and Models 3620A through 3625A are Active Device Test Sets (Table 7-1). All models contain the same basic circuitry and assemblies, and all provide automatic signal reversing. They differ only in that the Active Device Test Sets contain bias tees and additional step attenuators. The corresponding models of both series (3610A/ $362 \underline{1}$ A, $3613 \mathrm{~A} / 3623 \mathrm{~A}$, etc) cover the same frequency ranges.

The models in each series are similar in construction and operation, but differ in frequency range. Table $7-1$ lists the test set models, their frequency ranges, and their test port connector types. The major assembly locations for models 3610A, 3611A, 3620A, and 3621A are shown in Figure 7 -1 (next page). Figure $7-2$ shows the major assembly locations for models 3612A, 3613A, 3622A, and 3623A.

Because of their similarities, the functional descriptions and block diagrams have been combined for the test sets. Information that is unique to a particular test set model or series of models is noted both in the descriptions and on the block diagrams.

ASSEMBLY LOCATIONS,	
3610A/11A AND 3620A/21A TEST SETS	361XA/362XA TEST SETS

Figure 7-1. Location Diagram for 3610A/3611A and 3620A/3621A Major Assemblies

Figure 7-2. Location Diagram for 3612A/13A/15A and 3622A/23A/25A Major Assemblies

7-3 TEST PORT CONVERTERS Test port converters provide a convenient means of user reconfiguration of the test set's connector type. Table 7-2 contains a listing of test port converters available for the Models 3610A/11A and Models 3620A/21A Test Sets. Table 7-3 provides a similar list for the Models 3612A, 3613A, 3615A, 3622A, 3623A and 3625A Test Sets.

NOTE

Use wrench (WILTRON part number 01-202) for changing the test port converters listed in Tables 7-2 and 7-3.

Table 7-3. Test Port Converters for 3612A/13A/15A and 3622A/23A/25A

WILTRON Part Number	Description
34 YA50	Universa//GPC-7
34 YK50	Universa//K Connector, Male
34 Y550B	Universa/N Connector, Maie
$34 S S 50$	Universa/SSMA, Male

7-4 functional DESCRIPTION, 3610AM1A AND 3620A/21A TEST SETS

The 3610A/11A and 3620A/21A Test Sets (Figure 7-3, page 7-11) are similar in construction and operation, each model differs only in the bandwidth of the RF components. That is, the RF components that comprise the transfer switch assembly, coupler assemblies, buffer amplifier/sampler assemblies, step attenuators, and bias tees are selected to cover the frequency range of the particular test set model.

The RF signal from the signal source is switched by the A13T transfer switch to PORT 1 of the test set via the A14T coupler or to PORT 2 via the A15T coupler. The switching of A13T is controlled by the VNA through the A6T Digital Interface PCB. Splitters within A13T split the RF signal with a portion going to PORT 1 or PORT 2 and a portion going to the reference channels (R_{A} or R_{B}).

In the forward measurement mode, A14T couples the signal reflected from the DUT to test channel A (TA) and A15T couples the signal that passes through the DUT to test channel $\mathrm{B}\left(\mathrm{T}_{\mathrm{B}}\right)$. In the reverse measurement mode, A15T couples the signal reflected by the DUT to test channel $\mathrm{B}\left(\mathrm{T}_{\mathrm{B}}\right)$ and A14T couples the signal that passes through the DUT to test channel A (TA). Simultaneously with the action described above for forward and reverse measurements, the signal source supplies a sample of its output to reference channels R_{A} and R_{B}.

The Models 3620A and 3621A Active Device Test Sets contain three step attenuators-A20T, A21T and A22T - and the bias tees (A18T and A19T) in the PORT 1 and PORT 2 stimulus signal lines and the step attenuator (A20T) in the forward transmission line. A21T and A22T are used to adjust the stimulus signal to the DUT, and A20T is used to control the DUT output power.

The step attenuators attenuate signals in 10 dB steps for a maximum attenuation of 70 dB (A20T is limited to a maximum attenuation of 40 dB). Attenuation is controlled by the VNA, via the ATT Attenuator Driver PCB. The A18T and A19T bias tees apply an appropriate dc bias voltage to those active DUTS that require it. Bias voltage can be applied to the test set via front or rear panel connectors.

First and Second IF
Down Conversion

The test sets have two primary modes of operation: direct and heterodyne. The direct mode is for frequencies between 40 MHz and 270 MHz . The heterodyne mode is for frequencies from 270 MHz to 40 GHz .

In the direct mode, dual samplers A9T and A11T are like closed switches and send the test (T_{A} and T_{B}) and reference (R_{A} and R_{B}) signals to the buffer amplifiers A8T and A10T.

In the heterodyne mode, A9T and A11T switch either at the frequency of the first local oscillator (LO 1) or at harmonics of the first LO. The A5T LO 1 PCBcontrolled by the VNA - outputs a 357 MHz to 536.5 MHz LO frequency.

The first LO output goes to the A12T power amplifier assembly, where it is amplified to drive the harmonic generator. This produces the harmonic pulses necessary for heterodyning in the samplers.

The A12T first LO output goes to A9T and A11T, via the A25T RF splitter assembly. The switching action of a sampler causes a mixing of the first $L O$ frequencies and the input signal (T_{A}, T_{B}, R_{A}, or RB). This heterodyning action provides the desired intermediate frequency (IF) of $89 \pm 4 \mathrm{MHz}$. The resultant first IF signals are input to buffer amplifiers A8T and A10T.

Source Lock f Reference Signal Selection

In the buffer amplifiers, the direct mode signal (40 MHz to 270 MHz) or first IF signal (89 MHz) is mixed with the second local oscillator (LO 2) signal. The A4T LO 2 PCB, which is controlled by the VNA, outputs an LO frequency in the range between 12.25 MHz and 272.25 MHz .

The heterodyning of the direct mode/first IF and second LO frequencies produces the desired second IF of 2.25 MHz . The buffer amplifier assemblies provide 0 dB conversion gain. The second IF test and reference signals ($\mathrm{T}_{\mathrm{A}}, \mathrm{R}_{\mathrm{A}}$, and RB_{B}) from the A 8 T and A10T buffer amplifiers go to the A24T Source Lock/Reference Select assembly. The second IF test signal T_{B} - which is output by one half of the A8T buffer amplifier - goes directly to the A1T Channel B IF Amplifier.

The A24T Source Lock/Reference Select assembly (also referred to as the LRL Module), contains switches for selecting the desired second IF signal source for the A2T Reference Channel IF Amplifier, the A3T Channel A IF Amplifier, and the VNA Source Lock circuitry.

The A24T switches are controlled by the VNA through the A6T Digital Interface PCB. The second IF signal source for the A2T Reference Channel IF Amplifier is either R_{A} or R_{B}. The second IF signal source for the A3T Channel IF Amplifier is either TA or R_{A}. The second IF signal source for the VNA source lock circuitry is R_{A} for forward measurements and R_{B} for reverse measurements.

Third IF
Down

Conversion

 and AmplificationThe A1T, A2T, and A3T Channel IF Amplifiers have two modes of operation - measurement (LO) and calibration (CAL). In the measurement mode, the second IF signal is mixed with the third local oscillator (LO 3) signal of $21 / 3 \mathrm{MHz}$ received from the VNA via the A16T Three-Way Power Divider.

The heterodyning of the second IF and third LO frequency produces the desired third IF of 8313 kHz . The third IF signal is then amplified as required by five gain-ranging amplifiers before being output to the VNA synchronous detector circuits. The gainranging amplifiers are controlled by the VNA, through the A6T Digital Interface PCB.

The VNA automatically places the Channel IF Amplifiers in the calibration mode every three minutes. In this mode, an $831 / 2 \mathrm{kHz}$ signal is received from the VNA via the A16T Three-Way Power Divider. This 8313 kHz calibration signal goes directly to the gain-ranging amplifiers. These amplifier are then automatically calibrated to assure optimum accuracy and predictability of the Channel IF Amplifier outputs.

Figure 7.3. Models 3610A, 11A, 20A, 21A Block Diagram

Figure 74. Models 3612A, 13A, 22A, 23A Block Diagram

7-5 functional DESCRIPTION, 3612A/13A/15A AND 3622A/23A/25A TEST SETS

These test sets (Figure 7-4, facing page) contain the same basic circuitry and assemblies. Models 3612A and 3622A cover the same frequency ($0.04-40$ GHz), as do models 3615A and 3625A(0.04-50 $\mathrm{GHz})$ and $3613 \mathrm{~A}, 3623 \mathrm{~A}(0.04-65 \mathrm{GHz}$, see Thble 7 1). The active device test sets, $3622 \mathrm{~A} / 3623 \mathrm{~A} / 25 \mathrm{~A}$, differ from the $3612 \mathrm{~A} / 3613 \mathrm{~A} / 15 \mathrm{~A}$ in that they contain bias tees and additional step attenuators.

Signal Routing and Separation

The RF signal from the 360 SS69 Signal Source is switched by the A13T Transfer Switch to the A28T (Channel A) or A29T (Channel B) SPDT/Splitter

Switch Assembly. The switching of A13T is controlled by the VNA through the A6T Digital Interface PCB. SPDT/Splitter Switch Assemblies A28T and A29T have two switch positions - 40 MHz to 40 GHz and 40 GHz to 60 GHz (40 GHz to 65 GHz for models 3613A and $3623 \mathrm{~A}, 40 \mathrm{GHz}$ to 50 GHz , for models 3615 A and 3625 A). The VNA controls the switching of A28T and A29T through the A27T Amplifier/Switch Driver PCB.

In the forward measurement mode, A13T switches the signal source RF signal to A28T. If the VNA is operating in the 40 MHz to 40 GHz range, the A28T splitter feds a portion of the signal to the PORT 1 coupler, A14. It also feds a portion to the reference channel (RA_{A}) through the multiplexer coupler that is part of the A30T Channel A Tripler Assembly.

If the VNA is operating above $40 \mathrm{GHz}, \mathrm{A} 28 \mathrm{~T}$ routes the signal source RF signal to the A30T Channel A Tripler Assembly*. The A30T assembly is poweredon by the VNA via the A27T Amplifier/Switch Driver PCB. The signal source RF signal is amplified and tripled to obtain the desired 40 GHz to 60 GHz (or 40 GHz to 50 or 65 GHz) signal. The resultant RF signal goes to the multiplexer coupler, which feds portion of it to the PORT 1 coupler (A14) and a portion to the reference channel $\left(\mathrm{RA}_{\mathrm{A}}\right)$.

[^1]A14T couples the signal reflected from the DUT to test channel A(TA) and A15T couples the signal that passes through the DUT to test channel $\mathrm{B}\left(\mathrm{T}_{\mathrm{B}}\right)$.

In the reverse measurement mode, A13T switches the signal source RF signal to A29T. If the VNA is operating between 40 MHz and 40 GHz , the A29T splitter feds a portion of the signal the PORT 2 coupler, A15. It also feds a portion to reference channel (RB) through the multiplexer coupler that is part of the A31T Channel A Tripler Assembly.

If the VNA is above 40 GHz , A29T routes the signal source RF signal to the A31T Channel B Tripler Assembly. The A31T assembly is powered-on by the VNA via the A27T Amplifier/Switch Driver PCB. The signal source RF signal is amplified and tripled to obtain the desired 40 GHz to 60 GHz (or 40 GHz to 50 or 65 GHz) signal. The resultant RF signal goes to the multiplexer coupler, which feds portion of it to the PORT 2 coupler (A15) and a portion to the reference channel (RB).

A15T couples the signal reflected from the DUT to test channel B (TB), and A14T couples the signal that passes through the DUT to test channel $A\left(T_{A}\right)$.

The 3622A and 3623A and 3625A Active Device Test Sets contain bias tee A18T and step attenuator A22T in the PORT 1 stimulus signal line. Similarly, bias tee A19T and step attenuator A20T are included in the PORT 2 stimulus signal line. These models also include a third step attenuator, A21T, in the forward receive path between coupler A15T and the input to test channel $B\left(T_{B}\right)$.

First and second IF down conversion, source lock/reference signal selection, and third IF down conversion and amplification is functionally identical for all of the Models 361XA and 362XA Test Sets.

The A1T, A2T, and A3T Channel IF Amplifier assemblies (Figure 7-5) are functionally equivalent. The A1T and A3T PCBs are mechanically identical; only the PCB cover plates are different. The A2T PCB has a different component layout and card-edge connector pin configuration. The following functional description applies to all three.

The Channel IF Amplifier PCBs have two modes of operation: measurement (LO) and calibration (CAL). In the measurement mode, the 2.25 MHz second IF signal input goes via a buffer amplifier to a 2.25 MHz bandpass filter that removes harmonics and other unnecessary signals. The output from the filter is split into two separate signal paths. The signals are then phase-shifted; one signal by $+45^{\circ}$ and the other by -45°. Each of the phase-shifted signals is mixed with a $21 / 3 \mathrm{MHz}$ third local oscillator signal received from the VNA.

One of the frequencies produced in each mixer is $831 / 3 \mathrm{kHz}$ - the difference of the two frequencies. The two phase-shifted, heterodyned signals are then filtered, phase shifted back to 0°, and summed in an amplifier to reject the image frequency. The output passes through an $831 / 3 \mathrm{kHz}$ bandpass filter that rejects all harmonics and subharmonics of the fundamental frequencies. The $831 / 3 \mathrm{kHz}$ third IF signal then goes to five gain-ranging amplifiers that have selectable gains of one or four.

The third IF signal output is maintained at an acceptable level through automatic gain control (AGC). The peak detector, at the output of the gain-ranging amplifiers, detects the peak signal level and sends a de voltage representing this level to the comparator. The comparator determines if the dc voltage is in the necessary range of levels required by the VNA synchronous detectors. The comparator outputs one of three signals:

ㅁ $L=0 \mathrm{~dB}$ - overload peak signal level condition

- L $\leftrightarrows-12 \mathrm{~dB}$ - maximum peak signal level condition
- $L \Rightarrow-24 \mathrm{~dB}$ - minimum peak signal level condition.

These signals are sent via the A6T Digital Control PCB to the VNA. Responding to these signals, the VNA sends data through A6T to control the gain ranging amplifiers maintaining the peak signal level between 0 and -24 dB .

Third IF peak signal levels affect the amplifiers as follows:
When the peak signal level is between 0 and -24 dB , all amplifiers are set to a gain of one.

- When the peak level drops below -24 dB , the first gain-ranging amplifier is set to a gain of four. The gain of the first amplifier remains at four until the signal reaches a peak level above -24 dB .
\square If the peak signal drops to a level below -36 dB , the second gainranging amplifier is set to a gain of four.
\square If the peak signal drops to a level below -48 dB , the third gainranging amplifier is set to a gain of four.
\square If the peak signal drops to a level below -60 dB , the fourth gainranging amplifier is set to a gain of four.
- If the peak signal drops to a level below -72 dB , the fifth gainranging amplifier is set to a gain of four.

In this way the third IF signal is incrementally boosted each time the signal level at the peak detector drops 12 dB after the initial -24 dB threshold.

The VNA automatically places the A1T thru A3T Channel IF Amplifiers in the calibration mode every three minutes. In the calibration mode, an $831 / 3 \mathrm{kHz}$ signal is received from the VNA and sent directly to the gain-ranging amplifiers. The signal level is then incrementally increased by individually programming each of the gainranging amplifiers in succession. The outputs are then measured and compared to expected values. The VNA then trims each of the amplifiers using a software algorithm to achieve optimum accuracy and predictability.

Figure 7-5. A1T, A2T, and A3T Channel IF Amplifier PCB Block Diagram

The A4T LO 2 PCB (Figure 7-6) provides the second local oscillator (LO) signal to the A8T and A10T Buffer Amplifiers. There it mixes with the first IF signal to produce the second IF of 2.25 MHz . The A4T circuitry consists of a loop gain control circuit, a summation amplifier, an 8 -bit digital-to-analog converter (DAC), a linearizer, a voltage-tuned oscillator (VTO), a series of divide-by-2 frequency dividers, a window comparator, a frequency range selection circuit, and several buffer amplifiers.

The frequency control input is a variable dc voltage coming from the A2 LO 2 Phase Lock PCB of the VNA. The window comparator determines if the de voltage has the levels required for a phase lock. The output of the window comparator sends a status bit to the I/O processor of the VNA for diagnostic purposes.

If the test set signal source is a synthesizer, the VNA's I/O processor operating through the A6T Digital Interface PCB - changes the attenuation in loop gain control circuit to compensate for loop gain changes each time a different frequency range is selected.

The VNA's I/O processor pre-tunes the VTO by sending a byte to the 8 bit DAC via the A6T Digital Interface PCB. The output of the DAC is summed with the frequency control input in the summation amplifier. The DAC output coarse tunes the VTO frequency output. The frequency control input fine tunes the frequency output.

The output of the summation amplifier is linearized to compensate for nonlinearities in the VTO. The output of the VTO is a 98 MHz to 272.25 MHz signal. One output is buffered and sent to the VNA's A2 LO 2 Phase Lock PCB. The other output is sent to a series of divide-by2 frequency dividers.

Depending on selection, the frequency range selection circuit sends the VTO output signal directly to the output buffer amplifiers or through any of the frequency dividers before being sent to the output buffer amplifiers. The buffer amplifier outputs are the second local oscillator frequencies and have a frequency range from 12.25 MHz (divide by 8) to 272.25 MHz (divide by 1).

Figure 7-6. A4T LO 2 PCB Block Diagram

During the heterodyne mode of operation, the A5T LO 1 PCB (Figure 7-7) provides the first local oscillator signal (LO 1) to the A12T Power Amplifier assembly. In A12T, the LO 1 signal is amplified to drive the harmonic generator, producing the harmonic pulses necessary for heterodyning in the samplers, A9T and A11T.

The A5T circuitry consists of a summation amplifier, an 8 -bit digital-toanalog converter (DAC), a $100 \mathrm{kHz} / 150 \mathrm{kHz}$ notch filter, a linearizer, a voltage-tuned oscillator (VTO), a window comparator, and two buffer amplifiers.

The frequency control input is a variable dc voltage coming from the A1 LO1 Phase Lock PCB of the VNA. The window comparator determines if the dc voltage is in the necessary range of levels required for a phase lock. The output of the window comparator sends a status bit to the I/O Processor of the VNA for diagnostic purposes.

- The VNA's I/O processor pre-tunes the VTO by sending a byte to the 8 -bit DAC via the A6T Digital Interface PCB. The output of the DAC is summed with the frequency control input in the summation amplifier.

The DAC output coarse tunes the VTO frequency output and the frequency control input fine tunes the frequency output. The output of the Summation Amplifier is first filtered by the $100 \mathrm{kHz} / 150 \mathrm{kHz}$ notch filter to remove unwanted signals and then linearized to compensate for nonlinearities in the VTO. The output of the VTO is a 357 MHz to 536.5 MHz signal.

One output is sent to the A1 LO1 Phase Lock PCB in the VNA. The other output is sent to a buffer amplifier. When the test set is in the heterodyne mode, the VNA's I/O processor turns on the buffer amplifier sending the first local oscillator signal to the AI2T Power Amplifier Assembly.

In the direct mode (40 to 270 MHz), the A12T Power Amplifier is turned off and the first local oscillator signal is attenuated.

Figure 7-7. A5T LO 1 PCB Block Diagram

7-9 agt digital interface PCE CIRCUIT DESCRIPTION

The A6T Digital Interface PCB (Figure 7-8) provides digital interface between the VNA and test set. The A6T circuitry consists of a bi-directional bus transceiver, latches, buffers, strobe decode logic, three-toeight decoders, and power filtering and regulation circuits.

The address and data bus connects the test set to the VNA's A16 Test Set I/O PCB. Upon receiving a strobe pulse from the VNA, the strobe decode logic circuit enables the input latch to latch in first the address byte and then the data byte. This enables the decoders to read the address data and select the appropriate device.

The bus transceiver is a bi-directional interface for the input data going to and output data coming from the test set circuits. When bit 7 of the address data byte is set high, the change in logic level of the bus transceiver direction input (DIR) reverses the direction of the data bus. If the data byte is to be written to the test set, the 3 -to- 8 decoder enables the appropriate latch. If the data byte is coming from the test set and going to the VNA, the 3 -to- 8 decoder enables the appropriate buffer.

The power regulation and filtering circuitry regulates and filters the $+8 \mathrm{Vdc},-18 \mathrm{Vdc}$, and +18 Vdc from the VNA, producing the +5 Vdc to power the A6T PCB and the +15 Vdc and -15 Vdc to power the A8T, A10T, and A12T PCBs.

Figure 7-8. A6T Digital Interface $P C B$ Block Diagram

7-10 ATT ATTENUATOR DRIVER PCB CIRCUIT DESCRIPTION

The A7T Attenuator Driver PCB (Figure 7-9) provides drive for the A20T, A21T, and A22T step attenuators and the bias enable relay. The A7T circuitry consists of three latch and coil drivers and a bias enable circuit.

The four data bits (D0-D3), received from the VNA's V/O Processor determines the value to which the step attenuators are to be set. The VNA then sends an attenuator strobe pulse, via the A6T Digital Processor PCB, to activate the selected latch and coil driver circuit to set the step attenuator to this value. Using this same method, the VNA activates the bias enable circuit to enable PORT 1 and PORT 2 bias voltage.

Figure 7-9. A7T Attenuator Driver PCB Block Diagram

A23TMOTHERBOARD PCB	361XA/362XA TEST SET
CIRCUIT DESCRIPTION	INFORMATION

7-11 A23T MOTHERBOARD PCB CIRCUIT DESCRIPTION

The A23T Motherboard PCB contains no active devices. It electrically connects the circuits within the test set. It also provides electrical interface to the VNA through the rear panel SIGNAL and CONTROL connectors.

Additionally, the A23T PCB holds the connectors that are the physical interface to the PCB assemblies of the test set.
$\begin{array}{ll}\text { 7-12 } & \text { A24T SOURCE } \\ & \text { LOCK/REFERENCE } \\ & \text { SELECT ASSEMBLY } \\ & \text { CIRCUIT DESCRIPTION }\end{array}$

The A24T Source Lock/Reference Select assembly (Figure 7-3 or 7-4), also referred to as the LRL Module, contains a source lock reference circuit and a series of FET switches that provide selection of the source of the second IF signal for the A2T Reference Channel IF Amplifier, the A3T Channel A IF Amplifier, and the VNA source lock circuitry. The switches are controlled by the VNA via the A6T Digital Interface PCB. The second IF signal source selections are:

[^2]The R_{A} or R_{B} signal entering the source lock reference circuit is buffered and passes through a 3 MHz low-pass filter where undesirable frequencies are filtered out. The signal is sampled by a level detector to determine if it is of sufficient amplitude to achieve a phase lock. The VNA's I/O processor monitors the level detector output (via the A6T Digital Interface PCB) to help in determining the cause of a lock failure should one occur.

The signal output from the 3 MHz low-pass filter also goes to a limiter that keeps it within a specified tolerance level. It then passes through a 2.25 MHz bandpass filter to select only the desired 2.25 MHz second IF signal. The signal output from the filter is buffered and sent to the VNA's A6 PCB where it becomes the source lock reference frequency.

7-13 A2TT AMPLIFIER/ SWITCH DRIVER PCB CIRCUIT DESCRIPTION

The A27T Amplifier/Switch Driver PCB (Figure 7-10) provides switch drive current for the A28T and A29T SPDT/Splitter Switch assemblies, +5 Vde power for the amplifiers in the A30T' and A31T Tripler assemblies, and sampler bias voltage for the A9T and A11T Sampler assemblies. The A27T circuitry consists of data latches and switch driver, amplifier power, sampler bias, and power filtering and regulation circuits.

The VNA's I/O processor provides switch and amplifier control data (D0-D7) to the data latches. Upon receiving the strobe pulses from the VNA via the A6T Digital Control PCB, the control data is latched-in, thus enabling the selected switch drivers and amplifier power circuits.

When the VNA is operating in the 40 GHz to 60 GHz range, the A27T PCB outputs the following:

- Switch driver current to the A28T and A29T SPDT/Splitter Switch assemblies to place them in the 40 to 60 GHz position.
$\square+5$ Vdc power to drive the amplifiers in the A30T and A31T Tripler assemblies.
- Sampler bias voltage to the A9T and A11T Sampler assemblies. Sampler bias voltage is factory adjusted to enhance the sampler performance above 50 GHz .

When the VNA is operating in the 40 MHz to 40 GHz range, The A27T PCB outputs switch driver current to the A28T and A29T SPDT/Splitter Switch assemblies to place them in the 40 MHz to 40 GHz position. The amplifier power and sampler bias voltage outputs are disabled.

The power filtering and regulation circuitry filters and regulates the $+8 \mathrm{Vdc},-18 \mathrm{Vdc}$, and +18 Vdc from the VNA, producing the +5 Vdc , $-8 \mathrm{Vdc},+15 \mathrm{Vdc}$, and -15 Vdc required to power the A27T circuitry.

Figure 7-10. A27T Amplifier/Switch Driver PCB Block Diagram

7-14
 RF DECK ASSEMBLY DESCRIPTIONS

The following paragraphs provide functional descriptions for each of the RF components/assemblies that make up a typical RF Deck assembly. Refer to Figure $7-3$ or 7-4, as applicable for your model, while reading the following descriptions.

A8T/A9T and A10T/A11T Buffer Amplifier/ Sampler Assemblies

A buffer amplifier/sampler assembly consists of a buffer amplifier assembly and a sampler assembly grouped as a single unit. the buffer amplifier/ sampler assembly has a single WILTRON part number and is always replaced as a single unit. The part
number and serial number are found on the buffer amplifier:

The A8T/A9T Channel B Buffer Amplifier/Sampler and the A10T/A11T Channel A Buffer Amplifier/ Sampler assemblies provide down conversion of the 40 MHz to 60 (or 65^{*}) GHz RF input signals to the second IF frequency of 2.25 MHz .

A9T and A11T are dual sampler assemblies. Each samples two channels. A9T samples Test Channel B (TB_{B}) and Reference Channel $\mathrm{B}\left(\mathrm{R}_{\mathrm{B}}\right)$ and A11T sample Test Channel A $\left(\mathrm{T}_{\mathrm{A}}\right)$ and Reference Channel $\mathrm{A}\left(\mathrm{R}_{\mathrm{A}}\right)$. The dual sampler assemblies consist of electronically controlled switch circuits.

For frequencies in the range of 40 MHz to 40 GHz , bias voltage to control the sampler switches is received from the A6T Digital Interface PCB via the buffer amplifier assembly. For frequencies above 40 GHz , bias voltage is received from the A27T Amplifier/Switch Driver PCB via the buffer amplifier assembly.

When the test set is operating in the direct mode (40 MHz to 270 MHz), the sampler switches are biased to close, which passes the input RF signal directly to the buffer amplifier assembly. When the test set is operating in the heterodyne mode (270 MHz to 40 GHz), the sampler switches are selfbiasing. They switch at the rate of the first local oscillator frequencies.

[^3]This sampler switching action causes a mixing (heterodyning) of the first local oscillator frequencies and the input RF signal. One of the signals that results from this heterodyning is the 89 MHz first IF. This signal goes to the buffer amplifier assembly. When the test set is in the heterodyne mode above 50 GHz , the sampler-switch-bias voltage is factory adjusted to enhance sampler performance.

A8T and A10T are dual-buffer-amplifier assemblies. Each down-converts two channels to second F signals. A8T down-converts Test Channel B (TB) and Reference Channel B (RB_{B}) and A10T down-converts Test Channel A($\left.T_{A}\right)$ and Reference Channel $A\left(R_{A}\right)$. The buffer amplifier assemblies provide 0 dB conversion gain (RF in to 2nd IF out). The buffer amplifiers have slopes which result in a conversion gain of -10 dB at high frequencies (approximately 40 GHz).

The direct mode (40 MHz to 270 MHz) or heterodyne mode (first IF of $89 \pm 4 \mathrm{MHz}$) signal inputs to the buffer amplifier are first amplified; then they pass through a notch filter to eliminate unwanted harmonics; then they go to mixer circuit. In this circuit, they mix with the second local oscillator signal to produce the desired second IF of 2.25 MHz .

The second IF signal passes through a low-pass filter to eliminate unwanted frequencies. It then goes to a buffer amplifier for output. The T_{A}, R_{A}, and R_{B} second IF signal outputs go to the A24T Source Lock/Reference Select Assembly, and the TB second IF output goes to the A1T Channel B IF Amplifier PCB.

A129

Power

 Amplifier AssemblyThe A12T Power Amplifier assembly contains the 500 MHz power amplifier and harmonic generator. The power amplifier amplifies the first local oscillator signal to achieve adequate power levels to drive the harmonic generator.

When the test set is operating in the direct mode, the VNA sends a signal to the A6T Digital Interface PCB. This signal disables A12T by removing the +15 V power. When the test set is operating in the heterodyne mode, the power amplifier amplifies the first local oscillator signal. This signal causes the harmonic generator to produce harmonic pulses that are necessary for heterodyning to take place in samplers A9T and A11T.

There are two configurations of the A13T Transfer Switch assembly. In the Models $3610 \mathrm{~A} / 11 \mathrm{~A}$ and $3620 \mathrm{~A} / 21 \mathrm{~A}$ Test Sets, the A13T assembly consists of an electronic switch and a pair of resistive splitters. In the Models 3612A/13A/15A and 3622A/23A/25A Test Sets, the A13T assembly consists of an electronic switch only.

The A13T Transfer Switch assembly receives the RF signal from the VNA system signal source and switches it to PORT 1 for forward measurements and to PORT 2 for reverse measurements. The switching of A13T is controlled by the VNA, via the A6T Digital Interface PCB.

In the Models $3610 \mathrm{~A} / 11 \mathrm{~A}$ and $3620 \mathrm{~A} / 21 \mathrm{~A}$, the resistive splitters within A13T split the RF signal. A portion of this signal goes to a test port and a portion goes to the reference channel (RA_{A} or RB_{B}). The resistive splitters maintain the same RF power, magnitude, and phase relationship between the RF signals that go to the test port and reference channel.

In the Models 3612A/13A/15A and 3622A/23A/25A, the RF signal is routed to PORT 1 and PORT 2 via the A28T and A29T SPDT/Splitter Switch assemblies. Signal splitting is accomplished in the A28T and A29T SPDT/Splitter Switch assemblies for frequencies in the 40 MHz to 40 GHz range. It is accomplished in the A30T and A31T Tripler assemblies for frequencies above 40 GHz .

A14T/A15T Coupler / Connector Assemblies

A16T
Power Divider Assembly

The A14T and A15T Coupler/Connector assemblies are the directional couplers for the test ports -A14T for test port 1 and A15T for test port 2.

In the forward measurement mode, the A14T assembly couples the stimulus signal to the DUT. It couples the reflected signal from the DUT to test channel $A\left(T_{A}\right)$. In the reverse measurement mode, the stimulus signal that travels through the DUT is coupled by A14T to T_{A}.

In the reverse measurement mode, the A15T assembly couples the stimulus signal to the DUT and couples the reflected signal from the DUT to test channel $B\left(T_{B}\right)$. In the forward measurement mode, the stimulus signal that travels through the DUT is coupled by A15T to TB.

The A16T Three-Way Power Divider assembly receives the calibration ($831 / 3 \mathrm{kHz}$) or third local oscillator ($21 / 3 \mathrm{MHz}$) signal from the VNA A3 PCB and divides it between three paths of equal impedance: A1T, A2T, and A3T. This enables the same oscillator (LO 3) to drive all three mixer circuits with equal amplitude and minimum loss.

A17T Reference Delay Mounting Bracket

A18T/A19T Bias Tees

The A17T assembly is the reference delay mounting bracket. This rear panel mounted, mechanical assembly has four connectors and two cable loops, W30 and W31. The two cable loops allow the two reference channels, R_{A} and R_{B}, to be used as a receiver. This provides for custom-defined user parameters with any combination of channels.

The A18T' and A19T Bias Tee assemblies are components of the Models 362XA Active Device Test Sets only.

The A18T and A19T Bias Tee assemblies provide bias capability to PORT 1 and PORT 2 respectively. They are necessary to supply dc voltage to active DUTs requiring bias.

A bias tee functionally consists of a coupling capacitor and an inductor. The capacitor couples the RF signal; the inductor provides a low impedance path for the de voltage and a high impedance path for RF. In this way, the bias tee assemblies provide de bias voltage to the active DUTs with minimum signal loss.
A20T, A21T,
and A22T
Step
Attenuators

A25T RF Splitter Assembly:

The A20T, A21T, and A22T Step Attenuator assemblies are components of the Models 362XA Active Device Test Sets only. A20T is the PORT 2 test attenuator, A21T is the PORT 2 source attenuator, and A22T is the PORT 1 source attenuator.

A20T, A21T, and A22T are digitally-programmable, $10 \mathrm{~dB}, 0$ to 70 dB step attenuators. Attenuation is controlled by the VNA via the A7T Attenuator Driver PCB.

A20T, the PORT 2 test attenuator, controls the signal level from the DUT. A maximum attenuation of 40 dB can be selected for A20T. A21T, the PORT 2 source attenuator, and A22T, the PORT 1 source attenuator control the stimulus signal level. A maximum of 70 dB can be selected for A21T and A22T.

The step attenuator assemblies consist of three attenuator pads $-40 \mathrm{~dB},-20 \mathrm{~dB}$, and -10 dB . Any combination of these three attenuator pads can be switched in through digitally-selected solenoid switches. Each attenuator pad can also be bypassed by switching in an internal thruline.

The A25T RF Splitter assembly splits the harmonic generator output signal from the A12T Power Amplifier assembly into two paths of equal impedance. The two paths supply signals that are rich in harmonics to the A9T and A11T Samplers for heterodyning.

A28T and A29T SPDT/Splitter Switch Assemblies

The A28T and A29T SPDT/Splitter Switch assemblies are components of the Models $3612 \mathrm{~A} / 13 \mathrm{~A} / 15 \mathrm{~A}$ and $3622 \mathrm{~A} / 23 \mathrm{~A} / 25 \mathrm{~A}$ Test Sets only.

The A28T and A29T SPDT/Splitter Switch assemblies have two switch positions - 40 MHz to 40 GHz and above 40 GHz . A28T and A29T switching is controlled by the VNA through the A27T Amplifier/Switch Driver PCB.

When the VNA is operating in the 40 MHz to 40 GHz range, the switches are positioned such that the RF signal goes through the A28T and A29T splitter. Part of the RF signal goes to the test ports, via the couplers, and part goes to the reference channels. Both parts go through the multiplexer couplers of the A30T and A31T Tripler assemblies.

When the VNA is in the above 40 GHz range, the switches are positioned such that the RF signal is routed to the inputs of the A30T and A31T Tripler assemblies.

A30T and A31T Tripler Assemblies

The A30T and A31T Tripler assemblies are components of Test Set Models 3612A/13A/15A and $3622 \mathrm{~A} / 23 \mathrm{~A} / 25 \mathrm{~A}$ only. These assemblies are frequency triplers that enable the test set to provide frequency coverage to $50^{* *}, 60$, or $65^{*} \mathrm{GHz}$.

The dc power for the A30T and A31T Tripler assemblies is controlled by the VNA through the A27T Amplifier/Switch Driver PCB. For test set models 3613A and 3623 A , the dc power for the A30T and A31T assemblies is provided by a $40-5 x$ Auxiliary Power Supply via the rear panel AUXILIARY POWER INPUT connector.

When the VNA is operating in the 40 GHz to 60 (or 65) GHz range, power is applied to the A30T and A31T Tripler assemblies. The switches in the A28T and A29T SPDT/Splitter Switch assemblies are positioned such that the RF signal is routed to the inputs of the tripler assemblies.

The 13.33 GHz to $16.67,20$, or 21.67 GHz signals are amplified then tripled in frequency to obtain the final output of 40 to 50,60 or 65 GHz . From the multiplier, the RF signal goes through an isolator, which prevents the reflection of RF energy back to the multiplier, and a high-pass filter, which eliminates unwanted frequencies.

The RF signal is sent to the multiplexer coupler, where a portion of it is coupled out to the test ports and another portion to the reference channels.

When the VNA is in the 40 MHz to 40 GHz range, power to A30T and A31T is removed and the switches in A28T and A29T are positioned such that the RF signal is routed through the splitter within A28T and A29T. The split RF signal is sent through the multiplexer couplers of A30T and A31T to PORT 1 and PORT 2 and on to the reference channels.

[^4]
Chapter 8 3630A/3631A Test Sets Information

Table of Contents

8-1 INTRODUCTION 8-3
8-2 INSTALILATION AND OPERATION 8-3
8-3 FUNCTIONAL DESCRIPTION 8-4
8-5 A1T, A2T, and A3T CHANNEL IF AMPLIFIER PCB CIRCUIT DESCRIPTION $8-9$
8-6 A4T LO 2 PCB CIRCUIT DESCRIPTION 8-12
8-7
A5T LO 1 PCB
CIRCUIT DESCRIPTION 8-14
8-8 AGT DIGITAL INTERFACE PCB CIRCUIT DESCRIPTION 8-16
8-9 A23T MOTHERBOARD PCB CIRCUIT DESCRIPTION 8-18
8-10 A24T SOURCE LOCK/REFERENCE SELECT ASSEMBLY CIRCUIT DESCRIPTION 8-19
8-11 RF DECK ASSEMBLY DESCRIPTIONS $8-20$

Chapter 8 3630A/3631A Test Sets Information

8-1 introduction

8-2 installation and OPERATION

This chapter describes the 3630A and 3631A Test Sets. It provides installation and operation information, an overall functional description, mainframe PCB descriptions, and RF deck assembly descriptions.

The 363XA Frequency Converter Test Sets are four-channel receivers that measure magnitude and phase of frequency conversion devices. They can operate with two source signals and the receiver signal, all at different frequencies and controlled from the VNA front panel.

These test sets can be configured by the user to address a wide variety of applications. Information pertaining to the operation of these test sets is provided in Appendix A, at the rear of this manual.

8-3
FUNCTIONAL dESCRIPTION

The 3630A and 3631A Test Sets (Figure 8-1, page 8-7) are similar in construction and operation. The 3631A differs only by having an additional front end frequency multiplier for its higher frequency operation to 60 GHz . Figure 8-2, page 8-8, shows assembly locations.

Front End	The test sets receive RF energy from the source.
This energy is divided. A portion goes to a step at-	
tenuator, then out to the RF OUT port. Another por-	
tion goes out to the SOURCE LOCK OUT port. The	
device-under-test (DUT) uses these two signals and	
returns the Test A/B (TA and TB) and Reference A/B	
	(RA and RB) signals to the test set front panel ports.

First and
Second \boldsymbol{F}
Down
Conversion
The test sets have two primary modes of operation; direct and heterodyne. The direct mode is for frequencies between 40 MHz and 270 MHz . The heterodyne mode is for frequencies from 270 MHz to 40 GHz .

In the direct mode, dual samplers A9T and A11T are like closed switches and send the test (T_{A} and T_{B}) and reference (R_{A} and R_{B}) signals to the buffer amplifiers A8T and A10T.

In the heterodyne mode, A9T and A11T switch either at the frequency of the first local oscillator (LO 1) or at harmonics of the first LO. The A5T First Local Oscillator PCB-controlled by the VNA - outputs a 357 MHz to 536.5 MHz LO frequency.

The first LO output goes to the A12T power amplifier assembly, where it is amplified to drive the harmonic generator. This produces the harmonic pulses necessary for heterodyning in the samplers.

The A12T first LO output goes to A9T and A11T, via the A25T RF splitter assembly. The switching action of a sampler causes a mixing of the first LO frequencies and the input signal ($\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{B}}, \mathrm{R}_{\mathrm{A}}$, or R_{B}). This heterodyning action provides the desired intermediate frequency (IF) of $89 \mathrm{MHz} \pm 4 \mathrm{MHz}$. The resultant first IF signals are input to buffer amplifiers A8T and A10T,

Source Lockl Reference Signal Selection

In the buffer amplifiers, the direct mode signal (40 MHz to 270 MHz) or first IF signal (89 MHz) is mixed with the second local oscillator (LO 2) signal. The A4T LO 2 PCB, which is controlled by the VNA, outputs an LO frequency in the range between 12.25 MHz and 272.25 MHz .

The heterodyning of the direct mode/first IF and second LO frequencies produces the desired second IF of 2.25 MHz . The buffer amplifier assemblies provide 0 dB conversion gain. The second IF test and reference signals ($\mathrm{T}_{\mathrm{A}}, \mathrm{R}_{\mathrm{A}}$, and R_{B}) from the A 8 T and A10T buffer amplifiers go to the A24T Source Lock/Reference Select assembly. The second IF test signal T_{B} - which is output by one half of the A8T buffer amplifier - goes directly to the A1T Channel B IF Amplifier.

The A24T Source Lock/Reference Select assembly (also referred to as the LRL Module), contains switches for selecting the desired second IF signal source for the A2T Reference Channel IF Amplifier, the A3T Channel A IF Amplifier, and the VNA Source Lack circuitry.

The A24T switches are controlled by the VNA through the A6T Digital Interface PCB. The second IF signal source for the A2T Reference Channel IF Amplifier is either R_{A} or R_{B}. The second IF signal source for the A3T Channel IF Amplifier is either TA or RA. The second IF signal source for the VNA Source Lock circuitry is R_{A} for forward measurements and R_{B} for reverse measurements.

Third IF

Down

 Conversion and AmplificationThe A1T, A2T, and A3T Channel IF Amplifiers have two modes of operation - measurement (LO) and calibration (CAL). In the measurement mode, the second IF signal is mixed with the third local oseillator (LO 3) signal of $21 / 3 \mathrm{MHz}$ received from the VNA via the A16T Three-Way Power Divider.

The heterodyning of the second IF and third LO frequency produces the desired third IF of $831 / 3 \mathrm{kHz}$. The third IF signal is then amplified as required by five gain-ranging amplifiers before being output to the VNA Synchronous Detector circuits. The gainranging amplifiers are controlled by the VNA, through the A6T Digital Interface PCB.

The VNA automatically places the Channel IF Amplifiers in the calibration mode every three minutes. In this mode, an $831 / 3 \mathrm{kHz}$ signal is received from the VNA via the A16T Three-Way Power Divider. This $831 / 3 \mathrm{kHz}$ calibration signal goes directly to the gain-ranging amplifiers. These amplifier are then automatically calibrated to assure optimum accuracy and predictability of the Channel IF Amplifier outputs.

Figure 8-1. Models 3630A/3631A Block Diagram

Figure 8-2. Model 3630A/3631A Asssembly Locations

A1T, A2T, and A3T CHANNEL IF AMPLIFER PCB CIRCUIT DESCRIPTION

The A1T, A2T, and A3T Channel IF Amplifier assemblies (Figure 8-3) are functionally equivalent. The A1T and A3T PCBs are mechanically identical; only the PCB cover plates are different. The A2T PCB has a different component layout and card-edge connector pin configuration. The following functional description applies to all three.

The Channel IF Amplifier PCBs have two modes of operation: measurement (LO) and calibration (CAL). In the measurement mode, the 2.25 MHz second IF signal input goes via a buffer amplifier to a 2.25 MHz bandpass filter that removes harmonics and other unnecessary signals. The output from the filter is split into two separate signal paths. The signals are then phase-shifted; one signal by $+45^{\circ}$ and the other by -45°. Each of the phase-shifted signals is mixed with a $21 / 3 \mathrm{MHz}$ third local oscillator signal received from the VNA.

One of the frequencies produced in each mixer is $831 / 3 \mathrm{kHz}$ - the difference of the two frequencies. The two phase-shifted, heterodyned signals are then filtered, phase shifted back to 0°, and summed in an amplifier to reject the image frequency. The output passes through an $831 / 3 \mathrm{kHz}$ bandpass filter that rejects all harmonics and subharmonics of the fundamental frequencies. The $831 / 3 \mathrm{kHz}$ third IF signal then goes to five gain-ranging amplifiers that have selectable gains of one or four.

The third IF signal output is maintained at an acceptable level through automatic gain control (AGC). The peak detector, at the output of the gain-ranging amplifiers, detects the peak signal level and sends a dc voltage representing this level to the comparator. The comparator determines if the dc voltage is in the necessary range of levels required by the VNA synchronous detectors. The comparator outputs one of three signals:
$\square L=>0 \mathrm{~dB}$ - overload peak signal level condition
$\square \quad L_{m} \Rightarrow-12 \mathrm{~dB}-$ maximum peak signal level condition
[. $L=>-24 \mathrm{~dB}-$ minimum peak signal level condition.
These signals are sent via the A6T Digital Control PCB to the VNA. Responding to these signals, the VNA sends data through A6T to control the gain ranging amplifiers maintaining the peak signal level between 0 and -24 dB .

Third IF peak signal levels affect the amplifiers as follows:
\square When the peak signal level is between 0 and -24 dB , all amplifiers are set to a gain of one.

- When the peak level drops below -24 dB , the first gain-ranging amplifier is set to a gain of four. The gain of the first amplifier remains at four until the signal reaches a peak level above -24 dB .
\square If the peak signal drops to a level below -36 dB , the second gainranging amplifier is set to a gain of four.

ㅁ If the peak signal drops to a level below -48 dB , the third gainranging amplifier is set to a gain of four.
\square If the peak signal drops to a level below -60 dB , the fourth gainranging amplifier is set to a gain of four.

- If the peak signal drops to a level below -72 dB , the fifth gainranging amplifier is set to a gain of four.

In this way the third IF signal is incrementally boosted each time the signal level at the peak detector drops 12 dB after the initial -24 dB threshold.

The VNA automatically places the A1T thru A3T Channel IF Amplifiers in the calibration mode every three minutes. In the calibration mode, an $831 / 3 \mathrm{kHz}$ signal is received from the VNA and sent directly to the gain-ranging amplifiers. The signal level is then incrementally increased by individually programming each of the gainranging amplifiers in succession. The outputs are then measured and compared to expected values. The VNA then trims each of the amplifiers using a software algorithm to achieve optimum accuracy and predictability.

Figure 8-3. A1T, AAT, and ABT Channel IF Amplifier PCB Block Diagram

The A4T LO 2 PCB (Figure 8-4) provides the second local oscillator (LO) signal to the A8T and A10T Buffer Amplifiers. There it mixes with the first IF signal to produce the second IF of 2.25 MHz . The A4T circuitry consists of a loop gain control circuit, a summation amplifier, an 8 -bit digital-to-analog converter (DAC), a linearizer, a voltage-tuned oscillator (VTO), a series of divide-by-2 frequency dividers, a window comparator, a frequency range selection circuit, and several buffer amplifiers.

The frequency control input is a variable dc voltage coming from the A2 LO 2 Phase Lock PCB of the VNA. The window comparator determines if the dc voltage has the level required for a phase lock. The output of the window comparator sends a status bit to the I/O processor of the VNA for diagnostic purposes.

If the test set signal source is a synthesizer, the VNA's I/O processor operating through the A6T Digital Interface PCB - changes the attenuation in loop gain control circuit to compensate for loop gain changes each time a different frequency range is selected.

The VNA's I/O processor pre-tunes the VTO by sending a byte to the 8 bit DAC via the A6T Digital Interface PCB. The output of the DAC is summed with the frequency control input in the summation amplifier. The DAC output coarse tunes the VTO frequency output. The frequency control input fine tunes the frequency output.

The output of the summation amplifier is linearized to compensate for nonlinearities in the VTO. The output of the VTO is a 98 MHz to 272.25 MHz signal. One output is buffered and sent to the VNA's A2 LO 2 Phase Lock PCB. The other output is sent to a series of divide-by2 frequency dividers.

Depending on selection, the frequency range selection circuit sends the VTO output signal directly to the output buffer amplifiers or through any of the frequency dividers before being sent to the output buffer amplifiers. The buffer amplifier outputs are the second local oscillator frequencies and have a frequency range from 12.25 MHz (divide by 8) to 272.25 MHz (divide by 1).

Figure 8-4. A4T LO 2 PCB Bloek Diagram

During the heterodyne mode of operation, the A5T LO 1 PCB (Figure 8-5) provides the first local oscillator signal (LO 1) to the A12T Power Amplifier assembly. In A12T, the LO 1 signal is amplified to drive the harmonic generator, producing the harmonic pulses necessary for heterodyning in the samplers, A9T and A11T.

The A5T circuitry consists of a summation amplifier, an 8 -bit digital-toanalog converter (DAC), a $100 \mathrm{kHz} / 150 \mathrm{kHz}$ notch filter, a linearizer, a voltage-tuned oscillator (VTO), a window comparator, and two buffer amplifiers.

The frequency control input is a variable dc voltage coming from the A1 LO1 Phase Lock PCB of the VNA. The window comparator determines if the dc voltage is in the necessary range of levels required for a phase lock. The output of the window comparator sends a status bit to the I/O Processor of the VNA for diagnostic purposes.

- The VNA's I/O processor pre-tunes the VTO by sending a byte to the 8 -bit DAC via the A6T Digital Interface PCB. The output of the DAC is summed with the frequency control input in the summation amplifier.

The DAC output coarse tunes the VTO frequency output and the frequency control input fine tunes the frequency output. The output of the Summation Amplifier is first filtered by the $100 \mathrm{kHz} / 150 \mathrm{kHz}$ notch filter to remove unwanted signals and then linearized to compensate for nonlinearities in the VTO. The output of the VTO is a 357 MHz to 536.5 MHz signal.

One output is sent to the A1 LO1 Phase Lock PCB in the VNA. The other output is sent to a buffer amplifier. When the test set is in the heterodyne mode, the VNA's I/O processor turns on the buffer amplifier sending the first local oscillator signal to the A12T Power Amplifier Assembly.

In the direct mode (40 to 270 MHz), the A12T Power Amplifier is turned off and the first local oscillator signal is attenuated.

Figure 8-5. A5T LO 1 PCB Block Diagram

The A6T Digital Interface PCB (Figure 8-6) provides digital interface between the VNA and test set. The A6T circuitry consists of a bi-directional bus transceiver, latches, buffers, strobe decode logic, three-toeight decoders, and power filtering and regulation circuits.

The address and data bus connects the test set to the VNA's A16 Test Set I/O PCB. Upon receiving a strobe pulse from the VNA, the strobe decode logic circuit enables the input latch to latch in first the address byte and then the data byte. This enables the decoders to read the address data and select the appropriate device.

The bus transceiver is a bi-directional interface for the input data going to and output data coming from the test set circuits. When bit 7 of the address data byte is set high, the change in logic level of the bus transceiver direction input (DIR) reverses the direction of the data bus. If the data byte is to be written to the test set, the 3 -to- 8 decoder enables the appropriate latch. If the data byte is coming from the test set and going to the VNA, the 3 -to- 8 decoder enables the appropriate buffer.

The power regulation and filtering circuitry regulates and filters the $+8 \mathrm{Vdc},-18 \mathrm{Vdc}$, and +18 Vdc from the VNA, producing the +5 Vdc to power the A6T PCB and the +15 Vdc and -15 Vdc to power the A8T, A10T, and A12T RF modules.

Figure 8-6. A6T Digital Interface PCB Block Diagram

A23T MOTHERBOARD
PCB CIRCUIT dESCRIPTION

The A23T Motherboard PCB contains no active devices. It electrically connects the circuits within the test set. It also provides electrical interface to the VNA through the rear panel SIGNAL and CONTROL connectors.

Additionally, the A23T PCB holds the connectors that are the physical interface to the PCB assemblies of the test set.

The A24T Source Lock/Reference Select assembly, also referred to as the LRL Module, contains a source lock reference circuit and a series of FET switches that provide selection of the source of the second IF signal for the A2T Reference Channel IF Amplifier, the A3T Channel A IF Amplifier, and the VNA source lock circuitry. The switches are controlled by the VNA via the A6T Digital Interface PCB. The second IF signal source selections are:

- A2T Reference Channel IF Amplifier - R_{A} or R_{B}
- A3T Channel A IF Amplifier - TA or RA
- VNA Source Lock - RA for forward measurements, RB for reverse measurements

The R_{A} or R_{B} signal entering the source lock reference circuit is buffered and passes through a 3 MHz low-pass filter where undesirable frequencies are filtered out. The signal is sampled by a level detector to determine if it is of sufficient amplitude to achieve a phase lock. The VNA's I/O processor monitors the level detector output (via the A6T Digital Interface PCB) to help in determining the cause of a lock failure should one occur.

The signal output from the 3 MHz low-pass filter also goes to a limiter that keeps it within a specified tolerance level. It then passes through a 2.25 MHz bandpass filter to select only the desired 2.25 MHz second IF signal. The signal output from the filter is buffered and sent to the VNA's A6 PCB where it becomes the source lock reference frequency.

8-11 rfdeck assembly DESCRIPTIONS

The following paragraphs provide functional descriptions for each of the RF components/assemblies that make up a typical RF Deck assembly. Refer to Figure $8-1$ while reading the following descriptions.

A8T/A9T and A10T/A11T Buffer Amplifier/ Sampler Assemblies

A buffer amplifier/sampler assembly consists of a buffer amplifier assembly and a sampler assembly grouped as a single unit. the buffer amplifier/ sampler assembly has a single WILTRON part number and is always replaced as a single unit. The part number and serial number are found on the buffer amplifier.

The A8T/A9T Channel B Buffer Amplifier/Sampler and the A10T/A11T Channel A Buffer Amplifier/ Sampler assemblies provide down conversion of the 40 MHz to 60 GHz RF signals to the second IF of 2.25 MHz .

A 9 T and A 11 T are dual sampler assemblies. Each samples two channels. A9T samples Test Channel B (TB) and Reference Channel B (RB) and A11T sample Test Channel $A\left(T_{A}\right)$ and Reference Channel $A\left(R_{A}\right)$. The dual sampler assemblies consist of electronically controlled switch circuits.

For frequencies in the range of 40 MHz to 40 GHz , bias voltage to control the sampler switches is received from the A6T Digital Interface PCB via the buffer amplifier assembly. For frequencies above 40 GHz , bias voltage is received from the A27T Araplifier/Switch Driver PCB via the buffer amplifier assembly.

When the test set is operating in the direct mode (40 MHz to 270 MHz), the sampler switches are biased to close, which passes the input RF signal directly to the buffer amplifier assembly. When the test set is operating in the heterodyne mode (270 MHz to 40 GHz), the sampler switches are selfbiasing. They switch at the rate of the first local oscillator frequencies.

This sampler switching action causes a mixing (heterodyning) of the first local oscillator frequencies and the input RF signal. One of the signals that results from this heterodyning is the 89 MHz first IF. This signal goes to the buffer amplifier assembly. When the test set is in the heterodyne mode above 50 GHz , the sampler-switch-bias voltage is factory adjusted to enhance sampler performance.

A8T and A10T are dual-buffer-amplifier assemblies. Each down-converts two channels to second IF signals. A8T down-converts Test Channel B (TB) and Reference Channel B (RB) and A10T down-converts Test Channel $A\left(T_{A}\right)$ and Reference Channel $A\left(R_{A}\right)$. The buffer amplifier assemblies provide 0 dB conversion gain (RF in to 2nd IF out). The buffer amplifiers have slopes which result in a conversion gain of -10 dB at high frequencies (approximately 40 GHz).

The direct mode (40 MHz to 270 MHz) or heterodyne mode (first IF of $89 \pm 4 \mathrm{MHz}$) signal inputs to the buffer amplifier go to mixer circuit. In this circuit, they mix with the second local oscillator signal to produce the desired second IF of 2.25 MHz .

The second IF signal passes through a low-pass filter to eliminate unwanted frequencies. It then goes to a buffer amplifier for output. The T_{A}, R_{A}, and R_{B} second IF signal outputs go to the A24T Source Lock/Reference Select Assembly, and the TB second IF output goes to the A1T Channel B IF Amplifier PCB.

The A12T Power Amplifier assembly contains the 500 MHz power amplifier and harmonic generator. The power amplifier amplifies the first local oscillator signal to achieve adequate power levels to drive the harmonic generator.

When the test set is operating in the direct mode, the VNA sends a signal to the A6T Digital Interface PCB. This signal disables A12T by removing the +15 V power. When the test set is operating in the heterodyne mode, the power amplifier amplifies the first local oscillator signal. This signal causes the harmonic generator to produce harmonic pulses that are necessary for heterodyning to take place in samplers A9T and A11T.
A16T
Power
Divider
Assembly

A17T Control Output Mounting Bracket

A21T 0-70 dB Step Attenuator Assembly

A25T RF Splitter Assembly

The A16T Three-Way Power Divider assembly receives the calibration ($831 / \mathrm{kHz}$) third local oscillator ($21 / 8 \mathrm{MHz}$) signal from the VNA A3 PCB and divides it between three paths of equal impedance: A1T, A2T; and A3T. This enables the same oscillator (LO 3) to drive all three mixer circuits with equal amplitude and minimum loss.

The A17T assembly is the control output mounting bracket. This mechanical assembly has three connectors for the external connection of WILTRON components (two step attenuators and a transfer switch).

The A21T 0-70 dB Step Attenuator assembly consists of three attenuator pads. These pads produce attenuation to $40 \mathrm{~dB}, 20 \mathrm{~dB}$, and 10 dB . Any combination of these three attenuators can be switchedin through digitally selected solenoid switches.

The A25T RF Splitter assembly splits the harmonic generator output signal from the A12T Power Amplifier assembly into two paths of equal impedance. The two paths supply signals that are rich in harmonics to the A9T and A11T Samplers for heterodyning.

Chapter 9 3635B Test Set Information

Table of Contents

$9-1$. INTRODUCTION 9.3
9-2 mm-WAVE VNA SYSTEM CONFIGURATION $9-3$
$9-3$ FUNCTIONAL DESCRIPTION $9-3$
$9-4$ mm-WAVE MODULES DESCRIPTION $9-5$
9-4 A1T, A2T, and A3T CHANNEL IF AMPLIFIER PCB CIRCUIT DESCRIPTION $9-9$
$9-5$ A4T LO 2 PCB CIRCUIT DESCRIPTION $9-12$
$9-6$ A5T POWER DISTRIBUTION PCB CIRCUIT DESCRIPTION 9-14
9-7 A6T DIGITAL INTERFACE PCB CIRCUIT DESCRIPTION $9-14$
$9-8$ A23T MOTHERBOARD PCB CIRCUTT DESCRIPTION 9-16
9-9 A24T SOURCE LOCK/REFERENCE SELECT ASSEMBLY CIRCUTT DESCRIPTION $9-17$
$9-10$ RF DECK ASSEMBLY DESCRIPTIONS $9-18$

Chapter 9 3635B Test Set Information

9-1 introduction

9-2
mm-wave vna system CONFIGURATION

9-3 functional dESCRIPTION

This chapter describes the 3635B Test Set and the Models 3640X-B and $3641 \mathrm{X}-\mathrm{B} \mathrm{mm}$-Wave Modules, which comprise the test set portion of a mm-Wave VNA System. This material provides overall functional description, mainframe PCB descriptions, and RF deck assembly descriptions.

Figure 9-2 shows a functional block diagram of the WILTRON mmwave VNA system. This configuration includes instrumentation functions from each of the three basic building blocks of a VNA system:

- Signal Sources:

Model 360SS47 System Source (or 6647B or 6747B) (LO input)
Model 6729B Swept Frequency Synthesizer (RF input)

- Test Set: Model 3635B mm-Wave Test Set with:
one Model 3640B(Q, U, V, or W) mm-Wave Module for Port 1 and either a second 3640 B module, or a $3641 \mathrm{~B}(\mathrm{Q}, \mathrm{U}, \mathrm{V}$, or W) mmWave module for Port 2.
- Vector Network Analyzer:

Model 360B VNA

- 360ACM Auxilary Control Module

The mm-Wave VNA system requires an auxiliary control panel (not shown on diagram) to supply it with operating voltages. This instrument mounts in the 360 C 3 console. Appendix B provides installation and maintenance information.

The mm-wave VNA system requires two signal source (Figure 9-2, page 9-7). They provide LO and RF signals to the mm -wave modules. The 33 GHz to 110 GHz signals applied to the DUT are down-converted within the modules to a 270 MHz IF signal. Figure 9-3, page $9-$ 8 , shows assembly locations.

The VNA controls the two signal sources through the dedicated Source Control System IEEE-488 bus (GPIB). Do not confuse this with the other rear panel VNA GPIB connection which is used with an external controller. In the mm-wave VNA system configuration, as shipped from
the factory, the 360SS47 (test set LO IN) is set to GPIB address 5. The 6729 B (test set RF IN) is set to GPIB address 4.

The signal sources provide clean, phase-locked test signals at programmed frequency points for precise test data. The frequency range of the sources determine the frequency range of the VNA. Frequency accuracy of the sources is an important factor in the accuracy of VNA measurements - especially phase accuracy.

The mm-wave VNA system phase-locking scheme is unique among the WILTRON VNA family. The system multiple phase-lock loops provide a stable set of four 2.25 MHz IF frequencies. The primary frequency reference for the system is the internal 10 MHz reference in the Model 6729B Swept Frequency Synthesizer; no frequency reference external to the VNA system is required. The second and third local oscillators are referenced to the VNA 10 MHz Reference - a very stable time base.

Overall system phase lock is maintained by controlling the 360SS47 via its rear panel PHASE LOCK INPUT. Comparison of one of the 2.25 MHz IF signals to the VNA 10 MHz reference provides the correction signal necessary to readjust the $360 \mathrm{SS47} 7$ frequency. In this manner, all four 2.25 MHz IF signals remain stable.

Because the LO 2 and LO 3 signal outputs are shared by all channelsand because they both use the VNA 10 MHz reference - any noise or phase errors in the respective LO will be canceled out in the channel comparison circuits that follow in the VNA.

Any failure in the VNA phase-lock scheme will be sensed by one of the many Lock Detect circuits. A flag will then be sent to the VNA microprocessor circuits and a LOCK FAILURE message will be displayed on the CRT. System phase-lock problems will be much easier to isolate with a clear understanding of the individual phase-lock loop interactions.

System frequency accuracy and resolution are critical concerns in the VNA. These characteristies are directly traceable to the system sources. Frequency accuracy and resolution are two terms that are often misunderstood.

Frequency accuracy is a measure of the deviation, or drift, from the selected frequency. In other words, it is the frequency stability. The 10 MHz time base in the 6729 B has less than 1 Hz drift per day for each 1 GHz of frequency.

Frequency resolution is the smallest frequency step increment available for a selected frequency. The $360 S S 47$ resolution is 100 kHz . The 6729 B resolution is 1 kFz . However, because the 6729 B RF Output goes through a frequency multiplier in the mm -wave module - which

9-4 mm-wave modules description

Table 9-1. Model 3640B-X Transmission/Reflection Modules

Model	Frequency Range (GHz)	Waveguide Flange
$3640 \mathrm{~B}-\mathrm{O}$	33 to 50	WR-22
$3640 \mathrm{~B}-\mathrm{U}$	40 to 60	WR-19
$3640 \mathrm{~B}-\mathrm{V}$	50 to 75	WR-15
$3640 \mathrm{~B}-\mathrm{W}$	75 to 110	WR-10

is necessary to achieve the very high frequencies required for down-conversion - the 1 kHz resolution is multiplied by the harmonic value (that is, at the nth harmonic, the resolution is $n \mathrm{kHz}$).

The mm-wave modules provide two functions: signal routing and downconversion. There are two types of modules: $3640 \mathrm{~B}-\mathrm{X}$ Transmission/Reflection Modules and 3641B-X Transmission-only Modules. Each of the modules are available in one of four frequency ranges, denoted by waveguide band as shown in Tables 9-1 and 9-2 (left).

Details of the mm-wave modules are shown in Figure 9-2. Although the modules contain no field-serviceable parts, it is necessary to fully understand their construction and signal flow to deduce and isolate module-related problems.

Figure 9-2 shows two modules in place. To determine the appropriate frequencies applied to the mm -wave modules by the signal sources, refer to Figure 9-1 on the following page.

Table 9-2. Model 3641B-X Transmission Modules

Model	Frequency Range (GHz)	Waveguide Flange
$3641 \mathrm{~B}-\mathrm{Q}$	33 to 50	WR-22
$3641 \mathrm{~B}-\mathrm{U}$	40 to 60	WR-19
$3641 \mathrm{~B}-\mathrm{V}$	50 to 75	WR-15
$3641 \mathrm{~B}-\mathrm{W}$	75 to 110	WR-10

The corect combination of LO and RF inputs to the mm-wave modules will produce the proper 270 MHz IF output to the test set input bufter amplifiers. To accomplish this, the 6729B Swept Frequency Synthesizer RF Output is tuned to a frequency such that a predictable harmonic output from the module's Frequency Multiplier circuit will cause a resulting DUT stimulus frequency that is exactly 270 MHz away from a predictable harmonic of the 360 SS47 System Source (multiplication of the $360 S S 47$ LO \mathbb{N} signal takes place within the mixer).
The following formulas apply to each band (all values are expressed in GHz). Example values relative to the beginning and end of band are given to the right of each formula.

Signal Source Formula
Signal Source Frequency Range
Q Band (33 to 50 GHz Measurement Frequency Range), where $F=$ Desired Measurement Frequency
$\operatorname{LO} \operatorname{IN}(360 S S 47)=1 / 4(F+0.27)$
8.3175 to 12.5675 GHz
$R F \operatorname{IN}(6729 B)=1 / 3 F$
11 to 16.333 GHz

U Band (40 to 60 GHz Measurement Frequency Range), where F = Desired Measurement Frequency
LO IN $(360 S 547)=1 / 4(F-0.27)$
10.0675 to 15.0675 GHz
RF $\mathbb{N}(6729 B)=1 / 3 F$
13.333 to 20 GHz
V Band (50 to 75 GHz Measurement Frequency Range), where F = Desired Measurement Frequency
$\operatorname{LO} \operatorname{NN}(360 S S 47)=1 / 5(\mathrm{~F}-0.27)$
10.054 to 15.054 GHz
$\operatorname{RF} \operatorname{IN}(6729 \mathrm{~B})=1 / 4 \mathrm{~F}$
12.5 to 18.75 GHz

W Band (75 to 110 GHz Measurement Frequency Range), where F = Desired Measurement Frequency

$$
\begin{array}{lc}
\operatorname{LO} \operatorname{IN}(360 \text { SS47 })=1 / 8(F+0.27) & 9.40875 \text { to } 13.78375 \mathrm{GHz} \\
\operatorname{RF} \mathbb{N}(6729 B)=1 / 6 \mathrm{~F} & 12.5 \text { to } 18.333 \mathrm{GHz}
\end{array}
$$

To determine the actual values of the sources for any specific measurement frequency value, apply the appropriate Signal Source Formulas.
For example, to determine the signal source frequency values for a V band system measurement at 66.0 GHz :
$\operatorname{LO} \operatorname{NN}(3605 S 47)=1 / 5(F-0.27)=1 / 5(66.0-0.27)=0.2 \times 65.73=13.146 \mathrm{GHz}$ RF IN $(6729 B)=1 / 4 \mathrm{~F}=1 / 4 \times 66.0=16.5 \mathrm{GHz}$
Following this through the mm-wave frequency multiplier and mixer circuits,
The LO IN (360 SS47) output is multiplied 5 times: $13.146 \mathrm{GHz} \times 5=65.730 \mathrm{GHz}$
The RF $\mathbb{N}(6729 B)$ output is muttiplied 4 times: $16.5 \mathrm{GHz} \times 4=66.0 \mathrm{GHz}$
Notice that the resulting difference between the LOIN and RF IN frequencies is 270 MHZ , the first IF value.

Figure 9-1. mm-Wave Module Frequency Determination

3 MM-WAVE MODULE

3635B TEST SET

Figure 9-2. mm.Wave VNA System Block Diagra

Figure 9-1. Model 3635B Asssembly Locations

A1T, A2T, and A3T CHANNEL IF AMPLIFIER PCB CIRCUIT DESCRIPTION

The A1T, A2T, and A3T Channel IF Amplifier assemblies (Figure 9-4) are functionally equivalent. The A1T and A3T PCBs are mechanically identical; only the PCB cover plates are different. The A2T PCB has a different component layout and card-edge connector pin configuration. The following functional description applies to all three.

The Channel IF Amplifier PCBs have two modes of operation: measurement (LO) and calibration (CAL). In the measurement mode, the 2.25 MHz second IF signal input goes via a buffer amplifier to a 2.25 MHz bandpass filter that removes harmonics and other unnecessary signals. The output from the filter is split into two separate signal paths. The signals are then phase-shifted; one signal by $+45^{\circ}$ and the other by -45°. Each of the phase-shifted signals is mixed with a $21 / 3 \mathrm{MHz}$ third local oscillator signal received from the VNA.

One of the frequencies produced in each mixer is $831 / 3 \mathrm{kHz}$ - the difference of the two frequencies. The two phase-shifted, heterodyned signals are then filtered, phase shifted back to 0°, and summed in an amplifier to reject the image frequency. The output passes through an $831 / 3 \mathrm{kHz}$ bandpass filter that rejects all harmonics and subharmonics of the fundamental frequencies. The $831 / 3 \mathrm{kHz}$ third IF signal then goes to five gain-ranging amplifiers that have selectable gains of one or four.

The third IF signal output is maintained at an acceptable level through automatic gain control (AGC). The peak detector, at the output of the gain-ranging amplifiers, detects the peak signal level and sends a dc voltage representing this level to the comparator. The comparator determines if the dc voltage is in the necessary range of levels required by the VNA synchronous detectors. The comparator outputs one of three signals:

ㅁ L $=>0 \mathrm{~dB}$ - overload peak signal level condition
$\square L=>-12 \mathrm{~dB}-$ maximum peak signal level condition
$\square \mathrm{L}=>-24 \mathrm{~dB}-$ minimum peak signal level condition.
These signals are sent via the A6T Digital Control PCB to the VNA. Responding to these signals, the VNA sends data through AGT to control the gain ranging amplifiers maintaining the peak signal level between 0 and -24 dB .

Third IF peak signal levels affect the amplifiers as follows:
\square When the peak signal level is between 0 and -24 dB , all amplifiers are set to a gain of one.
\square When the peak level drops below -24 dB , the first gain-ranging amplifier is set to a gain of four. The gain of the first amplifier remains at four until the signal reaches a peak level above -24 dB .
\square If the peak signal drops to a level below -36 dB , the second gainranging amplifier is set to a gain of four.
\square If the peak signal drops to a level below -48 dB , the third gainranging amplifier is set to a gain of four.
\square If the peak signal drops to a level below -60 dB , the fourth gainranging amplifier is set to a gain of four.
\square If the peak signal drops to a level below -72 dB , the fifth gainranging amplifier is set to a gain of four.

In this way the third IF signal is incrementally boosted each time the signal level at the peak detector drops 12 dB after the initial -24 dB threshold.

The VNA automatically places the A1T thru A3T Channel IF Amplifiers in the calibration mode every three minutes. In the calibration mode, an $831 / 3 \mathrm{kHz}$ signal is received from the VNA and sent directly to the gain-ranging amplifiers. The signal level is then incrementally increased by individually programming each of the gainranging amplifiers in succession. The outputs are then measured and compared to expected values. The VNA then trims each of the amplifiers using a software algorithm to achieve optimum accuracy and predictability.

Fizure 9-4. A1T, A2T, and A3T Channel IF Amplifier PCB Block Diagram

The A4T LO 2 PCB (Figure 9-5) provides the second local oscillator (LO) signal to the A8T and A10T Buffer Amplifiers. There it mixes with the first IF signal to produce the second IF of 2.25 MHz . The A4T circuitry consists of a loop gain control circuit, a summation amplifier, an 8 -bit digital-to-analog converter (DAC), a linearizer, a voltage-tuned oscillator (VTO), a series of divide-by-2 frequency dividers, a window comparator, a frequency range selection circuit, and several buffer amplifiers.

The frequency control input is a variable dc voltage coming from the A2 LO 2 Phase Lock PCB of the VNA. The window comparator determines if the dc voltage has the required levels required for a phase lock. The output of the window comparator sends a status bit to the I/O processor of the VNA for diagnostic purposes.

If the test set signal source is a synthesizer, the VNA's I/O processor operating through the A6T Digital Interface PCB - changes the attenuation in loop gain control circuit to compensate for loop gain changes each time a different frequency range is selected.

The VNA's I/O processor pre-tunes the VIO by sending a byte to the 8 bit DAC via the AGT Digital Interface PCB. The output of the DAC is summed with the frequency control input in the summation amplifier. The DAC output coarse tunes the VTO frequency output. The frequency control input fine tunes the frequency output.

The output of the summation amplifier is linearized to compensate for nonlinearities in the VTO. The output of the VTO is a 98 MHz to 272.25 MHz signal. One output is buffered and sent to the VNA's A2 LO 2 Phase Lock PCB. The other output is sent to a series of divide-by2 frequency dividers.

Depending on selection, the frequency range selection circuit sends the VTO output signal directly to the output buffer amplifiers or through any of the frequency dividers before being sent to the output buffer amplifiers. The buffer amplifier outputs are the second local oscillator frequencies and have a frequency range from 12.25 MHz (divide by 8) to 272.25 MHz (divide by 1).

Figure 9-5. A4T LO 2 PCB Block Diagram

9-6 ast power dISTRIBUTION PCB CIRCUIT DESCRIPTION

9-7 agt digtal interface pCB CIRCUIT DESCRIPTION

The A5T Power Distribution PCB filters and regulates the raw voltages received from the 360B VNA and distributes them throughout the test set.

The A6T Digital Interface PCB (Figure 9-6) provides digital interface between the VNA and test set. The A6T circuitry consists of a bi-directional bus transceiver, latches, buffers, strobe decode logic, three-toeight decoders, and power filtering and regulation circuits.

The address and data bus connects the test set to the VNA's A16 Test Set IO PCB. Upon receiving a strobe pulse from the VNA, the strobe decode logic circuit enables the input latch to latch in first the address byte and then the data byte. This enables the decoders to read the address data and select the appropriate device.

The bus transceiver is a bi-directional interface for the input data going to and output data coming from the test set circuits. When bit 7 of the address data byte is set high, the change in logic level of the bus transceiver direction input (DIR) reverses the direction of the data bus. If the data byte is to be written to the test set, the 3 -to- 8 decoder enables the appropriate latch. If the data byte is coming from the test set and going to the VNA, the 3 -to- 8 decoder enables the appropriate buffer.

The power regulation and filtering circuitry regulates and filters the $+8 \mathrm{Vdc},-18 \mathrm{Vdc}$, and +18 Vdc from the VNA, producing the +5 Vdc to power the A6T PCB and the +15 Vdc and -15 Vdc to power the A8T, A10T, and A12T PCBs.

Figure 9-6. A6T Digital Interface PCB Block Diagram

9-8 A23T MOTHERBOARD PCB CIRCUIT DESCRIPTION

The A23T Motherboard PCB contains no active devices. It electrically connects the circuits within the test set. It also provides electrical interface to the VNA through the rear panel SIGNAL and CONTROL connectors.

Additionally, the A23T PCB holds the connectors that are the physical interface to the PCB assemblies of the test set.
9.9 a24t source LOCK/REFERENCE select assembly CIRCUIT DESCRIPTION

The A24T Source Lock/Reference Select assembly, also referred to as the LRL Module, contains a source lock reference circuit and a series of FET switches that provide selection of the source of the second IF signal for the A2T Reference Channel IF Amplifier, the A3T Channel AIF Amplifier, and the VNA source lock circuitry. The switches are controlled by the VNA via the A6T Digital Interface PCB. The second IF signal source selections are:

- A2T Reference Channel IF Amplifier- RA_{A} or RB_{B}
- A3T Channel A IF Amplifier - TA or RA_{A}
\square VNA Source Lock - R_{A} for forward measurements, R_{B} for reverse measurements

The R_{A} or R_{B} signal entering the source lock reference circuit is buffered and passes through a 3 MHz low-pass filter where undesirable frequencies are filtered out. The signal is sampled by a level detector to determine if it is of sufficient amplitude to achieve a phase lock. The VNA's I/O processor monitors the level detector output (via the A6T Digital Interface PCB) to help in determining the cause of a lock failure should one occur.

The signal output from the 3 MHz low-pass filter also goes to a limiter that keeps it within a specified tolerance level. It then passes through a 2.25 MHz bandpass filter to select only the desired 2.25 MHz second IF signal. The signal output from the filter is buffered and sent to the VNA's A6 PCB where it becomes the source lock reference frequency.

9-10 rfdeck assembly DESCRIPTIONS

The following paragraphs provide functional descriptions for each of the RF components/assemblies that make up a typical RF Deck assemby. Refer to Figure $9-2$ while reading the following descriptions. None of these assemblies have user-serviceable parts; replacement assemblies are available.
ABT and
A10T Buffer
Amplifier
Assemblies

A9T Transfer Switch Microcircuit

A11T Poxver

 Splitter MicrocircuitA16T Power Splitter Microcircuit

A20T RFIN Power Amplifier Microcircuit

A21T PORT 1 LO Power Amplifier Microcircuit

A22T PORT 2 LO Power Amplifier Mierocircuit

The A8T and A10T PCBs are the Channel B and A Buffer Amplifier assemblies, respectively. They also include mixers that downconvert the 270 MHz first IF to the 2.25 MHz second IF. The assemblies each provide 0 dB conversion gain. Because the first level of down conversion is provided in the mm -wave modules, these assemblies do not have samplers.

The A9T Transfer Switch routes the RF Output of the 6729B Swept Frequency Synthesizer to the mmwave module(s) attached to PORT 1 or PORT 2. It operates directly under control from the 360 B VNA control circuits via the test set A6T Digital Interface. This signal serves as the RF stimulus for the DUT.

The A11T Power Splitter routes the 360SS47 System Signal Source RF Output to both PORT 1 and PORT 2. This signal serves as the local oscillator stimulus for the mixers in the mm-wave modules.

The A16T Power Splitter receives the 3rd Local Oscillator/ Cal signal from the 360B VNA A3 PCB and routes three similar signals to the A1T, A2T, and A3T IF Amplifiers.

The A20T amplifies the RF IN signal from the 6729B Swept Frequency Synthesizer for application to the DUT (through the A9T Transfer Switch and the mm-wave modules).

The A21T amplifies the RF IN signal from the $360 \mathrm{SS47}$ System Signal Source for application to the PORT 1 mm -wave module's mixers. This unit is identical to the A22T Amplifier.

The A22T amplifies the RF IN signal from the 360SS47 System Signal Source for application to the PORT 2 mm -wave module's mixers. This unit is identical to the A21T Amplifier.

Chapter 10 360SSXX Signal Source Information

Table of Contents

10-1
INTRODUCTION $10-3$
$10-2$ REPLACEABLE SUBASSEMBLIES $10-3$
10-3 TROUBLESHOOTING $10-5$
$10-4$ OVERALL CIRCUIT DESCRIPTION 10-15
10-5 GPIB SETUP AND INTERCONNECTION 10-19
10-6 A4 ALC PCB CIRCUIT DESCRIPTION $10-20$
10-7 A5 FREQUENCY INSTRUCTION PCB CIRCUIT DESCRIPTION $10-22$
$10-8$ OVERALL FREQUENCY GENERATION $10-24$
10-9 A6-A9 YIG DRTVER PCB CIRCUIT DESCRIPTION $10-26$
$10-10$ A10 FM/ ATTENUATOR PCB CIRCUIT DESCRIPTION $10-28$
$10-11$ SWITCHING POWER SUPPLY CIRCUIT DESCRIPTION $10-30$
$10-12$ RF DECK MODULE DESCRIPTIONS 10-35
$10-13$ CONFIDENCE TEST $10-37$
$10-14$ ADJUSTMENT PROCEDURES 10-47
$10-15$ A5 PCB FREQUENCY ADJUSTMENTS $10-50$
10-16 A6-A9 YIG OSCILLATOR BANDSWITCH ADJUSTMENTS $10-52$
$10-17$ A6-A9 YIG BIAS CHECK $10-56$

Table of Contents (Continued)
10-18 FREQUENCY ADJUSTMENTS 10-57

$\begin{array}{ll}\text { 10-20 } & \text { GHz BANDSWITCH COMPENSATION } \\ & \text { ADJUSTMENT } ~\end{array}$
10-21 ALC LOOP ADJUSTMENTS 10-64
10-22 POWER SUPPIY ADJUSTMENTS 10-70
10-23 REMOVE AND REPLACE PROCEDURES 10-75
10-24 REMOVE AND REPLACE COVERS 10-75
10-25 REMOVE AND REPLACE PCBS (EXCEPT A13) 10-76
$\begin{array}{ll}\text { REMOVE AND REPLACE A13 SWITCHING } \\ & \text { POWER SUPPLY PCB } 10-77\end{array}$
10-27 REMOVE AND REPLACE A YIG OSCILIATOR 10-78
10-28 REMOVE AND REPLACE APIN SWITCH 10-82
10-29 REMOVE AND REPLACE THE DIRECTIONAL COUPLER
$10-83$
10-30 REMOVE AND REPLACE THE DOWN CONVERTER . . . 10-84

Chapter 10 360SSXX Signal Source Information

10.1 WTRODUCTION

1O-2 REPLACEABLE SUBASSEMBLIES

This chapter describes the 360 SS 47 and 360SS69 Signal Sources. It also provides functional descriptions for major assemblies and confidence tests, calibration, and remove and replace procedures.

WILTRON maintains a module exchange program for selected signal source modules. If a malfunction occurs in one of these modules, it can be exchanged. Upon request and typically within 24 hours, WILTRON or a Wiltron/Anritsu Service Center will ship an exchange module. The customer has 30 days in which to return the defective item. All exchange parts are warranted for 90 days from the date of shipment or for the balance of the original-part warranty-whichever is longer.

A listing of exchangeable subassemblies is provided in Chapter 1 , Table 1-2.

10-3 troubleshooting

This paragraph provides four troubleshooting tables designed to lead to the most-likely PCB or assembly causing the indicated malfunction. Table 10-1 provides an overall troubleshooting procedure; Table 10-2, a procedure for troubleshooting the A1 PCB; Table $10-3$, a procedure for troubleshooting the A4 PCB, and Table 10-4, a procedure for troubleshooting the A5 thru A9 PCBs.

Table 10-1. Overall Troubleshooting Procedure (1 of 4)

Symptom	Procedure
301 LOCK FAlLURE -DE	Because of the 3008's phase-lock loop structure, this is the most difficult system failure to troubleshoot. There are at least 30 different circuits or components that can cause this efror code. The following are procedures that will help you isolate the fault to the major assembly.

1. Determine whether the failure occurs in both forward ($\mathrm{S}_{11}, \mathrm{~S}_{21}$) and reverse $\left(\mathrm{S}_{22}, \mathrm{~S}_{12}\right)$ measurements. If the problem occurs

- at all requencies in both directions, the fault could be in the analyzer, signal source, or test set. Refer to paragraph 4, below, for further isolation tips.
- at only certain frequencies in both directions, the fault could be in the signal source. Refer to paragraph 3, below, for further isolation tips.
- in only one direction, the fault could be in the test set.

To check whether the failure occurs in both forward and reverse measurements, proceed as follows:
a. Press the DEFAULT PROGRAM key.
b. Press the CHANNEL MENU and select the SINGLE DISPLAY menu option.
c. Press the S PARAMS key and select the S 12 menu option.
d. Allow two sweeps to occur, as indicated by the blue sweeping- indicator at the bottom of the display.

SIGNAL SOURCE
 INFORMATION

TROUBLESHOOTING

Table 10-1. Overall Troubleshooting Procedure (2 of 4)

Symptom	Procedure
301 LOCK FAILURE --DE (Continued)	e. Note whether the failure condition is still present.
	f. Press the S PARAMS key and select the S21 menu option.
	g. Allow two sweeps to occur.
	h. Note whether the failure condition is still present.

2. Determine whether the failure occurs across the full sweep or only in portions of the sweep.
If the problem occurs

- only in certain bands, it is likely in the source. Refer to paragraph 3, below, for troubleshooting tips.
- at all frequencies, it could be in the analyzer, test set, or source. Refer to paragraph 4, below, for procedures on how to isolate the problem further.

To check whether the error condition occurs at all frequencies or in only selected bands, proceed as follows:
a. With the system turned on and sweeping, observe the blue sweepingindicator at the bottom of the display
b. If the sweeping-indicator cursor is moving very slowly from the beginning to the end of the sweep, that indicates the problem is at all frequencies.
c. If the cursor only moves slowiy over some part of the sweep, that indicates the problem is isolated to one or more frequency bands. Paragraph 3 describes how to isolate the problem further.
3. If you have determined that the problem is in the source, the following procedure will help to isolate it to a subassembly.
a. Determine the frequency band or bands in which the sweep slows down, as follows:

Table 10-1. Overall Troubleshooting Procedure (3 of 4)

Symptom	Procedure
301 LOCK FAILURE -DE (1)Press the MARKER MENU key. (Continued) When the menu appears, select MARKER 1 to be ON.	

(2) Using the rotary knob, position the marker to the section of the displayed trace where the sweep starts to slow down.
(3) Note the frequency and determine the band. The frequency bands are as follows:
(a) Het Band, $\leq 2 \mathrm{GHz}$
(b) Band $1,2 \mathrm{GHz}$ to 8 GHz
(c) Band 2, 8 to 12.4 GHz
(d) Band 3, 12.4 to 18 (20) GHz
(e) Band 4, 18 (20) to 27.5 GHz
(f) Doubler Band, 27.5 to 40 GHz
(4) After determining the frequency band, refer to Table 10-4 for further troubleshooting.
4. Assume that you have determined the error to be occurring at all frequencies. To determine whether the source may be the cause, proceed as follows:
a. Perform frequency and power-level verification of the source. Refer to Tables $10-3$ and $10-4$
b. If the verification shows that the source has no problems with output power or frequency, check that the resistance of the FM coils used with the YIG oscillators are not open or shorted to ground. (You will have to remove the source from the console to make this check.)

TROUBLESHOOTING

Table 10-1. Overall Troubleshooting Procedure (4 of 4)

Symptom	Procedure
303 RF OVERLOAD	There is too much microwave power coming from the source-no leveling. Reter to Table 10-3 and perform ALC veritication. If the source fails this test, replace the A4 PCB and coupler assembly.
110 SRC ID ERROR	The source fails to teturn its identification code on power up or seff test. Check the following: 1. System Bus interconnect Cable. If the cable is properly connected, it may be defective. 2. GPIB Ribbon Cable In the source, check the ribbon cable that connects the A1 PCB with the rear panel connector. It could be defective. 3. Source Not Turned On or Power Supply Defective. Check LED on front panel; verify that it is lit steadily and not flashing. 4. A1 PCB in Source Defective. Refer to Table $10-2$ for A1 PCB troubleshooting instructions. 5. $A 5$ PCB in Source Defective. Refer to Table $10-4$ for A5 PCB troubleshooting instructions.
400 GPIB ERROR	The analyzer fails to detect a response from the peripheral from which it has requested action. To determine if the source caused the error message, make the same checks outlined for the error message 110 SRC ID ERROR above. The difference between this message and the 110 message is that 110 occurs only on power-up. Error code 400 occurs at anytime a peripheral fails to respond to a request for service.

Table 10-2. A1 PCB Troubleshooting Procedure (1 of 1)

Symptom	Procedure
110 SRC ID ERROR	 (A1 PCB is suspect, see cause of the error message, you will need to use (able 10-1)
an external controller. Proceed as follows:	

1. With the source installed in the console, remove the SYSTEM BUS interconnection to the analyzer. Connect an extemal controller to the SYSTEM BUS port.
2. Type the following HP BASIC commands into the controller: (This example is for an HP85 Controller.)
```
10 OUTPUT 705; "OI*
20 ENTER 705; A$
30 DISP AS
RUN
```

3. The source should return the following message:

36XXF. FFFHHHPPWWW -
Example: 36690.01040.000-12
Where:
$X=$ model number -47 or 69 .
$\mathrm{F}=$ low frequency value-Example: 0.010
$\mathrm{H}=$ high frequency value Example: 40.0
$\mathrm{P}=$ high power value-Example: 00
$\mathrm{W}=$ low power value-Example: - 12
4. It the above message is not retumed, replace the A1 PCB (paragraph 10-25).

Table 10-3. A4 PCB Troubleshooting Procedure (1 of 2)

Symptom	Procedure
303 RF OVERLOAD	To determine whether the A4 PCB or other ALC loop components may be the cause of the error message
1.Use the 360B VNA to program the source for a predetermined frequency. As follows:	

a. On the source, disconnect the BNC cable from the PHASE LOCK INPUT connector.
b. On the VNA, press the SETUP MENU key.
c. From the displayed menu,
(1) Select CW MODE to be ON and enter a test frequency. Example: 2.05 GHz
(2) Select REDUCED TEST SIGNALS.
(3) Select SOURCE POWER when the next menu appears; then enter a power level. Example: +10 dBm .
(4) Press the HOLD key.
d. With a power meter connected to the RF OUTPUT connector on the source, verify that the measured power is within $\pm 2 \mathrm{~dB}$ of the selected power.
e. From the menu, select the next power level to be tested (typically a mid-range power level). Example: +5 dBm .
f. Verify that the measured power level is within +2 dB of the selected power.
9. Repeat steps e and for the next power level. (Typically, the minimum power level. Example: 0 dBm .)
2. Use an external controller to program the source for a series of power levels, as follows:
a. Connect the test equipment as shown in Figure 10-1. I
b. On the controller, type the following program: (This example is for an HP85 Controller.)

Table 10-3. A4 PCB Troubleshooting Procedure (2 of 2)

Symptom	Procedure
303 RF OVERLOAD (Continued)	10 DISF "SELECT FREQUENCY IN GHZ" 20 INPUT A (midfrequency of the suspect band) 30 OUTPUT 705; "CFI", A, ${ }^{*} \mathrm{GHZ}$ " 40 DISP "ENTER POWER LEVEI IN dBm" 50 INPUT P* 60 OUTPUT 705: "LVL", F,"DM" 70 GOTO 40 RUN

- Typically, check the suspect band at three power levels: guaranteed power, -5 dB down, and -10 dB down from guarantesd power.
c. Verify that the measured frequency is within $\pm 2 \mathrm{~dB}$ of the power level entered for the P variable.
d. If the power level is not proper, replace the A4 PCB and coupler.

Figure 10-1. Test Setup for Programming a Series of Power Levels

SIGNAL SOURCE INFORMATION

Table 10-4. A5 PCB Troubleshooting Procedure (1 of 1)

Symptom	Procedure
301 LOCK FAILURE -DE (A5 PCB is suspect, see Table 10-1)	To determine whether the A5 PCB may be the cause of the error message, you have to set the source for a series of CW frequencies then verity that the output frequency is within the tolerance window. You will need to use an extemal controller. Proceed as follows: 1. Connect the test equipment as shown in Figure 10-2. 2. On the controller, type the following program: (This example is for an HP85 Controller.) ```10 DISP *SELECT FREQUENCY IN GHZ* 20 INPUT A (test frequency (0.01 For 10 MHz]) 30 OUTPUT 705; "CFI",A, "GHZ" 30 GOTO 10 RUN```

3. Verify that the measured frequency is within $\pm 40 \mathrm{MHz}$ of the frequency entered for the A variable.
4. Repeat steps 2 and 3 for the next test frequency.
5. If the frequency is off by the same amount in all bands, repiace the A5 PCB (paragraph 1025). However, if the frequency is incorrect in only one band, then replace the applicable YIG Driver PCB (A6-A9), YIG Oscillator and attaching parts, and RF deck mounted transistors for the affected band (Figure 10 25 or $10-26$).

Figure 10-2. Test Setup for Programming a Series of Frequencies

10-4
 OVERALL CIRCUIT DESCRIPTION

The 360SSXX contains both circuitry that is universal for all models and frequency components that are model dependent (Figures 10-3 and 10-4).

A1 GPIB
 Interface PCB

A4 Automatic Level Control PCB

A5 Frequency Instruction PCB

Universal Circuits

Provides overall control for RF signal generation. It interfaces with the analog circuits via the μ P Bus. Paragraph 10-5 describes the A1 PCB.

Controls the RF-output-signal leveling loop. The input for this loop is the built-in coupler/ detector, which provides for internal leveling. The loop output device is the PIN switch attenuator current-driver circuits (not shown) located on the A6-A9 YIG Driver PCBs. These current-driver circuits operate the MOD DRIVER 1, 2, 3, and 4 lines used to control Mod and PIN switch attenuation. The A4 also
\square Sets the magnitude of the RF output power, which the user selects using the analyzer REDUCE SIGNALS MENU.
\square Provides the RF SLOPE correction to the output power signal.

Paragraph $10-6$ describes this PCB.
Generates center-frequency tuning and bandswitch voltages for the A6-A9 YIG Driver PCBs. The bandswitch-control and center-frequency tuning voltages are both on the FCEN signal. The frequencytuning DAC (digital-to-analog converter) is selected on A5 and used to control the center frequency. The FREQUENCY VERNIER signal enters A5 via the μ P Bus. The linearizing ROM signal enters via the FC Bus (frequency correction bus). Paragraphs 10-7 thru $10-9$ describe the A5 PCB and frequency generation circuits.

Provides a tuning current for the YIG Osc 1-4 FM (frequency modulation) coils and the Ose 1 YIG tracking filter. The tracking filter tuning current is derived from the TRACK FILTER 1 voltage generated on the A6 PCB. The FM coil tuning current is derived from the external FM signal. This signal comes from the rear panel, via the EXT FM \varnothing LOCK INPUT connector. Paragraph 10-10 describes the A10 PCB.

A14 Motherboard PCB

Al3
Switching Power Supply PCB

Provides an interconnecting plane for the A1 through A10 PCBs. The A14 PCB also intefaces, via connectors, with the A1-A10 PCBs, the rear panel connectors, and RF Deck components. The A14 PCB also contains PIN Switch port drive circuitry and part of the switching power supply circuitry. Paragraph 10-11 describes this PCB.

This PCB, along with the power supply circuits on the A14 PCB, provides power supply voltages for the signal source circuits. Paragraph 10-11 describes the A13/A14 Switching Power Supply.

Model Dependent Circuits-360SS47

The model-dependent circuits and components for the 360SS47 consist of the A6 YIG Driver PCBs and the components shown on the RF Deck (Figure 10-3). The A6 Het-YIG Driver PCB provides tuning and bias currents for the YIG tuning coil. The tuning current is derived from the F CEN signal supplied by the A5 PCB. The oscillator bias current is generated on the A6 PCB. Along with tuning and bias currents, the A6 PCB also generates a tracking filter voltage that it supplies to the A10 PCB. This voltage indirectly provides tuning for the YIG tracking filter that is built into the Osc 1 YIG module. Except for the MOD DRIVER signals previously described, the other A6-A8 outputs are control lines. The SNB and SNR lines are select-next-band and select-next-ROM lines, respectively. When the presently selected oscillator band has reached its upper-most frequency, the SNB line selects the next oscillator band. The HET YIG SEL and YIG 1, 2, and 3 SEL lines go to the A10 PCB.

Paragraph10-9 describes the A6-A8 PCBs.
The RF Deck is a subassembly It contains all the sweep generator RF components. Paragraph 10-12 describes this subassembly.

Model Dependent Circuits- $\mathbf{3 6 0 S S 6 9}$

The model-dependent circuits and components for this model are also shown in Figure 10-4. The circuit description is similar to that for the Model 360SS47 described above.

Figure 10-3. Model 360SS45/47 Overa

Figur

Figure 10-4. Model 360SS69 Overall Block Diagram

10-5
 GPIB SETUP AND INTEACONNECTION

Automated microwave measurements are provided through the GPIB port. Specific GPIB information - including interface connections, cable requirements, and addressing instructions - is contained in the following paragraphs.

Interface	Interface between the sweep generator and other
Connector	devices on the GPIB is via a 24-wire interface cable.
	The interface cable is specifically constructed with
	each end containing a connector shell with two con-
	nector faces. These double-faced connectors allow for
	parallel connection of two or more cables to a single
device.	

Cable Length Restrictions

GPIB Interconnection

GPIB
Address
A1 GPIB PCB Description

The GPIB system can accommodate up to fifteen instruments at any one time. To achieve design performance on the bus, the proper timing and voltage level relationships must be maintained. If either the cable length between separate instruments or the accumulated cable length between all instruments is too long, the data and control lines cannot be driven properly and the system may fail to perform. Cable length restrictions are as follows:

- No more than 15 instruments may be installed on the bus.
- Total accumulative cable length in meters may not exceed 2 times the number of bus instruments, or 20 meters - whichever is less.

The only interconnection required for GPIB operation is between the sweep generator and the controller. Tb accomplish this interconnection, a special cable is required. This cable - WILTRON Part No. $2100-1,-2,-4$ or $-5(1,2,4$ or 5 meters in length $)-$ is available from the factory.

The GPIB address is hardwired to Address=5.

The A1 GPIB PCB provides the interface between the signal source and the bus. This is a replaceable assembly; it contains no user-replaceable parts.

10-6 A4ALC PCB CIRCUIT DESCRIPTION

The A4 ALC PCB, along with circuitry on the RF Deck and the YIG Driver PCB (A6, A7, A8, or A9), provides for the automatic leveling of the RF output power. An overall block diagram of the ALC loop is shown in Figure 10-5.

The output from the RF Oscillator goes to the RF Coupler/Detector via the PIN Switch. The coupler sends a detected sample of the output signal to the the appropriate Preamp circuit on the A4 PCB. The Log Amp/Shaper amplifies and shapes the detector output signal and changes its relationship to the main power signal from logarithmic to linear.

The Log Amp/Shaper output is summed at the Level Amp with the voltage output from the Reference DAC. The DAC output is the analog voltage representation of the digital power word selected via the GPIB. The ALC loop contains a log amplifier to provide the signal source with the means for setting output power in dBm .

The output of the Level Amp goes to either the A6, A7, A8, or A9 PCB PIN Driver/Linearizer circuit (depending on which YIG oscillator band is supplying the output power). This circuit provides an adjustment for customizing the loop gain for each YIG oscillator band.

The A4 PCB leveling circuit provides overall control of the RF output power. The A4 PCB has two preamplifiers for internal leveling: a Het (Heterodyne) Band and a YIG Band(s) circuit. The output signal from the preamplifier circuit goes to the Log Amp/Shaper circuit, which provides gain and shaping for this signal.

The Level Amp and its associated input circuitry gives the A4 PCB overall control over the level of the signal source output power signal.

The remaining block is the Compensation circuit. This circuit stabilizes the loop.

Figure 10-5. ALC Loop Block Diagram

10-7 as frequency INSTAUCTION PCB CIRCUIT DESCRIPTION

The A5 Frequency Instruction PCB (Figure 10-6) provides linearized YIG oscillator tuning voltages to the A6, A7, A8 and A9 YIG Driver PCBs. The A5 PCB also supplies a regulated +10 V bandswitch-reference voltage to the A6-A9 YIG Driver PCBs, and an RF Slope control voltage to the A4 ALC PCB.

The linearized YIG tuning voltage, FCEN, goes to the YIG Driver PCBs. There, it is used to generate the YIG oscillator tuning current. The FSEL signal is summed with the FCORR signal to produce the linearized YIG oscillator tuning voltage, FCEN. The FSEL and FCORR signals are the outputs of the Center Frequency and Correction Frequency DAC's (digital-to-analog converters) respectively. The input to the Center Frequency DAC is a 16 -bit group from the GPIB microprocessor representing the selected frequency. The input to the Correction Frequency DAC is an 8 -bit word from the 64 K ROM (read only memory) where the frequency correction data is stored. The input to the ROM are the 13 MSB's (most significant bits) of the latched 16 bit GPIB group representing the selected frequency.

The microprocessor applies the two 8 -bit words that constitute the cen-ter-frequency-control group to the FCEN DAC, via FCEN Latches 1 and 2. Word number 1 (the most significant word-MS word) loads into latch number 2 when the microprocessor clocks the SPO line LOW. Word number 2 (the least significant word-LS word) loads into latch number 1 when the microprocessor clocks SP1 LOW. After word number 2 latches, the microprocessor clocks both the SP0 and SP1 lines LOW, which loads the DAC. This latching arrangement simultaneously applies all sixteen bits of the center-frequency-control group to the FCEN DAC.

The FCEN/VPF signal is the output of the Step Frequency DAC circuit. It goes to the YIG Driver PCBs to control band selection. The FCEN/VPF signal path contains an overcurrent protection circuit to protect the YIG oscillators from damaging current levels. Activation of the overcurrent protection circuitry lights an on board LED. The input to the Step Frequency DAC is a 12 -bit group from the GPIB microprocessor. This 12 -bit group is formed using two 8 -bit words (the remaining 4-bits in word number 1 are not used).

The input digital group is loaded into the Step Frequency DAC when the microprocessor clocks SP3 and SP4 LOW.

Figure 10-6. A5 Frequency Instruction PCB Block Diagram

10-8
 OVERALL FREQUENCY GENERATION

The three YIG Driver PCBS for the 360 SS47 - or the four YIG Driver PCBs for the 360SS69 - function together to cover the output frequency range. This circuit discussion is divided into overall frequency generation and PCB discription. Refer to the overall block diagram (Figure 10-3 or 10-4, as appropriate) while reading this description.

The YIG Driver PCBs provide drive currents for their associated YIG oscillator tuning coils and for PIN Switch A4Sl. They also provide modulating currents for the ALC-loop PIN attenuator. The PCBs also develop the oscillator-bandswitch logic voltages.

NOTE

In the following circuit discussion, the L or H that precedes a signal-line name indicates the line's active (or true) logic state.

The 360SS uses three, or four, YIG oscillators to sweep its frequency range. Each YIG oscillator requires a YIG Driver PCB. The three main signals used to develop tuning and bias currents are the F CEN, $\triangle F>$ 50 MHz , and F CORR signals from the A5 Frequency Instruction PCB. These three signals feed in parallel to all YIG driver PCBs. However, because the H SNB (select next band) oscillator-bandswitch lines on the $\mathrm{A} 7, \mathrm{~A} 8$, and/or A 9 PCBs are initially false, the A 6 PCB is the only one that can use the signals. There, they are summed and used to generate the frequency sweep.

The fourth A5 signal, FCEN/VPF, provides for oscillator bandswitching. A bandswitch occurs on the A 6 PCB at 2 GHz and again at 8 GHz . At 2 GHz , the L HET PIN Select line goes false. This switches both the $0.01-\mathrm{to}-2 \mathrm{GHz}$ Down Converter Band (also referred to as Het (heterodyne) band) out of the circuit and the S / C-band (2 -to- 8 GHz) YIG in. At approximately 8 GHz , several events occur:

- The YIG oscillator tuning coil leaves the oscillator tuned to a rest frequency of 8 GHz .
- The Mod Driver line on the A6 PCB sets the Mod attenuator to maximum attenuation, and the L PIN Select line causes the S/Cband element in the PIN Switch to turn off. This action attenuates by 60 dBc or less the feedthrough of the S / C-band YIG oscillator signal.

The SNB and SNR (select-next-band and select-next-ROM) lines on the A6 PCB toggle from low to high, causing the X-Band (8-to-12.4 GHz) YIG oscillator and A5 PCB linearizer ROM to be selected. When the XBand YIG oscillator is selected, the A7 PCB sums the three signals from the A5 Frequency Instruction PCB (F Cen, $\Delta F>50 \mathrm{MHz}, \mathrm{F}$ Corr) and uses them to generate the X -band sweep. This sweep starts at 8 GHz . As on the A6 PCB, the FCEN/VPF signal from A15 provides for oscillator bandswitching. The A7 PCB has only one bandswitch point $(12.4 \mathrm{GHz})$ and when it is reached, the following occur:

- The YIG oscillator tuning coil leaves the oscillator tuned to its rest frequency (approximately 12.4 GHz).
- The Mod Driver line on the A7 PCB sets the X-band attenuator in PIN Switch to maximum attenuation. The L PIN Select line turns the X-band switch off. This action attenuates by 60 dBc or less the feedthrough of the X-band signal.
\square The SNB and SNR lines on the A7 PCB toggle from low to high and select the Ku-Band YIG oscillator and ROM. The Ku-band (A8 PCB) and K-band (A9 PCB) circuit action is similar to that described for S / C and X bands.

The YIG Driver PCBs are similar in their design and operation. The major difference is that the A6 S/C-Band YIG Driver PCB also drives the Down Converter. It also contains circuits for controlling the tracking filter that is built into the S/C-band circuit. The X- and Ku-band circuits are similar, except for the absence of tracking filter and HET (down converter) lines.

NOTE

In the following circuit discussion, the L or H that precedes a signal-line name indicates the line's active (or true) logic state.

The A6 PCB contains four functional blocks (Figure 10-7). The YIG oscillator and Tracking Filter Control circuits provide for tuning the YIG oscillator and its built-in tracking filter. The tracking filter provides harmonic suppression. The inputs to this block are the F Corr, $\triangle F>50 \mathrm{MHz}, \mathrm{F}$ CEN and CW FTLTER control signals from the A5 Frequency Instruction PCB.

The Bandswitch and ROM Select Logic and Control circuits provide for bandswitching between the three YIG Driver PCBs. Its input is the F CEN/VPF. Its outputs are the L YIG FM COIL SEL, L HET YIG SEL, L HET PIN SEL, L PIN SEL, L SNB, L SNR, and L YIG SEL control lines.

The PIN Driver Linearizer circuit processes the control line for the S/Cband Modulator circuit, which for this band is a separate component. For the other two bands, the modulator/attenuator pad is built into the PIN Switch. The modulator provides ALC control for their associated YIG oscillator output signal.

The A5 PCB linearizer ROM circuit provides compensation for its associated YIG oscillator. Many YIG oscillators, though inherently linear, often have linearity errors due to magnetic saturation effects. This ROM provides for up to $\pm 64 \mathrm{MHz}$ of frequency correction.

THE "L" THAT PREFACES THE SIGNAL LINE NAMES INDICATES LINE'S ACTIVE STATE: LOW OR HIGH.

Figure 10-7. A6-A9 YIG Driver PCB Block Diagram

The A10 FM/Attenuator PCB (Figure 10-8) generates FM modulation for the YIG oscillators and drive for the 2 -to- 8 GHz YIG tracking filter.

NOTE

In the following circuit discussion, the L or H that precedes a signal-line name indicates the line's active (or true) logic state.

The signal input for the A10 PCB enters on either the EXT FM Input signal line, the $\Delta F \leq 50 \mathrm{MHz}$ signal line, or on both concurrently. The $\Delta F \leq 50 \mathrm{MHz}$ signal line is from the A5 Frequency Instruction PCB. If the operator selects a delta frequency sweep mode ($\Delta F C F, \Delta F M 1$) and a sweep width (ΔF) of 50 MHz or less, this input is a voltage ramp. The amplitude of this ramp depends on the sweep width. For a sweep width of 50 MHz , the amplitude is 10 V (from -5 V to +5 V). For sweep widths less than 50 MHz , the amplitude is proportionally less than 10 V . The EXT FM Input signal line is from the rear panel EXT FM \varnothing LOCK INPUT connector.

The Variable Gain circuit provides a voltage gain for the FM input signal. Stage gain depends on which of the available YIG oscillators is supplying the output frequency. The output of this circuit goes to the FM Coil Current Driver circuit. The output from the FM Coil Current Driver circuit drives the YIG oscillator FM tuning coils. This coil current returns to ground via the Current Sense resistor, which is effectively in series with the FM coils. The voltage drop across the Current Sense resistor is proportional to the current through the FM coils.

While the S/C-and X-Band YIG oscillators and the K-band and Kuband (360SS69) oscillators receive their drive and FM coil currents in series, only one oscillator band at a time has its output switched to the sweep generator RF output circuit. This RF output switching is a function of the PIN Switch.

Besides supplying the input for the FM coil-current driver circuits, the Variable Gain circuit also supplies the input for the Tracking Filter cur-rent-driver circuit. A tracking filter is used only with the S/C-band YIG oscillator. This filter is a high-Q YTG bandpass filter that resides in the same module as the YIG oscillator. It is in series with the YIG oscillator and tracks at the same frequency. It attenuates harmonic and spurious signals.

Figure 10-8. A10 FM/Attenuator PCB Block Diagram

10-11 switching power SUPPLY CIRCUIT DESCRIPTION

The A13/A14 Switching Power Supply (Figure 10-9) is a half-bridge, quasi-square-wave, high-efficiency +5 V converter. It also contains the following circuits:

- $\pm 15 \mathrm{~V}$ LC (low current) supply
$\square \pm 15 \mathrm{~V}$ HC (high current) supply
$\square+12 \mathrm{~V}$ regulated supply
$\square+24 \mathrm{~V}$ regulated supply
- -39 V regulated supply
$\square+18 \mathrm{~V}$ unregulated supply
$\square+28 \mathrm{~V}$ unregulated supply
As shown in Figure 10-9, the switching power supply circuits and components are dispersed over the following PCBs and assemblies:
- A16 Rear Panel Assembly. Line Voltage Selector Module and Fan.
- A14 Motherboard PCB. Off-Line Rectifier, Start-up Transformer, Power Switch, Over-Voltage Sense, Out-of-Reg Sense, Line Sense, $-39 \mathrm{~V},+24 \mathrm{~V}$, and $\pm 15 \mathrm{~V}$ LC Regulator circuits.
- A13 Switching Power Supply PCB. Control Amplifier, Soft-Start Control, Shut-Down Timer, Over-Current Sense, Pulse-Width Modulator, and Switching Transistors circuits.
- A0 Basic Frame Assembly. -39V Regulator pass transistor and $\pm 15 \mathrm{~V}$ HC Regulator circuits.

The ac line power entering the signal source is input to the Off-Line Rectifier circuit. This circuit is a full-wave voltage doubler (120 V line) or a full-wave bridge rectifier (220 V line). The circuit's voltage output for either input-line voltage is $330 \mathrm{Vdc}(\pm 165 \mathrm{Vdc}$). Resistors sense the circuit's output current. If the current exceeds three amperes, it activates the optically coupled Over-Current Sense circuit. When activated, this circuit causes the Shut Down Timer to turn off the switching transistor drive voltage. The ± 165 Vdc output from the Off-Line Rectifier circuit goes to the dc-isolated Switching Transistors on the A13 PCB.

CAUTION

Use an isolation transformer between the signal source and the ac line whenever you are performing maintenance on the switching power supply. Because this power supply references portions of its circuitry to the peak negative or positive line voltage, you must use an isolation transformer to protect test instruments.

The Switching Transistors alternately switch between +165 Vdc and -165 Vdc at a 50 kHz rate. These transistors are driven by the PulseWidth Modulator (PWM) circuit. This circuit develops a train of pulses. The duty cycle of this pulse train varies between 25% and 40% (approximately), depending on the amplitude of control voltage Vc. This Vc-voltage amplitude is determined by either the Control Amplifier, the Soft-Start Control circuit, or the Shut-Down Timer circuit.

The input to the Control Amplifier is the $+5 V$ SENSE line from the motherboard. This line senses the voltage across the +5 V load. The output of the Control Amplifier forces the PWM to adjust the duty cycle to whatever is necessary to maintain +5 V at the sense line.

The input to the Soft-Start Control circuit is +12 V from the +12 V Regulator. At the instant you press the POWER key on the Analyzer, +12 V is applied to this circuit. It causes the output of the +5 V supply to be minimum. Gradually, as a circuit capacitor charges, the the duty cycle of the circuit's output pulse train increases and the $+5 V$ supply output voltage increases. When the Control Amplifier senses that 5 volts has been reached (approximately 20 ms), regulation occurs. If a malfunction were to occur, the Over-Voltage circuit would trigger the Shut-Down Timer cireuit at approximately 5.7 volts.

The input to the Shut-Down Timer circuit is a trigger pulse caused by the OVER-VOLTAGE/CURRENT line going LOW. When triggered, this circuit generates a 1 -second pulse (approximately) that causes the input to the PWM to go to +12 V . This shuts down the Switching Transistors. After the Shut Down Timer circuit times out, the power supply soft-starts. However, if the condition causing the Shut Down Timer circuit trigger is still present, it generates another pulse and shuts the supply down again. This pulsing operation continues until either the overvoltage/current condition is corrected or POWER switch is pressed to OFF.

The de isolation transformer on the output of the PWM couples its output to the Switching Transistors. These transistorss require a bias of approximately 5 V to be switched on. Their output form a composite waveform. The peak-to-peak value of this waveform is directly proportional to the peak value of the 120 V line (or directly proportional to the peak-to-peak value of the 220 V line).

This waveform is coupled to the five secondaries of the 50 kHz Power Transformer. The reduced voltages appearing in the transformer secondaries are also proportional to the line voltage. These reduced voltages are rectified and passed through inductors which function as integrators.

The five rectifier circuits-excepting the +5 V circuit-supply their respective outputs to voltage regulators. The -39 V Regulator is driven by the -43 V supply. The +24 V Regulator is driven by the +28 V supply. The -15 V LC (low current) and HC (high current) Regulators are driven by the -18 V supply. And the +15 V LC and HC Regulators are driven by the +18 V supply. The unregulated +18 V also goes to the YIG driver bias supply on the $\mathrm{A} 6-\mathrm{A} 9 \mathrm{PCBs}$ and to the +15 V Rectifier circuit.

The remaining two circuits are the Out of Reg Sense and the Line Voltage Sense circuits. The Out of Reg Sense circuit detects when any of the regulated supplies goes out of tolerance. If such a condition exists, the L OR diagnostic line goes TRUE and the A14 OUT OF REG indicator LED lights. The Line Voltage Sense circuit detects when the ac line exceeds the $+5 \%$ or -10% limits required for circuit operation. This circuit also detects whether the Line Voltage Selector Module PCB is correctly positioned for the available line voltage. If either the line voltage is incorrect or the PCB is improperly positioned, the appropriate L HL or L LL diagnostic line will go TRUE, and the LED indicator will light.

IGNAL SOURCE

NFORMATION

Figure 10-9. Switching Power Supply Bloc

$360 S S 47$ RF DECK

360 SS69 RF DECK

Figure 10-10. Model 360SS47 and 360SS69 RF Deck Block Diagrams

The RF Deck modules are used to generate CW-frequency RF signals and to route such signals to the front panel RF OUTPUT connector. Figure $10-10$ on the facing page provides block diagrams showing RF component configurations for the Models 360SS47 and 360SS69.
$\left.\begin{array}{ll}\text { Oscillators } & \begin{array}{l}\text { The YIG-tuned oscillators are generally of the GaAs } \\ \text { FET type and are manufactured primarily by } \\ \text { WILTRON. }\end{array} \\ \text { MOD }\end{array} \quad \begin{array}{l}\text { The MOD unit is a current-controlled variable at- } \\ \text { TModulator) } \\ \text { tenuator that provides amplitude control and power } \\ \text { leveling for the Osc 1 output. It also provides im- } \\ \text { pedance matching and isolation for the Osc } 1 \text { YIG. }\end{array}\right\}$

10-13

The confidence test requires a GPIB controller. First, you use the controller to program the signal source for known frequency and power levels. Then you use external test equipment to determine if the programmed settings are being achieved. The confidence tests can be accomplished with the source installed in the console. Tb do so, remove the SYSTEM BUS interconnection between the source and analyzer and replace it with a GPIB interconnection between the source and an external controller (Figure 10-11).

Recom- Table 10-5 provides a listing of test equipment mended Test Equipment needed to perform the confidence test.

Table 10-5. Recommended Test Equipment for Confidence Testing

Instrument	Critical Specifications	Manufacturer
Power Meter	GPIB Controllable	Hewlett-Packard Model 436A , with Option 22
Power Sensor	Frequency Range: $0.05-26.5 \mathrm{GHz}$ Power Range: -30 to 20 dBm (1 $\mu \mathrm{W}$ to 100 mW$)$	Hewiet-Packard Model 8485A
Power Sensor	Frequency Range: $0.05-40 \mathrm{GHz}$ Power Range: - 30 to 20 dBm ($1 \mu \mathrm{~W}$ to 100 mW)	Hewlett-Packard Model 8487A
Digital Multimeter	Resolution: $41 / 2$ digits DC Accuracy: $0.002 \%+2$ counts DC input Impedance: $10 \mathrm{M} \Omega$ AC Accuracy: $0.07 \%+100$ counts AC Input Impedance: $1 \mathrm{M} \Omega$	John Fluke Inc. Model 8840A, with Opt ion 8904A-09 (True AC RMS)
Frequency Counter	Frequency Range: 0.01 to 40 GHz input Impedance: 50Ω Resolution: 1 Hz Extemal Time Base Input: $1 \mathrm{M} \Omega$	EIP Microwave Inc. Model 54BA, with Extemal Mixers: Opt ion 91 (26.5 to 40 GHz) Option 92 (40 to 60 GHz)
Oscilloscope	Bandwidth: DC to 150 MHz Vertical Sensitivity: $2 \mathrm{mV} /$ division Horizontal Sensitivity, 50 ns/division	Tektronix Inc. Model 2445
Spectrum Analyzer with Extemal Mixer	Frequency Range: 0.01 to 100 GHz Resolution Bandwidth: 100 Hz	```Tektronix Inc. Model }49 with Extemal Mixer (PN 015-300085-00)```

Figure 10-11. Test Equipment Setup for Confidence Test

Testing the ALC Loop

To determine whether the A4 PCB and overall ALC loop is functioning properly, proceed as follows:

Connect the test equipment as shown in Figure 1012. If you wish to remove the source from the console, refer to paragraph 10-15 for removal instructions.

From the controller keyboard, type the following code: (Example is for an HP85 Controller.)

```
10 DISP "SELECT FREQUENCY IN GHZ"
20 INPUT A*
30 OUTPUT 705; "CF1",A,"GHZ"
40 DISP "ENTER POWER LEVEL IN DBm"
50 INPUT P*
60 OUTPUT 705; "LVL",P,"DM"
70 GOTO 10
RUN
```

Typically, you should check the high-end, mid-band, and low-end frequencies in each band at three power levels: guaranteed power, -5 dB and -10 dB down from guaranteed power.

Verify that the measured frequency is within $\pm 2 \mathrm{~dB}$ of the power level entered for the program's P variable.

Repeat for the next frequency/power level.
If the power level is within the +2 dB tolerance window, the ALC loop can be assumed to be functioning properly.

Figure 10-12. Test Equipment Setup for ALC Loop Confidence Test

Testing the Frequency Generation Subsystem

The following procedure verifies that the 360 SS is producing the proper output frequency. To determine proper operation, you have to set the source for a series of CW frequencies in each band then verify that the output frequency is within the tolerance window.

Connect the test equipment as shown in Figure 1013.

From the controller keyboard, type the following code: (Example is for an HP85 Controller.)

```
10 DISP "SELECT FREQUENCY IN GHZ"
20 INPUT A*
30 OUTEUT 705; "CF1",A,"GHZ"
40 GOTO 10
RUN
```

Typically, you should check the high-end, mid-band, and low-end frequencies in each band.

Verify that the measured frequency is within $\pm 40 \mathrm{MHz}$ of the frequency entered for the program's "A" variable.

Repeat for the next frequency.
If the measured frequencies are within their tolerance window, the Frequency Generation Subsystem can be assumed to be functioning properly.

Figure 10-13. Test Equipment Setup for Frequency Generation Subsystem Confidence Test

> Testing the FM Phaselock Circuit

This test checks that the source has a 6 MHz -pervolt response to an input dc voltage.

Connect the test equipment as shown in Figure 1014.

From the controller keyboard, type the following code: (Example is for an HP85 Controller.)

```
10 DISP "SELECT FREQUENCY IN GHZ"
20 INPUT A*
30 OUTPUT 705; "CF1",A,"GHZ"
40 GOTO 10
RUN
```

Set the power supply for +4 volts.
Observe that the frequency counter indicates the programmed frequency (INPUT A variable), $-24 \mathrm{MHz} \pm 2.4 \mathrm{MHz}$.

Set the power supply for -4 volts.
Observe that the frequency counter indicates the programmed frequency, $+24 \mathrm{MHz} \pm 2.4 \mathrm{MHz}$.

If the shifts in frequency are within the tolerance windows, the A10 PCB phase-lock circuits can be assumed to be functioning properly.

Figure 10-14. Test Equipment Setup for FM Phase-Lock Confidence Test

10-14 adjustment PROCEDURES

This paragraph provides adjustment procedures that you should perform following the repair or replacement of printed circuit boards (PCBs), which are listed in Table 10-6.

Table 10-6. Recommended Adjustments Following Repair or Replacement

PCB	Adjustment
A4 PCB	ALC Loop Calibration and Adjustments (page 10-64)
A5 PCB	A5 PCB Frequency Adjustments (page 10-50)
A6 PCB	A6-A9 YIG Oscillator Bandswitch Adjustments (page 10-52) A6-A9 YIG Bias Check (page 10-56) $2-8 ~ G H z ~ B a n d ~(O s c ~ 1) ~ T r a c k i n g ~ F i l l e r ~ A d j u s t m e n t s ~(p a g e ~ 10-62) ~$ $2 ~ G H z ~ B a n d s w i t c h ~ C o m p e n s a t i o n ~ A d j u s t m e n t ~(p a g e ~ 10-63) ~$ ALC Loop Calibration and Adjustments (page 10-64)
A7-A9 PCB	Same as above, except 2 GHz Bandswitch Compensation Adjustment
A10 PCB	None
A13 PCB	Power Supply Adjustments (page 10-70)

Recommended Test Equipment

Table 10-7 lists the test equipment needed for performing the adjustment procedures.

Table 10-7. Recommended Test Equipment for Adjustments

Instrument	Critical Specifications	Manufacturer
Power Meter	GPIB Controllable	Hewett-Packard Model 436A, with Option 22
Power Sensor	Frequency Range: $0.05-26.5 \mathrm{GHz}$ Power Range: - 30 to 20 dBm (1 $\mu \mathrm{W}$ to 100 mW)	Hewlett-Packard Model 8485A
Power Sensor	Frequency Range: $0.05-40 \mathrm{GHz}$ Power Range: -30 to 20 dBm $(1 \mu W$ to 100 mW)	Hewlett-Packard Model 8487A
Digital Multimeter	Resolution: $41 / 2$ digits DC Accuracy: $0.002 \%+2$ counts DC Input Impedance: $10 \mathrm{M} \Omega$ AC Accuracy: $0.07 \%+100$ counts AC input impedance: $1 \mathrm{M} \Omega$	John Fluke Inc. Model 8840A, with Opt ion 8804A-09 (True AC RMS)
Frequency Counter	Frequency Range: 0.01 to 40 GHz Input impedance: 50Ω Resolution: 1 Hz Extemal Time Base Input: 1 MS	EIP Microwave inc. Model 548A, with Extemal Mixers: Option 91 (26.5 to 40 GHz) Option $92(40$ to 60 GHz)
Oscilloscope	Bandwidth: DC to 150 MHz Vertical Sensitivity: $2 \mathrm{mV} / \mathrm{d}_{\mathrm{ivis}}$ ion Horizontal Sensitivily: 50 ns/division	Tektronix inc. Model 2445
Spectrum Analyzer with External Mixer	Frequency Range: 0.01 to 100 CHz Resolution Bandwidth: 100 Hz	Tektronix Inc. Model 494 with Extemal Mixer (PN 015-300085-00)

This paragraph provides instructions for adjusting the A5 F Center DAC voltages, and the A6-A9 bandswitch reference voltages. These voltages should be checked and adjusted, if necessary, following maintenance on any of the A6-A9 PCBs or when any of the frequency specifications are found to be out of tolerance.

Step 1. Set up the test equipment as shown in Figure 10-15.

Figure 10-15. Test Equipment Setup for ALC Loop Confidence Test
Step 2. Remove top cover.
Step 3. Reset the 360SS by cycling the line power off and on.
Step 4. Connect the digital multimeter leads between A5TP6 (+) and A5TP1 (-) (Figure 10-16).

Step 5. Verify that the digital multimeter indicates $+10 \pm 0.1 \mathrm{~V}$.
Step 6. Connect the digital multimeter leads between A5TP3 (+) and A5TP1 (-).

Step 7. Verify that the digital multimeter indicates $-10 \pm 0.1 \mathrm{~V}$.
NOTE
Steps 8 thru 12 are not routine adjustments. They should be performed only if A5U10 has been replaced.

Step 8. Remove the cover from the F Center circuit (U5,U9, U10) (Figure 10-16).

Step 9. Reset the 360SS by cycling the line power off and on.
Step 10. Reset the FCen DAC by connecting one end of a short jumper wire to A5TP1; contact the other end of the jumper first to A5U6, pin 3, then to A5U6, pin 2.

Step 11. Connect the digital multimeter test leads between A5TP5 (+) and A 5 TP 4 (-).

Step 12. Adjust A5R8 for $0 \mathrm{~V} \pm 50 \mu \mathrm{~V}$.

Figure 10-16. A5 PCB Component Locations

The 360SS Series signal sources use three or four YIG driver PCBs, depending on the model. These adjustments should be performed following maintenance on the A6-A9PCBs.

A6 PCB, Adjust the $2-8 \mathrm{GHz}$ YIG oscillator to bandswitch at 2 GHz 2 GHz , as follows:

Step 1. Set up the test equipment as was shown in Figure 10-15.

Step 2. Remove the top cover.
Step 3. Reset the 360SS by cycling the line power off and on.

Step 4. Move A5P3 jumper to pins 2 and 3 (Figure 10-16).

Step 5. From the controller keyboard, type the following code: (Example is for an HP85 Controller.)

Step 6. 10 DISP "SELECT FREQUENCY IN GHZ" 20 INPUT A*
30 OUTPUT 705; "CF1",A,"GHZ" 40 goto 10 RUN

NOTE
Save the above program to disk; it will be used often throughout the procedures in this chapter.

Step 7. Enter 2 GHz on controller keyboard.
Step 8. Connect the digital multimeter test leads between A6TP5 (+) and A6TP1 (-) (Figure 10-17).

Step 9. Adjust A6R67 counterclockwise for 0V (TTL low).

Step 10. Readjust A6R67 clockwise for +5 V (TTL high).

Figure 10-17. A6 PCB Component Locations

A6 PCB, 8 GHz

Adjust the $2-8 \mathrm{GHz}$ YIG oscillator to bandswitch at 8 GHz , as follows:

Step 1. Enter 8 GHz on controller keyboard.
Step 2. Move the digital multimeter (t) lead to A6TP3.

Step 3. Adjust A6R49 (Figure 10-17) counterclockwise for OV (TIL low).

Step 4. Readjust A6R49 clockwise for +5 V(TTL high).

A7 PCB

$A 8 P C B$

Adjust the $8-12.4 \mathrm{GHz}$ YIG oscillator to bandswitch at 12.4 GHz , as follows:

Step 1. Enter 12.4 GHz on controller keyboard.
Step 2. Connect the digital multimeter test leads between A7TP3 ${ }^{(+)}$) and A7TP1 (-) (Figure 10-18).

Step 3. Adjust A7R49 counterclockwise for OV (TTL low).

Step 4. Readjust A7R49 clockwise for +5 V (TTL high).

Adjust the $12.4-18 \mathrm{GHz}$ YIG oscillator to bandswitch at 18 GHz , as follows:

Step 1. Enter 18 GHz on controller keyboard.
Step 2. Connect the digital multimeter test leads between A8TP3 $(+)$ and A8TP1 $(-)$ (Figure 10-18).

Step 3. Adjust A8R49 counterclockwise for 0V (TTL low).

Step 4. Readjust A8R49 clockwise for +5 V (TTL high).

Step 5. When bandwidth adjustment is completed, move A5P3 jumber to pins 1 and 2.

Figure 10-18. A7 PCB thru A9 PCB Component Locations

A9 PCB
Adjust the $18-26.5 / 27.5 \mathrm{GHz}$ YIG oscillator to bandswitch at 26.5 or 27.5 GHz , as follows:

Step 1. Check A1A6 PCB for label indicating bandswitch point. If not there, skip to step 3.

Step 2. On the controller keyboard, enter the bandswitch frequency.

Step 3. Connect the digital multimeter test leads between A9TP3 (+) and A9TP1 (-) (Figure 10-18).

Step 4. On the controller keyboard, enter 26.3 GHz ; then increment frequency by 0.1 GHz until DMM switches from OV to +5 V . (That is the bandswitch frequency).

Step 5. Adjust A9R49 counterclockwise for 0 V (TJL low).

Step 6. Readjust A9R49 clockwise for +5 V (TTL high).

10-17 a6-a9 yig bias CHECK

This paragraph provides instructions for checking YIG oscillator bias voltages.

Step 1. Set up the test equipment as was shown in Figure 10-15.
Step 2. Remove the top cover.
Step 3. Press the POWER switch to ON.
A6 PCB Y1G Check the non-adjustable bias voltage on the 2-8 GHz YIG oscillator, as follows:

Step 1. Connect digital multimeter between A6TP4 (+) and A6TP1 (-) (Figure 10-17).

Step 2. Verify voltage is +15 V .
Step 3. Move digital multimeter (+) lead to A14P14, pin 15 (Figure 10-23, page 10-73)

Step 4. Verify voltage is -5 V .
A7 PCB YIG Check the non-adjustable bias voltage on the 812.4 GHz YIG oscillator, as follows:

Step 1. Connect the digital multimeter between $\mathrm{A} 7 \mathrm{TP}_{4}(+)$ and A7TP1 (-) (Figure 10-18).

Step 2. Verify voltage is +15 V .
A8 PCB YIG For 360 SS 47 only, check the non-adjustable bias voltage on the $8-12.4 \mathrm{GHz}$ YIG oscillator, as follows:

Step 1. Connect the digital multimeter between A8TP4 (+) and A8TP1 (-) (Figure 10-18).

Step 2. Verify voltage is +12 V .
A9 PCB YIG For 360 SS 69 , check the non-adjustable bias voltage on the $18-26.5 \mathrm{GHz}$ YIG oscillator, as follows:

Step 1. Connect the digital multimeter between A9TP4 (+) and A9TP1 (-) (Figure 10-18).

Step 2. Verify voltage is +12 V .

10-18
 FREQUENCY ADJUSTMENTS

This paragraph provides instructions for adjusting the signal source output frequency. Frequency adjustment procedures are provided for each YIG-tuned oscillator, and for the Het (heterodyne) Band. The signal source output frequency should be adjusted following maintenance on the A5 and A6 thru A9 PCBs, and when any of the YIG oscillators are replaced.

NOTE

Allow the instrument to warm up 30 minutes before attempting any frequency adjustment.

Step 1. Set up the test equipment as was shown in Figure 10-15.
Step 2. Remove the top cover.
Step 3. Cycle the line power off and on.
Oscillator 1 Adjust the $2-8 \mathrm{GHz}$ oscillator, as follows:
Step 1. Enter 2.1 GHz on controller keyboard.
Step 2. Wait 10 seconds for the frequency to settle.
Step 3. Enter 7.9 GHz on controller keyboard.
Step 4. Wait 10 seconds for the frequency to settle.
Step 5. Repeat steps 1 thru 4 two more times, to set the YIG's hysteresis.

Step 6. Enter 2.1 GHz on controller keyboard.
Step 7. Wait 10 seconds for the frequency to settle.
Step 8. Adjust A6R12 (Figure 10-17) for $2.100 \mathrm{GHz} \pm 2 \mathrm{MHz}$.

Step 9. Enter 7.9 GHz on controller keyboard.
Step 10. Wait 10 seconds for the frequency to settle.
Step 11. Adjust A6R6 (Figure 10-17) for 7.9 GHz $\pm 2 \mathrm{MHz}$.

Step 12. Repeat steps 6 thru 11 until the two frequencies are within their 2 MHz tolerance.
0.01 GHz Band

Adjust the $0.01-2 \mathrm{GHz}$ heterodyne band, as follows:
Step 1. Enter 0.01 GHz on controller keyboard.
Step 2. Adjust A6R83 (Figure 10-17) for 1 GHz $\pm 1 \mathrm{MHz}$.

Step 3. Set the frequency, again, to 1 GHz .
Step 4. Enter 0.01 GHz on controller keyboard.
Step 5. Verify that the counter reads 10 MHz $\pm 10 \mathrm{MHz}$. If not, readjust A6R12.

Step 6. Enter 1.9 GHz on controller keyboard.
Step 7. Verify that the counter reads 1.9 GHz $\pm 10 \mathrm{MHz}$. If not, readjust A6R12.

Step 8. Repeat steps 1 thru 7 as necessary until the frequencies at both ends of the heterodyne range are within their $\pm 10 \mathrm{MHz}$ tolerance window.

Oscillator 2 Adjust the $8-12.4 \mathrm{GHz}$ oscillator, as follows:
Step 1. Enter 8.1 GHz on controller keyboard.
Step 2. Wait 10 seconds for the frequency to settle.
Step 3. Enter 12.3 GHz on controller keyboard.
Step 4. Wait 10 seconds for the frequency to settle.
Step 5. Repeat steps 1 thru 4 two more times, to set the YIG's hysteresis.

Step 6. Enter 8.1 GHz on controller keyboard.
Step 7. Wait 10 seconds for the frequency to settle.
Step 8. Adjust A7R12 (Figure 10-18) for 8.1 GHz $\pm 2 \mathrm{MHz}$.

Step 9. Enter 12.3 GHz on controller keyboard.
Step 10. Wait 10 seconds for the frequency to settle.
Step 11. Adjust A7R6 for $12.3 \mathrm{GHz} \pm 2 \mathrm{MHz}$.
Step 12. Repeat steps 6 thru 11 until the two frequencies are within their $\pm 2 \mathrm{MHz}$ tolerances.

Oscillator 3

Adjust the 12.4-18 (or 20) GHz oscillator, as follows:
Step 1. Enter 12.5 GHz on controller keyboard.
Step 2. Wait 10 seconds for the frequency to settle.
Step 3. For 360 SS 69 , enter 17.9 GHz on controller keyboard.

For 360 SS 47 , enter 20 GHz on controller keyboard.

Step 4. Wait 10 seconds for the frequency to settle.
Step 5. Repeat steps 1 thru 4 two more times, to set the YIG's hysteresis.

Step 6. Enter 12.5 GHz on controller keyboard.
Step 7. Wait 10 seconds for the frequency to settle.
Step 8. Adjust A8R12 (Figure 10-18) for 12.5 GHz $\pm 2 \mathrm{MHz}$.

Step 9. For 360 SS 69 , enter 17.9 GHz on controller keyboard.

Step 10. For 360 SS 47 , enter 20 GHz on controller keyboard.

Step 11. Wait 10 seconds for the frequency to settle.
Step 12. Adjust A8R6 (Figure 10-18) for 17.9 GHz $\pm 2 \mathrm{MHz}$, for the 360 SS 69 ; or 20 GHz $\pm 2 \mathrm{MHz}$, for the 360 SS 47 .

Step 13. Repeat steps 6 thru 11 until the two frequencies are within their $\pm 2 \mathrm{MHz}$ tolerances.

NOTE

Perform the following steps only for the 360SS69.

Step 14. Enter 28 GHz on controller keyboard.
Step 15. Wait 10 seconds for the frequency to settle.
Step 16. Enter 40 GHz on controller keyboard.
Step 17. Wait 10 seconds for the frequency to settle.
Step 18. Repeat steps 14 thru 17 two more times, to set the YIG's hysteresis.

Step 19. Enter 28 GHz on controller keyboard.
Step 20. Wait 10 seconds for the frequency to settle.
Step 21. Adjust A8R68 (Figure 10-18) for $28 \mathrm{GHz} \pm 2 \mathrm{MHz}$.

Step 22. Enter 40 GHz on controller keyboard.
Step 23. Wait 10 seconds for the frequency to settle.
Step 24. Adjust A8R65 (Figure $10-18$) for 40 GHz $\pm 2 \mathrm{MHz}$.

Step 25. Repeat steps 19 through 24 until the two frequencies are within their $\pm 2 \mathrm{MHz}$ tolerances.

Oscillator 4 For the 360 SS 69 , adjust the $18-26.5 \mathrm{GHz}$ oscillator, as follows:

Step 1. Enter 18.1 GHz on controller keyboard.
Step 2. Wait 10 seconds for the frequency to settle.
Step 3. Enter 26.4 or 27.4 GHz (as determined in paragraph 10-16) on controller keyboard.

Step 4. Wait 10 seconds for the frequency to settle.
Step 5. Repeat steps 1 thru 4 two more times, to set the YIG's hysteresis.

Step 6. Enter1 18.1 GHz on controller keyboard.

Step 7. Wait 10 seconds for the frequency to settle.
Step 8. Adjust A9R12 (Figure 10-18) for 18.1 GHz $\pm 2 \mathrm{MHz}$.

Step 9. Enter 26.4 or 27.4 GHz , as applicable, on controller keyboard.

Step 10. Wait 10 seconds for the frequency to settle.
Step 11. Adjust A9R6 (Figure 10-18) for 26.5 GHz .
Step 12. Repeat steps 6 through 11 until the two frequencies are within their $\pm 2 \mathrm{MHz}$ tolerances.

10-19
 2-8 GHz BAND (OSC 1) TRACKING FILTER adjustments

This paragraph provides instructions for adjusting the $2-8 \mathrm{GHz}$ band (OSC 1) tracking filter. These adjustments should be performed following maintenance on the A6 PCB or when the power output of the signal source is below its specified tolerance in the $2-8 \mathrm{GHz}$ band.

Step 1. Connect the test equipment as was shown in Figure 10-15.
Step 2. Remove the top cover from the signal source.
Step 3. Reset the signal source by cycling the line power off and on.
Step 4. Enter 2.1 GHz on controller keyboard.
Step 5. Set the 360SS for an unleveled output power, type :

```
10 OUTPUT 705:"Lvo"
RUN
```

Step 6. Adjust A6R93 (Figure 10-17) for maximum output power.
Step 7. Recall frequency program (page 10.52) and enter 7.9 GHz on controller keyboard.

Step 8. Adjust A6R95 (Figure 10-17) for maximum output power.
Step 9. Repeat steps 4 thru 8 until no further adjustment is necessary.

Step 10. Enter 2.1 GHz on controller keyboard.
Step 11. Verify output power exceeds the RESET power level $(+10 \mathrm{dBm}$ for 360 SS 47 or +5 dBm for 360 SS 69$)$.

Step 12. Repeat steps 10 and 11 for $3 \mathrm{GHz}, 4 \mathrm{GHz}, 5 \mathrm{GHz}, 6 \mathrm{GHz}$, and 7 GHz .

10-20 2 GHz BANDSWITCH COMPENSATION ADJUSTMENT

This paragraph provides instructions for adjusting the signal source so that the frequency shift is minimal. Perform this adjustment following maintenance on the A 6 PCB , or when a frequency shift is detected. The adjustment consists of setting a resistor to a predetermined point.

Step 1. Turn A6R80 (Figure 10-17) clockwise for a full rotation .
Step 2. Turn A6R80 counterclockwise $1 / 8$ of a rotation.

10-21 alcloop ADJUSTMENTS

This paragraph describes the ALC (automatic level control) loop adjustments. It also provides instructions for adjusting the ALC. Perform the ALC loop adjustment procedures following the repair or replacement of any ALC loop components.

ALC Loop Bandwidth

Adjust the ALC loop bandwidth as follows:
Step 1. Set up the test equipment as shown in Figure 10-19.

Figure 10-19. Test Equipment Setup for ALC Loop Confidence Test

Step 2. Remove the top cover.
Step 3. Withdraw the A4 PCB and clip the center conductor lead on the function generator output to the bottom of A4R111 (Figure 1020). Clip the shield lead to A4TP2.

Step 4. Reinstall the A4 PCB and press the POWER switch to ON.

NOTE
Steps 5 through 9 describe how to adjust the function generator for a 10 kHz squarewave at a voltage that causes a 10 dB excursion of the signal source output signal.

Figure 10-20. A4 PCB Component Locations

Step 5. Turn the function generator off.
Step 6. Adjust the oscilloscope vertical controls to position the trace on the bottom graticule line. This is now the reference line for the maximum-output power signal from the signal source.

Step 7. Set the output power 10 dB below the reset output power by typing the below listed HP-85 BASIC code on the controller keyboard. (Substitute the reset output power value for the term X. This value is 10 dBm for 360 SS 47 or +5 dBm for 360SS69.)

10 OUTPUT 705;"LVLXDB" RUN

Step 8. Observe that the oscilloscope trace deflects upward, and note the graticule line that the trace rests on. This graticule line is now the reference for the minimum output power signal.

Step 9. Turn on the function generator and set the function and frequency controls to produce a 10 kHz squarewave.

Step 10. Adjust the amplitude and dc offset controls to position the top of the squarewave on the minimum power reference line. Position the bottom of the squarewave on the maximum-power reference line.

Ose 1 (A4/A6 PCBs) Loop

Het Band (A4IA6 PCBs) Loop

Osc 2 (A7
PCB) Loop

Adjust the A4/A6 PCB ALC loop bandwidth as follows:

Step 1. Recall frequency program (page 10-52) and enter 5 GHz on controller keyboard.

Step 2. Adjust the oscilloscope vertical and horizontal controls to display a square wave similar to that shown in Figure 10-21.

Step 3. Adjust A4R123 (Figure 10-20) and A6R33 (Figure 10-17) for a squarewave with minimum overshoot.

Adjust the A4/A6 PCB heterodyne ALC loop bandwidth as follows:

Step 1. Enter 1 GHz on controller keyboard.
Step 2. Adjust the vertical and horizontal oscilloscope controls to display a squarewave similar to that shown in Figure 10-21.

Step 3. Adjust A4R124 (Figure 10-20) and A6R66 (Figure 10-17) for a square wave with minimum overshoot. (Recheck the adjustment at 5 GHz .

Adjust the A7 PCB ALC loop bandwidth as follows:
Step 1. Enter 10 GHz on controller keyboard.
Step 2. Adjust A7R33 (Figure 10-18) for the best square wave response (least distortion).

Figure 10-21. ALC Loop Adjustment Square Wave

Ose 3 (A8 Adjust the A8 PCB ALC loop bandwidth as follows: PCB) Loop

Step 1. Enter 15 GHz on controller keyboard.
Step 2. Adjust A8R33 (Figure 10-18) for a square wave with minimum overshoot.

Step 3. If 360 SS 69 , continue to OSC 4 (A9 PCB) Loop. If 360SS47, turn line power off, withdraw the A4 PCB, and disconnect the function generator.

Step 4. Reinstall the A4 PCB and press the POWER switch back to ON.

ALC LOOP
ADJUSTMENTS
PCB) Loop

Low Level Noise

Power Level

Adjust the A9 PCB ALC loop bandwidth as follows:
Step 1. Enter 22 GHz on controller keyboard.
Step 2. Adjust A9R33 (Figure 10-18) for a square wave with minimum overshoot.

Step 3. Turn the line power off, withdraw the A 4 PCB and disconnect the function generator.

Step 4. Reinstall the A4 PCB and press the POWER switch back to ON.

Adjust low-level noise on the A4 PCB, as follows:

NOTE
Perform this adjustment only if A4 PCB has been replaced.

Step 1. Enter 2.1 GHz on controller keyboard.
Step 2. Adjust A4R12 (Figure 10-20) for minimum jitter (amplitude variations), as indicated on the oscilloscope.

Step 3. Enter 7.9 GHz on controller keyboard.
Step 4. Adjust A4R6 for minimum jitter.
Adjust output power as follows:
Step 1. Reset the 360 SS by cycling the line power off and on.

Step 2. Enter 2.1 GHz on controller keyboard.

Step 3. For the 360SS69:
a. Adjust A4R66 (Figure 10-20) for $+5 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$.
b. Set the output power to -5 dBm , type:

10 OUTPUT $705 ; " L V L-5 D M "$
RUN
c. Adjust A4R72 (Figure 10-20) for $-5 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$.

Step 4. For the 360SS47:
a. Adjust A4R66 (Figure 10-20) for $+10 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$.
b. Set the output power to 0 dBm , type:

```
10 OUTPUT 705;"LVL10DM"
RUN
```

c. Adjust A4R72 (Figure 10-20) for $10 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$.

RF Slope
Adjust the slope of the RF output power, as follows:
Step 1. For the 360SS47:
a. Set the frequency to 20 GHz , type:

```
10 OUTPUT 705;"CE120GH"
RUN
```

b. Set the power to 10 dBm , type:

```
10 OUTPUT 705; LVL1ODM"
RUN
```

c. Adjust A4R66 (Figure 10-20) for $+10 \mathrm{dBm} \pm 0.5 \mathrm{~dB}$.
d. Repeat step 1 (a) for 2.1 GHz and verify that the power level is 10 dBm . If not, readjust A4R66 as required.

Step 2. For the 360SS45/SS69:
a. Set the frequency to 40 GHz , type:

```
10 OUTPUT 705;"CF140GH"
``` RUN
b. Set the power to 5 dBm , type:

10 OUTPUT 705; "LVL5OM" RUN
c. Adjust A4R66 (Figure 10-20) for \(+5 \mathrm{dBm} \pm 0.5 \mathrm{~dB}\).
d. Repeat step 2(a) for 2.1 GHz and verify that the power level is 5 dBm . If not, readjust A4R66 as required.

\section*{10-22 \\ POWER SUPPLY ADJUSTMENTS}

This paragraph provides instructions for adjusting the OUT OF REG, HIGH LINE, and LOW LINE motherboard adjustments. They should be made (1) if power supply problems are suspected or (2) after maintenance has been performed on any of the A13/A14 power supply circuits.

\section*{Out-of Regulation}

Adjust the out-of-regulation potentiometer as follows:

Step 1. Adjust A14R89 (Figure 10-23) clockwise to its limit.

Step 2. While observing the A14 OUT OF REG indicator, readjust A14R89 counterclockwise until the indicator goes out. Stop.

Step 3. While counting the number of potentiometer turns, continue to adjust A14R89 counterclockwise until the indicator lights. Stop.

Step 4. Readjust A14R89 clockwise, halfway between the indicator's on and off states.

Low Line Voltage

Adjust the low-line potentiometer as follows:
Step 1. Turn off the 360 SS .
Step 2. Connect the test equipment as shown in Figure 10-22.

Figure 10-22. Test Equipment Setup for Power Supply Adjustments

Step 3. Adjust the variac for 92 Vac (\(20 \%\) below the nominal line voltage), as observed on the line voltage monitor.

Step 4. Turn on the 360SS.
Step 5. Adjust A14R79 (LOW) (Figure 10-23) to its clockwise limit; then readjust counterclockwise until the A14 LOW LINE indicator lights.

Step 6. Readjust the variac for 115 Vac (nominal line voltage), and ensure that the LOW LINE indicator is not lit.

High Line Voltage

Adjust the high-line potentiometer as follows:
Step 1. Connect the test equipment as was shown in Figure 10-22.

Step 2. Adjust the variac for 138 Vac (\(20 \%\) above the nominal line voltage).

Step 3. Adjust Al4R80 (HIGH) (Figure 10-23) to its clockwise limit; then readjust counterclockwise until the HIGH LINE indicator lights.

Step 4. Readjust the variac for 115 Vac (nominal line voltage), and ensure that the HIGH LINE indicator is not lit.

Figure 10-23. A14 Motherboard PCB, Test Po Connector, Indicator, and Adjustment Locations

10-23 remove and REPLACE PROCEDURES

\section*{10-24 removeand REPLACE COVERS}

Procedures for removing and replacing signal source subassemblies listed in Table 1-2 are provide in subsequent paragraphs.

This paragraph provides instructions for removing top, bottom, and side covers. To replace covers, reverse the removal process.

\section*{Procedure Top and Bottom Covers}

Step 1. Turn off ac power and disconnect the input line voltage.

Step 2. On rear panel, loosen screws and remove the feet from the four corners.

Step 3. Slide the top and bottom covers toward the rear and remove.

\section*{Side Covers}

Step 1. Remove top and bottom covers.
Step 2. Grasp rack-slide handle at front, and slide side panels to the rear and remove.

\section*{CAUTION}

All of the referenced PCBs contain static-sensitive components. Refer to Figure 1-2, page \(1-10\), for precautionary instructions. Failure to follow these instructions may result in damage to the PCB.
\(\qquad\)

Figure 10-24. 360SSXX PCB Locations

\section*{10-26 \\ REMOVE AND REPLACE A13 SWITCHING POWER SUPPLY PCB}

\section*{CAUTION}

The referenced PCB contains static-sensitive components. Refer to Figure 1-2, page 1-10, for precautionary instructions. Failure to follow these instructions may result in damage to the PCB.

This paragraph describes how to remove the A13 Switching Power Supply PCB. To replace this PCBs, reverse the removal process.

\section*{NOTE}

Refer to figure 10-24 for PCB location.

\section*{WARNING}

Voltages hazardous to life are present through the A13/A14 Switching Power Supply, even when you have the power turned off and the ac line cord removed. Before performing maintenance on this power supply, observe the following precautions: After turning the ac power off and removing the line cord, allow 5 minutes for the capacitor voltages to decay. Avoid touching the terminals on the line fuse when power is on, +165 Vdc is present.

Preliminary Remove top cover (paragraph 10-24).
Procedure Step 1. Remove ten serews and lockwashers from the top cover of the card-cage assembly, and remove the cover.

Step 2. Lift up on edge tabs and pull PCB straight up and out.

\section*{NOTE}

The A13 PCB power supply switch-ing-frequency is in the RF spectrum (50 kHz). To prevent the radiation, insure that the card-cage cover is securely seated and fastened with all ten screws before reapplying the ac power.

This paragraph describes how to remove and replace a typical YIG oscillator. To replace the oscillator, reverse the removal process.

NOTE
Refer to Figure 10-25 for 360SS47 and Figure 10-26 for 360SS69 components locations.

Preliminary Remove all four covers (paragraph 10-24).
Procedure Step 1. Remove the RF deck cover by removing six screws, lockwashers, and flat washers from inside edge and seven screws and lockwashers from front, back, and outside edges.

Step 2. For \(2-8 \mathrm{GHz}\) oscillator
\(\square\) Remove connector from Match Modulator output. Leave match modulator attached, it is included with replacement oscillator.
\(\square\) Remove connector from P14 on motherboard.
\(\square\) Remove two screws from oscillator bottom and remove oscillator.

Step 3. For \(8 \mathbf{- 1 2 ~ G H z}\) oscillator:
\(\square\) Remove connector from Isolator output. (For 360SS69, remove the cable/filter assy between the Isolator and DPDT PIN switch.)
\(\square\) Remove connector from P13 on motherboard.Remove two screws from oscillator bottom and remove oscillator.

Step 4. For \(12-18 \mathrm{GHz}(360 \mathrm{SS} 69)\) or \(12-20 \mathrm{GHz}\) (360SS47) oscillator:Remove cable from between oscillator output and DPDT PIN switch.
\(\square\) Remove connector from P16 on motherboard.Remove two screws from oscillator bottom and remove oscillator.

Step 5. For 18-26.5 GHz oscillator (360SS69):Remove cable from between oscillator output and multi-port PIN switch.Remove connector from P17 on motherboard.
\(\square\) Remove two screws from oscillator bottom and remove oscillator.

Figure 10-25. 360SS47 RF Deck Component Locations

Figure 10-26. 360 SS 69 RF Deck Component Locations

This paragraph describes how to remove a PIN switch. To replace the PIN switch, reverse the removal process.

NOTE
Refer to figure 10-25 or 10-26 for component location.
Preliminary Remove all four covers (paragraph 10-24).
Procedure Step 1. Remove the RF deck cover by removing six screws, lockwashers, and flat washers from inside edge and seven screws and lockwashers from front, back, and outside edges.

Step 2. For the 360SS47:
\(\square\) Remove five RF cable connectors.Remove connector from P15 on motherboard.
[Remove two mounting screws from the backside of the RF deck.Remove the switch and standoffs.Remove two screws and lockwashers and remove standoffs; save standoffs for use on replacement switch.

Step 3. For 360SS69 multi-port PIN switch:Remove the frequency doubler (paragraph 10-31) to gain access.Remove six cable connectors.
\(\square\) Proceed as described above for 360SS47.
Step 4. For 360 SS 69 DPDT PIN switch:Remove six cable connectors.
[Remove connector from P45 on motherboard.
\(\square\) Remove the switch.

This paragraph describes how to remove the directional coupler. To replace this component, reverse the removal process.

NOTE
Refer to figure 10-25 or 10-26 for component location.
Preliminary Remove all four covers (paragraph 10-24).
Procedure Step 1. Remove the RF deck cover by removing six screws, lockwashers, and flat washers from inside edge and seven screws and lockwashers from front, back, and outside edges.

Step 2. For 360SS47:
\(\square\) Remove black cable connector from DC OUT on coupler and pull black wire away from adjacent pin.
\(\square\) Remove two RF cable connectors from coupler.Remove two screws and remove coupler.
Step 3. For 360SS69:Remove black cable connector from DC OUT on coupler and pull black wire away from adjacent pin.Remove connector from RF IN on couplerRemove two screws; pull directional coupler back to free output connector, then remove.

This paragraph describes how to remove the down converter. To replace this component, reverse the removal process.

\section*{NOTE}

Refer to figure 10-25 or 10-26 for component location.
Preliminary Remove all four covers (paragraph 10-24).

\section*{Procedure Step 1. Remove the RF deck cover by removing six screws, lockwashers, and flat washers from inside edge and seven screws and lockwashers from front, back, and outside edges.}

Step 2. For 360SS47:
\(\square\) Remove two RF cable connectors.Remove connector from P12 on motherboard.Remove two mounting screws from the underside of the RF deck.Remove the down converter.
Step 3. For 360SS69:Remove DPDT PIN switch (paragraph 10-28) to gain access.
\(\square\) Remove two RF cable connectors.Remove connector from P12 on motherboard.Remove two mounting screws from the underside of the RF deck.Remove the down converter.

\title{
10-31 \\ REMOVE AND REPLACE THE FREQUENCY DOUBLER
}

This paragraph describes how to remove the frequency doubler on the 360SS69. To replace this component, reverse the removal process.

\section*{NOTE}

Refer to Figure 10-26 for component location.
Preliminary Remove all four covers (paragraph 10-24).
Procedure Step 1. Remove the RF deck cover by removing six screws, lockwashers, and flat washers from inside edge and seven screws and lockwashers from front, back, and outside edges.

Step 2. Remove two RF cable connectors.
Step 3. Remove two screws, and remove the frequency doubler.

\section*{Appendix A \\ Model 363XA Test Set Operation}

\section*{Table of Contents}
A- 1 INTRODUCTION A-3
A-2 POWER LEVEL CONSIDERATIONS A-3
A-3 360B SYSTEM CONFIGURATIONS USING 363XA TEST SETS A-4
A-4 OPERATION A- 8

\section*{Appendix A \\ Model 363XA Test Set Operation}

POWER LEVEL CONSIDERATIONS

The 363XA Frequency Converter Test Sets are user configurable and can be used to address a wide variety of applications that include: frequency conversion devices (mixers), antenna and radar cross section, and high power S-parameters. This appendix describes these applications and provides operating instructions for a variety of test applications.

Power level inputs to the 363 XA should be less than -10 dBm at all inputs to avoid compression in the output signals. The reference signal selected for phase lock should be between -10 and -25 dBm . A convenient signal for the reference is available at the source lock output connector.

Examples of the use of the 363XA in the 360 Vector Network Analyzer system are discussed in the following paragraphs.

Antenna Test A simple antenna test setup for short distance measurements to 40 GHz is shown in Figure A-1. The source is placed at the transmit antenna and the test set at receive antenna. The 360 VNA unit can be remote up to 30 feet from the test set, allowing the source and test set to be placed in the chamber with the antennas.

Figure A-1. Short Distance Antenna Test Range

Figure A-2. S-Parameter Measurement of a High Power Device
\(S_{11}\) and \(S_{21}\) Measurement of High Power Device

Using the 3630A/3631A Attenuator Switch Drivers

A device-under-test (DUT) that requires high input power can be tested as shown in Figure A-2. Here signal \(R_{A}\) is not fed from the source lock output, but rather from the output of the amplifier. Care must be taken not to exceed the maximum linear operation input level. During calibration, RF input to the amplifier is attenuated so that the maximum input level into \(T_{A}\) is not exceeded when Opens and Shorts from the calibration standards are connected.

The 3630A and 3631A Frequency Converter Test Sets contain three connectors on the rear panel (Figure A-3) that are confiqured to drive two step attenuators and a transfer switch. Using these connectors and WILTRON components, it is possible to configure a 3630 A or 3631 A for many different applications. Figure A-4 (next page) shows a 3630A configured for full reversing S-Parameter measurement.

Figure A-3. \(363 \times 4\) Test Set Rear Panel

The attenuator drive voltages are consistant with many of the available microwave switches. This makes the 3630A useful for applications requiring external signal switching (Figure A-5). Table A-1 provides pin confiquration for the attenuator drive connectors.

Table A-1. Attenuator Drive Connector Pin Configuration
\begin{tabular}{|c|c|c|}
\hline Pin & Attenuation Control & Extemal Switch Control \\
\hline 1 & - & - \\
\hline 2 & 10 dB IN & \begin{tabular}{l}
SWITCH 1 , \\
POSITION 2 (ON)
\end{tabular} \\
\hline 3 & \[
\begin{aligned}
& 40 \mathrm{~dB} \\
& \text { OUT }
\end{aligned}
\] & SWITCH 3 , POSITION 1 (OFF) \\
\hline 4 & - & - \\
\hline 5 & 20 dBIN & SWITCH 2 , POSITION 2 (ON) \\
\hline 6 & +24 Vdc & \(+24 \mathrm{Vdc}\) \\
\hline 7 & - & - \\
\hline 8 & - & - \\
\hline 9 & 40 dB IN & \begin{tabular}{l}
SWITCH 3 \\
POSITION 2 (ON)
\end{tabular} \\
\hline 10 & - & - \\
\hline 11 & \[
\begin{aligned}
& 20 \mathrm{~dB} \\
& \text { OUT }
\end{aligned}
\] & SWITCH 2. POSITION 1 (OFF) \\
\hline 12 & - & - \\
\hline 13 & \[
10 \mathrm{~dB}
\]
OUT & \begin{tabular}{l}
SWITCH 1 , \\
POSITION 1 (OFF)
\end{tabular} \\
\hline 14 & - & - \\
\hline
\end{tabular}

The switches are controlled by the attenuator control in the Reduced Test Signals menu. When the appropriate attenuation is selected, the corresponding pin of the connector is grounded. It is possible to place any of the three switches in either position by specifying the appropriate attenuator setting. Specifying 10 dB would set switch 1 to on, 20 dB would set switch 2 to on, 30 dB would set switches 1 and 2 to on, etc.

Note that the Port 2 Test Attenuator control is only 0 to 40 dB . This means, when driving external switches, it is impossible to turn all 3 switches on at the same time through that connector.

Fiqure A-6 shows how the Port 2 Source Attenuator connector could be connected to control three HP33311 switches. Note the switching method and control voltage are both compatible, meaning no interface circuitry is needed.

With the 3630A and 3631A external switch control connectors, it is possible to configure a number of automated measurements without requiring manual switch control.

Figure A-4. 36X3A Configured to Measure Full Reversing S-Parameters

Figure A-5. Switched Transmit Antennas

Figure A-6. Port 2 Source Attenuator Connector Controlling Three HP33311 Switches

\section*{APPENDIX A \\ 363XA OPERATION}

\section*{A-4 \\ OPERATION}

Table A-2. S-Parameter Definitions
\begin{tabular}{c|c|c|l}
\hline \begin{tabular}{c}
S \\
Param.
\end{tabular} & \begin{tabular}{c}
Multi- \\
Port \\
Ratio
\end{tabular} & \begin{tabular}{l}
Meas. \\
Chan \\
Ratio
\end{tabular} & Meas. Def. \\
\hline\(S_{11}\) & \(\frac{\mathrm{~b} 1}{\mathrm{a} 1}\) & \(\frac{T_{A}}{\mathrm{RA}}\) & \begin{tabular}{l}
Fonward \\
Reflection
\end{tabular} \\
\hline\(S_{11}\) & \(\frac{\mathrm{~b} 1}{\mathrm{a} 2}\) & \(\frac{\mathrm{TA}_{\mathrm{A}}}{\mathrm{RB}}\) & \begin{tabular}{l}
Reverse \\
Transmission
\end{tabular} \\
\hline \(\mathrm{S}_{11}\) & \(\frac{\mathrm{~b} 2}{\mathrm{a} 1}\) & \(\frac{\mathrm{~TB}}{\mathrm{RA}}\) & \begin{tabular}{l}
Fonward \\
Transmission
\end{tabular} \\
\hline S 11 & \(\frac{\mathrm{~b} 2}{\mathrm{a} 2}\) & \(\frac{\mathrm{~TB}}{\mathrm{RB}}\) & \begin{tabular}{l}
Reverse \\
Reflection
\end{tabular} \\
\hline
\end{tabular}

The 363XA Frequency Converter Test set is operated under VNA program control during measurements. This section provides information on setting up the VNA to present measurement data provided by the test set.

Preoper. ational Setup, Discussion

When a fully reversing test set is used with the 360 B VNA system, the system ratios the relative magnitude and phase of the S-parameter values for the DUT. These S-parameters are equivalent to the "Multi-Port Ratios" given in Table A-2.

Within fully reversing test sets, signal separation and down conversion of the incident, reflected, and transmitted signals at PORT 1 and PORT 2 result in four IF signals. They are defined as:
- RA (Reference, Channel A) - this signal contains information about the stimulus signal in the forward direction (incident signal) from PORT 1 to the DUT.
- TA (Test, Channel A) - in the forward measurement mode, this signal contains information about the reflected signal from the DUT back to PORT 1. In the reverse measurement mode, this signal contains information about the transmitted signal from the DUT to PORT 1.
- \(\mathrm{R}_{\mathrm{B}}\) (Reference, Channel B)- this signal contains information about the stimulus signal in the reverse direction (incident signal) from PORT 2 to the DUT.
- \(\mathrm{T}_{\mathrm{B}}\) (Test, Channel B)- in the forward measurement mode, this signal contains information about the transmitted signal from the DUT to PORT 2. In the reverse measurement mode, this signal contains information about the reflected signal form the DUT back to PORT 2.

The IF signal ratios that are equivalent to the "SParam." and "Multi-Port Ratios" are listed in Table A-2 in the column headed "Meas. Chan. Ratio."

However, the front-panel nomemclature for the test signals applied to it is consistent with the nomenclature of the IF signal channels of a reversing test set \(\left(R_{A}, T_{A}, R_{B}, T_{B}\right)\).

The 360 B VNA system can measure the ratio of any two of the test signals applied to the 363XA test set. The ratio need not be an S-parameter. Either RA or \(\mathrm{R}_{\mathrm{B}}\) can be selected as the reference signal.

The operator must define the ratio he wants to measure by choosing among items presented on a series of menus shown on the VNA display screen. The nomenclature used in these menus is consistent with front panel nomenclature of the 363XA test set. For purposes of setting-up the VNA for making a measurement using the 363 XA test set, the following is true:
- a1 is comparable to \(\mathrm{RA}_{\mathrm{A}}\)
- a2 is comparable to RB
- b1 is comparable to TA
- b2 is comparable to TB
\begin{tabular}{lr}
\hline APPENDIXA \\
OPERATION & 363XA OPERATION
\end{tabular}

Step 2. Select the parameter to be redefined by moving the cursor next to the parameter and pressing ENTER.

Step 3. Select the REDEFINE SELECTED PARAMETER menu option and press ENTER. This brings the menu PD1.
\begin{tabular}{|l|}
\hline MENU PDI \\
\hline PARAMETER \\
DEFINITION \\
SII/USER 2 \\
PARAMETER \\
b1 / a1 \\
PHASE LOCK \\
a1 \\
LABEL: \\
"MY S11" \\
CHANGE \\
NUMERATOR \\
CHANGE \\
DENOMINATOR \\
CHANGE \\
PHASE LOCK \\
CHANGE \\
LABEL \\
PRESS <ENTER> \\
TO SELECT \\
OR SWICH \\
\hline
\end{tabular}

Step 4. With the cursor next to the selected parameter at the top of the menu press ENTER, to toggle to USER 2.

Note the following:
[] The definition of the parameter to be measured is shown as a ratio of terms of measurement characteristic of a multiport device (a1, a2, b1, b2) under PARAMETER
- The selected phase lock reference is shown under PHASE LOCK.
\(\square\) The name assigned the measurement parameter is shown under LABEL.

Each of the above can be changed to suit the conditions of the measurement.

\section*{APPENDIX A \\ OPERATION}
\begin{tabular}{|c|}
\hline MENU PD2 \\
\hline SELECT \\
NUMERATOR \\
b1 \\
b2 \\
a1 \\
A2 \\
Measured \\
Parameter \\
Definition
\end{tabular}

The definition of the measured parameter can be changed by changing the numerator, the denominator, or both. Change the numerator as follows:

Step 1. Move the cursor to PARAMETER then press ENTER.

Step 2. Select CHANGE NUMERATOR and press ENTER. This brings menu PD2 (left) to the screen.

Step 3. Choose the numerator of the parameter by selecting b1, b2, a1, a2, or 1 (UNITY) as appropriate for the measurement. Note that the nomenclature of the signals applied to the 363XA test set in the following way:
\(\square \mathrm{b} 1\) is the signal applied at \(\mathrm{T}_{\mathrm{A}}\)
- b 2 is the signal applied at \(\mathrm{T}_{\mathrm{B}}\)
- a1 is the signal applied at Ras SOURCE LOCK INPUT
- a2 is the signal applied at RBISOURCE LOCK INPUT

The denominator of the definition of the measured parameter can be changed. Select CHANGE DENOMINATOR in menu SP (page A-11). This calls-up menu PD3 (left). Then, using the method given in Step 3, choose the denominator appropriate for the testing requirements.
\begin{tabular}{|c|}
\hline MENU PD4 \\
\hline SELECT \\
PHASE LOCK \\
REFERENCE \\
a1 \\
a2 \\
PRESS \&ENTER \(>\) \\
TO SELECT \\
\hline
\end{tabular}

Change
Phase Lock

\section*{Change Label}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ MENU GP5 } \\
\hline SELECT NAME \\
MY S11 \\
ABCDEFGHIIKLM \\
NOPQRSTUVWXYZ \\
O123456789-/\# \\
TURN KNOB \\
TO INDCATE \\
CHARACTER OR \\
FUNCTION \\
PRESS <ENTER> \\
TO SELECT \\
NUMBERS MAY \\
ALSO BE \\
SELECTED \\
USNG KEYPAD \\
\hline
\end{tabular}

The phase lock reference for a measurement can be selected as al or a 2 ; these correspond to the RA/SOURCE LOCK INPUT and the RB/SOURCE LOCK INPUT respectively.

Change the phase lock reference as follows:
Step 1. With menu SP displayed (page A-11), move the cursor to PHASE LOCK then press ENTER. This brings menu PD4 to the screen.

Step 2. Select a1 or a2 as appropriate for the testing requirements.

The redefined parameter can be given a suitable name or label. This will appear on the screen you use to name the measured parameter.

Create a label for the redefined parameter as follows:
Step 1. With menu SP displayed (page A-11), move the cursor to CHANGE LABEL then press ENTER. This brings menu GP5 to the screen.

Step 2. Create a name for the measurement parameter by selecting a series of up to five alphanumeric characters from among those provided on this menu. Use the control knob to move the cursor to the first alphanumeric to be used in the intended name. Press ENTER to select character and note that it appears in the first blank space below SELECT NAME at the top of the menu.

Step 3. Repeat step 2 and choose up to five characters. If an error is made, select DEL to delete character or select CLEAR to clear name.

Step 4. When the name is complete, select DONE.
Applications for the 363XA test set such as mixer measurement systems using external mixers require control of two sources and receiver. This is accomplished using the Dual Source Control option which is covered in the Model 360B Vector Network Analyzer System Operator Manual.

\title{
Appendix B 360ACM Auxiliary Control Module Maintenance Information
}

\section*{Table of Contents}
B-1 INTRODUCTION B-3
B-2 REPLACEABLE SUBASSEMBLIES B-3
B-3 INSTALLATION B-4
B-4 FUNCTIONAL OVERVIEW B-6
B-5 PREVENTIVE MAINTENANCE B-6
B-6 TROUBLESHOOTING PROCEDURES B-8
B-7 SPECIFICATIONS B-10

\section*{Appendix B 360ACM Auxiliary Control Module Maintenance Information}

\section*{B-1 introduction}
\(\begin{array}{ll}\text { B-2 } & \begin{array}{l}\text { REPLACEABLE } \\ \\ \\ \text { sUBASSEMBLIES }\end{array}\end{array}\)

The 360 ACM Auxiliary Control Module (360ACM or, ACM) is a system auxiliary unit that supplies +5 V (or -5 V), \(+6 \mathrm{~V},+8 \mathrm{~V}\) and +15 V (or -15 V) power supply voltages to the 3635B Test Set.

WILTRON maintains a module exchange program for selected signal source modules. If a malfunction occurs in one of these modules, it can be exchanged. Upon request and typically within 24 hours, WILTRON or a Wiltron/Anritsu Service Center will ship an exchange module. The customer has 30 days in which to return the defective item. All exchange parts are warranted for 90 days from the date of shipment or for the balance of the original-part warranty-whichever is longer. A listing of exchangeable subassemblies is provided in Chapter 1, Table 1-2.

B-3 installation
To install the 360ACM into the system, proceed as follows:

\section*{CAUTION}

If the 360ACM Line Module Assembly is incorrect for the line voltage used, operation may result in damage to the 360 ACM .

Step 1. Verify that the 360ACM Line Module Assembly (rear panel) is set for the correct line voltage (Figure B-1).

Step 2. Prepare the system console to position the 360ACM in the desired location. The preferred location is at the bottom of the system console.

Step 3. Fasten the 360ACM into the location prepared in step 2 above with the mounting hardware provided.

Step 4. Connect the auxiliary dc power cable from the rear panel of the ACM to the rear panel POWER DIST SUPPLY connector of the 3635B Test Set.

Step 5. Connect the power cable to the ACM Line Module Assembly and to the system console power strip.

To change the line voltage from that shown on the Line Voltage Module selector drum, proceed as follows:

Step 1. Remove the power cord from the line voltage module.
Step 2. Insert the blade of a small screwdriver into the slot at the top-center of the module, and pry open the cover.

Step 3. Remove the voltage selector drum by pulling straight out.
Step 4. Rotate the drum so that the desired line voltage marking faces out, then reinstall the drum.

Step 5. Remove the fuse cartridge from the right-hand fuseholder. The fuse cartridge is identified with a white arrow and is located beneath the voltage selector drum.

Step 6. Check that the proper fuse is installed (see table).
Step 7. Change to the correct fuse, if necessary, and replace the fuse cartridge.

Step 8. Close the cover, and ensure that the desired line voltage value is displayed through the opening in the cover.

Step 9. Reinstall the line cord.

Figure B-1. Setting the Line Voltage

\section*{B-4 functional overview}

Figures B-2 thru B-4 show the location and the interconnection of the major assemblies that comprise the 360ACM. The major assemblies are:
- 12V Power Supply Assembly,
- 15V Power Supply Assembly,
- A100 Auxiliary Control Module PCB Assembly,
- Line Module Assembly,
- Power Transformer,
- Duplex Outlet Assembly,
- Rear Panel Connector/Cable Assemblies.

The A100 Auxiliary Control Module PCB Assembly contains power-on logic relays (K1 and K2), voltage regulators (VR1 - VR4), a 12 V time delay circuit (Q1, Q2), and fuses for the power supply assemblies (F1F4). This assembly routes primary power from the Line Module Assembly to the 12 V and 15 V power supply assemblies via relay K 1 and fuses F1-F4.

Transistors Q1 and Q2 comprise a time delay circuit that delays the output of the 12 V power supply assembly approximately one-half second at turn-on. The output of Q1 is applied to the inputs of voltage regulators VR1 and VR2.

Voltage regulators VR1 and VR2 output 6 V and 8 V , respectively. Voltage Regulator VR4 converts the output of the 15 V power supply assembly to 5 V . All of these voltages are routed via connector J 8 to the rear panel 15 pin " D " connector, which is the main interface to the 360 VNA test set.

Voltage Regulator VR3 converts the output of the 12 V power supply as* sembly to 5 V ; this second 5 V power source is used to light the front panel POWER indicator LED. It is also routed to the rear panel BNO connector (via connector J7) and is the RP BNC SIG voltage fed to the 3642A Noise Figure Module (used only with 360NF20A Noise Figure Systems). This voltage is used by the 3642A for amplifier biasing.

There are no 360 ACM components that require preventive maintenance.

Figure B-2. 360 ACM Rear Panel

Figure B-3. Parts Locations
troubleshooting PROCEDURES

Table B-1. Test Point Voltages
\begin{tabular}{c|l|l}
\hline \begin{tabular}{c}
Test \\
Point
\end{tabular} & \begin{tabular}{c}
Measured \\
Voltage (Vdc)
\end{tabular} & \begin{tabular}{c}
Reference \\
Point
\end{tabular} \\
\hline TP2 & \(6.0 \pm 0.2\) & TP 1 \\
\hline TP3 & \(8.0 \pm 0.2\) & TP 1 \\
\hline TP4 & \(5.0 \pm 0.2\) & TP 1 \\
\hline TP5 & \(5.0 \pm 0.2\) & TP 1 \\
\hline TP6 & \(15.0 \pm 0.3\) & TP 1 \\
\hline TP8 & \(11.5 \pm 0.3\) & TP 1 \\
\hline
\end{tabular}
* Measure voltages with a voltmeter having ungrounded, floating inputs.

Field troubleshooting and repair is limited to replacement of defective power supply modules and replacement of voltage regulators and fuses located on the A100 auxiliary control module PCB assembly. All major 360 ACM assemblies (including the entire A100 Auxiliary Control Module PCB assembly) may also be replaced, as required.

To troubleshoot, proceed as follows:
Step 1. Remove power from the system.
Step 2. Unfasten screws securing 360ACM front panel to system console and slide unit out of system console.

Step 3. Remove the screws securing the top cover and remove cover.
Step 4. Remove the four screws securing the A100 auxiliary control module PCB protective cover and remove cover.

\section*{WARNING}

Voltages hazardous to life are exposed when operating the 360ACM with the A100 auxiliary control module PCB protective cover removed. Use extreme caution when operating in this manner.

Step 5. Apply power to the system in normal manner. Measure the voltages listed in Table B-1. Note that the voltage at TP6 is the output voltage of the 15 V power supply assembly and that TP8 is the output voltage of the 12 V power supply assembly (after time-delay circuit).

Step 6. If there are no dc voltages present at the test points, careful\(l y\) determine if line voltage is present between fuses F1 and F2 and between F3 and F4 of the A100 PCB. If line voltage is not present, disconnect power cord and check the Line Module Assembly fuse (Figure B-4).

\section*{WARNING}

Line voltages hazardous to life are normally present on these fuses. Voltages up to 240 Vac may be present.

Step 7. If Line Module Assembly fuse is OK, re-apply line voltage to the 360 ACM and carefully measure the dc voltage across the coil of relay K 1 (measure across CR1). This voltage is supplied by the test set and should measure \(5 \mathrm{~V} \pm 0.3 \mathrm{Vdc}\). If voltage is \(\mathrm{OK}, \mathrm{Kl}\) is defective.

Figure B-4. Interconnection Diagram

\section*{APPENDIX B \\ SPECIFICATIONS 360ACM MAINTENANCE}

Step 8. If line voltage is present, check that fuses F1-F4 are not open (that is, no voltage drop across each fuse). If the fuses are OK and there is no de output (or incorrect output) from either power supply assembly, replace the suspected assembly.

If there are dc voltages present at the test points, but they are the wrong value, determine which voltage regulator or power supply module output(s) are at fault. Before replacing a suspected voltage regulator, determine that excessive current is not being drawn by the test set (i.e, overheating cables, shorted cables, overheating test set components, etc).

If the +5 V is OK at TP4, but the front panel POWER LED is not lit, check for defective cable connection at \(\mathrm{A} 100(\mathrm{J9})\), or defective cable, or defective LED.

\section*{B-7 SPECIFICATIONS}

Specifications for the 360 ACM are stated below.
\begin{tabular}{ll}
Power- & W/O 360 PSG or \(360 \mathrm{YTC}:\) \\
Requirements & \(100 / 120 / 220 / 240 \mathrm{~V}, 60 / 50 \mathrm{~Hz}, 190 \mathrm{VA}\) max
\end{tabular}

With 360 PSG or 360 YTC :
\(100 / 120 / 220 / 240 \mathrm{~V}, 60 / 50 \mathrm{~Hz}, 540\) VA \(\max\)
Dimensions: \(133 H \times 432 \mathrm{~W} \times 603 \mathrm{D} \mathrm{mm}\)
\((5.25 \mathrm{H} \times 17 \mathrm{~W} \times 23.75 \mathrm{D} \mathrm{in}\).)
Weight (W/O Approx 10.9 kg (24 lb.) 360PSG or 360YTC):

\section*{Subject Index}
\[
0-9
\]

2 GHz Bandswitch Compensation Adjustment Model 360SSXX, 10-59
2-8 GHz Tracking Filter Adjustments Model 360SSXX, 10-58
360B Test Fixture (T1512), 1-11
360B VNA Assembly Locations, 5-6
360B VNA System Block Diagram, 5-7
360B VNA System Configuration Using 363XA, A-4
360B VNA System Interconnections, 2-5

\section*{A}

A1 LO 1 Phase Lock PCB Circuit Description Model 360 VNA, 5-8
A10 PS/IF PCB Circuit Description Model 360 VNA, \(5-28\)
A10 PCB Circuit Description
Model 360SSXX, 10-28
All I/O Processor PCB Circuit Description Model 360 VNA, \(5-30\)
A11T Microcircuit Circuit Description Model 3635B/364XB, 9-18
A12 Main 2 Processor PCB Circuit Description Model 360 VNA, \(5-32\)
A12T Assembly Circuit Description
Model 361XA/362XA, 7-32
Model 3630A/3631A, 8-21
A13 Main 1 Processor PCB Circuit Description Model 360 VNA, 5-34
A13T Assembly Circuit Description Model 361XA/362XA, 7-33
A14 Power Supply Control PCB Circuit Description Model 360 VNA, \(5-36\)
A14T/A15T Assembly Circuit Description Model 361XA/362XA, 7-34
A15 Power Supply Converter PCB Circuit Description, Model 360 VNA, 5-38
A16 Test Set I/O PCB Circuit Description Model 360 VNA, \(5-40\)
A16T Assembly Circuit Description Model 3630A/3631A, 8-22
A16T Microcircuit Circuit Description Model 3635B/364XB, 9-18

A17 System Motherboard PCB Circuit Description, Model 360 VNA, 5-40
A17T Assembly Circuit Description Model 361XA/362XA, 7-35
Model 3630A/3631A, 8-22
A18 Power Supply Motherboard PCB Circuit Description, Model 360 VNA, 5-42
A18T/A19T Assembly Circuit Description Model 361XA/362XA, 7-35
A19 Front Panel PCB Circuit Description Model 360 VNA, \(5-44\)
A1T, A2T, A3T PCB Circuit Description Model 361XA/362XA, 7-15
Model 3630A/3631A, 8-9
Model 3635B/364XB, 9-9
A2 LO 2 Phase Lock PCB Circuit Description Model 360 VNA, \(5-10\)
A20 Front Panel Control PCB Circuit Description Model 360 VNA, 5-46
A20T Microcircuit Circuit Description Model 3635B/364XB, 9-18
A20T/A21T/A22T Assembly Circuit Description Model 361XA/362XA, 7-36
A21T Assembly Circuit Description Model 3630A/3631A, 8-22
A21T Microcircuit Circuit Description Model 3635B/364XB, 9-18
A22T Microcircuit Circuit Description Model 3635B/364XB, 9-18
A23T PCB Circuit Description
Model 361XA/362XA, 7-26
Model 3630A/3631A, 8-18
Model 3635B/364XB, 9-16
A24T Assembly Circuit Description
Model 361XA/362XA, 7-27
Model 3630A/3631A, 8-19
Model 3635B/364XB, 9-17
A25T Assembly Circuit Description
Model 361XA/362XA, 7-36
Model 3630A/3631A, 8-22
A27T PCB Circuit Description Model 361XA/362XA, 7-28
A28T/A29T Assembly Circuit Description
Model 361XA/362XA, 7-37
A3 CAL/3rd LO PCB Circuit Description

Model 360 VNA, \(5-12\)
A30T/A31T Assembly Circuit Description Model 361XA/362XA, 7-38
A4 AD Converter PCB Circuit Description Model 360 VNA, 5-14
A4 PCB Circuit Description
Model 360SSXX, 10-20
A4T LO2 PCB Circuit Description
Model 361XA/362XA, 7-18
A4T PCB Circuit Description
Model 3630A/3631A, 8-12
Model 3635B/364XB, 9-12
A5 10 MHz Reference PCB Circuit Description
Model 360 VNA, 5-18
A5 PCB Circuit Description
Model 360SSXX, 10-22
A5 PCB Frequency Adjustments
Model 360SSXX, 10-46
A5T LO1 PCB Circuit Description
Model 361XA/362XA, 7-20
A5T PCB and A4T PCB Adjustments
Models 361XA/362XA, 3-28
A5T PCB Circuit Description
Model 3630A/3631A, 8-14
Model 3635B/364XB, 9-14
A6 Source Lock PCB Circuit Description Model 360 VNA, 5-20
A6-A9 PCB Circuit Description Model 360sSXX, 10-26
A6-A9 YIG Oscillator Adjustments Model 360SSXX, 10-48
A6T PCB Circuit Description
Madel 361XA/362XA, 7-22
Model 3630A/3631A, 8-16
A7 Sync Det "A" PCB Circuit Description Model 360 VNA, \(5-22\)
A7T PCB Circuit Description
Model 361XA/362XA, 7-24
A8 Sync Det "B" PCB Circuit Description Model 360 VNA, 5-24
A8T/A10T Assembly Circuit Description
Model 361XA/362XA, 7-30
Model 3630A/3631A, 8-20
Model 3635B/364XB, 9-18
A9 Sync Det "R" PCB Circuit Description
Model 360 VNA, \(5-26\)
A9T Microcircuit Circuit Description
Model 3635B/364XB, 9-18
Adjustment Procedures
Model 360SSXX, 10-44

Adjustments
2 GHz Bandswitch Compensation
(Signal Source), 10-59
2-8 GHz Tracking Filter (Signal Source), 10-58
A5 Frequency (Signal Source), 10-46
A6-A9 YIG Oscillator (Signal Source), 10-48
ALC Loop (Signal Source), 10-60
Frequency (Signal Source), 10-53
Models 361XA/362XA, 3-27
Models 3630A/3631A, 3-49
Power Supply (Signal Source), 10-66
YIG Bias Check (Signal Source), 10-52
ALC Loop Adjustments
Model 360SSXX, 10-60
Antenna Tests (Model 363XA), A-4
Assembly Locations
Model 3610A/3611A and 3620A/3621A, 7-4
Model 3612A/13A and 3622A/23A, 7-5
Model 3630A/3631A, 8-8
Model 3635B/364XB, \(9-8\)

\section*{B}

Bias Tee Problems, 4-42
Block Diagram
Model 360SS47, 10-17
Model 360SS69, 10-18
Model 3610A/3611A and 3620A/3621A, 7-11
Model 3612A/3622A, 7-12
Model 3630A/3631A, 8-7
Model 3635B/364XB, 9-7

\section*{C}

Centronics Interface, 2-6
Circuit Description
A10 FM/Attenuator PCB (360SSXX), 10-28
A11T Power Splitter Microcircuit, 9-18
A12T Power Amplifier Assembly, 7-32, 8-21
A13T Transfer Switch Assembly, 7-33
A14T/A15T Coupler/Connector Assembly, 7-34
A16T Power Divider Assembly, 7-34, 8-22
A16T Power Splitter Microcircuit, 9-18
A17T Control Output Mounting Bracket
Assembly, 8.22
A17T Reference Delay Mounting Bracket
Assembly, 7-35
A18T/A19T Bias Tees Assembly, 7-35
A1T, A2T, A3T Channel Amplifier PCB, 7-15, 8-9, 9-9

A20T Power Amplifier Microcircuit, 9-18
A20T/A21T/A22T Step Attenuator Assembly, 7-36 A21T 0-70 dB Step Attenuator Assembly, 8-22
A21T Port 1 LO Power Amplifier Microcircuit, 9-18 A22T Port 2 LO Power Amplifier Microcircuit, 9-18 A23T Motherboard PCB, 7-26, 8-18, 9-16
A24T Source Lock/LRL Assembly, 7-27
A24T Source Lock/Reference Select Assembly, 8-19, 9-17
A25T RF Splitter Assembly, 7-36, 8-22
A27T Amplifier/Switch Driver PCB, 7-28
A.28T/A29T SPDT/Splitter Switch Assemblies, 7-37
A30T/A31T Tripler Assembly, 7-38
A4 ALC PCB (360SSXX), 10-20
A4T LO2 PCB, 7-18, 8-12, 9-12
A5 Frequency Instruction \(\mathrm{PCB}(360 \mathrm{SSXX}), 10-22\)
A5T LO 1 PCB, 7-20
A5T LO 1 PCB, 8-14
A5T Power Distribution PCB, 9-14
A6-A9 YIG Driver PCB (360SSXX), 10-26
A6T Digital Interface PCB, 7-22, 8-16
A7T Attenuator Driver PCB, 7-24
A8T/A10 Buffer/Amplifier Assemblies, 7-30
A8T/A10T Buffer/Amplifier Assemblies, 8-20, 9-18
A9T Transfer Switch Microcircuit, 9-18
Switching Power Supply (360SSXX), 10-30
Compression Level Test
Models 3630A3631A, 3-41
Confidence Test
Model 360SSXX, 10-36

\section*{D}

Description
RF Deck Modules (360SSXX), 10-35

\section*{E}

Effective Directivity Test
Models 361XA/362XA, 3-18
Effective Source Match Test
Models 361XA/362XA, 3-23
Error
Bias Tee Problems, 4-42
Monitor Problems, 4-41
Step Attenuator Problems, 4-43
Error Message
009, 4-9
010 or \(170,4-10\)

011, 4-11
013.014 , or \(020 ; 4-12\)

015,016 , or \(044 ; 4-13\)
022, 4-14
028, 4-15
\(031,100,103,114,115,131,132\), or \(134 ; 4-16\)
060, 4-18
061, 062, 063, or 064; 4-19
\(065,066,067\), or \(069 ; 4-20\)
\(069,070,071\), or \(072 ; 4.21\)
101 or \(102,4-22\)
105, 4-23
110, 4-25
112, 4-27
171, 4-28
301 -B-DE, 4-31
301 -BCDE, \(4-30\)
301 -DEDDEF, 4-33
\(301-\mathrm{DE}(3635 \mathrm{~B} / 3640), 4-45\)
301 -DE (3635B/3641), 4-44
301 -CDE, 4-32
301 ABCDE, 4-29
303, 4-39
400, 4-40
Error Messages, 4-3

\section*{F}

Forward Reflection (S11), 2-4
Forward Transmission (S21), 2-4
Frequency Adjustments
Model 360SSXX, 10-53
Full-Band Performance Test
Models 3630A/3631A, 3-34
Functional Description
Models 361XA/362XA Test Sets, 7-15, 7-18, 7-20, 7-22, 7-24, 7-26-7-28, 7-30, 7-32-7-38
Model 3610A/11A/13A and 3620A/21A/23A
Test Sets, 7-7
Model 3612A and 3622A Test Sets, 7-13
Model 3630A/3631A, 8-4
Model 3635B/364XB, 9-3
Functional Overview
360ACM, B-6

\section*{G}

GPIB, 2-6, 5-4
Graphics Control Processor, 5-5

\section*{H}

High Level Noise Test
Models 3635B/364X Modules, 3-57
High Level Noises Test
Models 361XA/362XA, 3-11
Human Interface Processor (Main \#2), 5-5
\[
I
\]

עO Processor, 5-5
Identification Number, 1-3
Installation (360ACM), B-4
Installation and Operation, 8-3
Interconnection Diagram 360ACM, B-9
Introduction, 1-3, 2-3, 3-3, 4-3, 5-3, 6-3, 7-3, 8-3, \(9-3,10-3, \mathrm{~A}-3, \mathrm{~B}-3\)

\section*{M}

Magnitude Tracking Test Models 3630A/3631A, 3-47
Malfunctions Not Displaying Error Messages, 4-3
Microwave Measurement Chart, 3-22
mm-Wave Modules Description
Model 3635B/364XB, 9-5
mm-Wave VNA System Configuration, 9-3
Model 360ACM
Functional Overview, B-6
Interconnection Diagram, B-9
Preventive Maintenance, B-6
Specifications, B-10
Troubleshooting Procedures, B-8
Model 360SS47
Block Diagram, 10-17
Model 360SS69
Block Diagram, 10-18
Model 360SSXX
2 GHz Bandswitch Compensation Adjustment, 10-59
2-8 GHz Tracking Filter Adjustments, \(10-58\)
A10 PCB Circuit Description, 10-28
A4 PCB Circuit Description, 10-20
A5 PCB Circuit Description, 10-22
A5 PCB Frequency Adjustments, \(10-46\)
A6-A9 PCB Circuit Description, 10-26
A6-A9 YIG Oscillator Adjustments, \(10-48\)
Adjustment Procedures, 10-44
ALC Loop Adjustments, 10-60

Confidence Test, \(10-36\)
Frequency Adjustments, 10-53
GPIB Setup and Interconnection, 10-19
Overall Circuit Description, 10-14
Overall Frequency Generation, 10-24
Power Supply Adjustments, 10-66
Recommended Test Equipment (Adjustments), 10-45
Recommended Test Equipment (Confidence Test), 10-36
Remove and Replace A1, A4, A5, and A10 PCBs, 10-72
Remove and Replace A13 PCB, 10-73.
Remove and Replace Covers, 10-71
Remove and Replace Directional Coupler, 10-79
Remove and Replace Down Converter, 10-80
Remove and Replace Frequency Doubler, 10-81
Remove and Replace PIN Switch, \(10-78\)
Remove and Replace YIG Oscillator, 10-74
RF Deck Module Descriptions, 10-35
Switching Power Supply Circuit Description, 10-30
Testing the ALC Loop, 10-38
Testing the FM Phase-Lock Circuit, 10-42
Testing the Frequency Generation Subsystem, 10-40
Troubleshooting, 10-5
YIG Bias Check, 10-52
Model 3610A/11A and 3620A/21A Test Sets
Functional Description, 7-7
Assembly Locations, 7-4
Block Diagram, 7-11
Model 3612A/13A and 3622A/23A Test Sets
Functional Description, 7-13
Model 3612A/13A and 3622A/23A Test Sets
Assembly Locations, 7-5
Block Diagram, 7-12
Model 361XA/362XA
A1T, A2T, A3T PCB Circuit Description, 7-15
A4T PCB Circuit Description, 7-18
A5T PCB Circuit Description, 7-20
A6T PCB Circuit Description, 7-22
A7T PCB Circuit Description, 7-24
A8T/A10T Assembly Circuit Description, 7-30
A12T Assembly Circuit Description, 7-32
A13T Assembly Circuit Description, 7-33-7-34
A14T/A15T Assembly Circuit Description, 7-34
A17T Assembly Circuit Description, 7-35
A18T/A19T Assembly Circuit Description, 7-35
A20T/A21T/A22T Assembly Circuit Description, 7.36

A23T PCB Circuit Description, 7-26
A24T Assembly Circuit Description, 7-27
A25T Assembly Circuit Description, 7-36
A27T PCB Circuit Description, 7-28
A28T/A29T Assembly Circuit Description, 7-37
A30TVA31T Assembly Circuit Description, 7-38
Overall Functional Description, 7-3
Test Port Converters, 7-6
Model 3630A/3631A
A1T, A2T, A3T PCB Circuit Description, 8-9
A4 PCB Circuit Description, 8-12
A5T PCB Circuit Description, 8-14
A6T PCB Circuit Description, 8-16
A8T/A10T Assembly Circuit Description, 8-20
A12T Assembly Circuit Description, 8-21
A16T Assembly Circuit Description, 8-22
A17T Assembly Circuit Description, 8-22
A21T Assembly Circuit Description, 8-22
A23T PCB Circuit Description, 8-18
A24T Assembly Circuit Description, 8-19
A25T Assembly Circuit Description, 8-22
Assembly Locations, 8-8
Block Diagram, 8-7
Functional Description, 8-4
Installation and Operation, 8-3
Model 3635B/364XB
A1T, A2T, A3T PCB Circuit Description, 9-9
A4T PCB Circuit Description, 9-12
A5T PCB Circuit Description, 9-14
A8T/A10T Assembly Circuit Description, 9-18
A9T Microcircuit Circuit Description, 9-18
A11T Microcircuit Circuit Description, 9-18
A16T Microcircuit Circuit Deseription, 9-18
A20T Microcircuit Circuit Description, 9-18
A21T Microcircuit Circuit Description, 9-18
A22T Microcircuit Circuit Description, 9-18
A23T PCB Circuit Description, 9-16
A24T Assembly Circuit Description, 9-17
Assembly Locations, 9-8
Block Diagram, 9-7
Functional Description, 9-3
mm-Wave Modules Description, 9-5
Model 363XA
Antenna Test, A-4
Operation, A-8
\(\mathrm{S}_{11}\) and \(\mathrm{S}_{21}\) Measurement of High Power
Devices, A-5
Using the 363XA Antenna Switch Drivers, A-5
Module Exchange Program, 1-5
Monitor Problems, 4-41

\section*{\(N\)}

Noise Floor/Receiver Dynamic Range Test
Models 3630A/3631A, 3-44
Non-Ratioed Power Level Test
Models 3635B/364X Modules, 3-53

\section*{\(O\)}

Operation (363XA), A-8
Overall Circuit Description
Model 360SSXX, 10-14
Test Set (General), 6-4
Overall Frequency Generation Model 360SSXX, 10-24
Overall Functional Description Model 361XA/362XA, 7-3

\section*{\(P\)}

Performance Tests
Models 361XA/362XA, 3-5
Models 3630A/3631A, 3-33
Models 3635B/364X Modules, 3-51
Performance Tests and Adjustments, 3-3
Power Level Considerations, A-3
Power Supply Adjustments
Model 360SSXX, 10-66
Preventive Maintenance 360ACM, B-6

\section*{R}

Recommended Test Equipment, 1-11
Recommended Test Equipment (Adjustments) Model 360SSXX, 10-45
Recommended Test Equipment (Confidence Test) Model 360SSXX, 10-36
Related Manuals, 1-3
Remove and Replace
A1T thru A5T PCBs (Test Set), 6-10
A5T PCB (3635B), 6-11
A6T PCB (Test Set), 6-12
A7T or A27T PCB (Test Set), 6-12
A8T or A10T Buffer/Amplifier (Test Set), 6-18
A11T Power Splitter (3635B), 6-28
A12T Power Amplifier (Test Set), 6-19
A14T/A15T Coupler Connectors (Test Set), 6-23
A16T Power Divider (Test Set), 6-21
A17T Interface Assy (Test Set), 6-20

A20T RF Input Amplifier (3635B), 6-25 A20T thru A22T Attn and A18T/A19T Bias Tees (Test Set), 6-14
A21T Port 1 LO Amplifier (3635B), 6-27
A22T Port 2 LO Amplifier (3635B), 6-26
A24T Source Lock/LRL Assembly (Test Set), 6-22
A25T RF Splitter (Test Set), 6-17
A30T and A31T Triplers (Test Set), 6-15
Color Display VGA Assembly (VNA), 5-52
Compensation Cable Assy (3610A), 6-13
Covers (Test Set), 6-9
Covers (VNA), \(5-49\)
Front Panel and Disk Drive (VNA), 5-51
PCBs (VNA), \(5-50\)
Transfer Switch (A13T or A9T), 6-16
Remove and Replace A1, A4, A5, and A10 PCBs
Model 360SSXX, 10-72
Remove and Replace A13 PCB
Model 360SSXX, 10-73
Remove and Replace Covers
Model 360SSXX, 10-71
Remove and Replace Directional Coupler Model 360SSXX, 10-79
Remove and Replace Down Converter Model 360SSXX, 10-80
Remove and Replace Frequency Doubler Model 360SSXX, 10-81
Remove and Replace PIN Switch Model 360SSXX, 10-78
Remove and Replace Procedures
A1, A4, A5, and A10 PCBs (Signal Source), \(10-72\)
A13 Switching Power Supply PCB
(Signal Source), 10-73
Covers (Signal Source), 10-71
Directional Coupler (Signal Source), 10-79
Down Converter (Signal Source), 10-80
Frequency Doubler (Signal Source), 10-81
PIN Switch (Signal Source), 10-78
Test Set, 6-9
YIG Oscillator (Signal Source), 10-74
Remove and Replace YIG Oscillator
Model 360SSXX, 10-74
Replaceable Subassemblies, 5-3, 6-3, 10-3, B-3
Reverse Reflection (S22), 2-4
Reverse Transmission (S12), 2-4
RF Deck Module Descriptions
Model 360SSXX, 10-35

\section*{\(S\)}

S-parameter, 5-4
S-parameters, 2-4
S11 and S12 Measurement of High Power Devices, A-5
Sampler Efficiency Test
Models 361XA/362XA, 3-6
Scattering Parameters, 2-4
Scope of Manual, 1-3
Service Information, 1-5
Set Source Power Level Models 3630A/3631A, 3-38
Signal Source
Description, 2-4
Model 360SS47, 2-4
Model 360SS69, 2-4
Series 66XXB, 2-4
Series \(67 \mathrm{XXB}, 24\)
Source Match Specification Models 361XA/362XA, 3-26
Source Match/Directivity Models 3635B/364X Modules, 3-64
Specifications
\(360 \mathrm{ACM}, \mathrm{B}-10\)
Static Handling, 1-9
Static Handling Procedures, 1-10
Step Attenuator Problems, 4-43
Switching Power Supply Circuit Description Model 360SSXX, 10-30
System Components, \(2-4\)
System Description, 2-4
System Dynamic Range Test Models 361XA/362XA, 3-14 Models 3635B/364X Modules, 3-61
System Operation, 2-7

\section*{\(T\)}

T1512 360B Test Fixture, 1-11
Test Equipment, 1-11, 3-3, 4-3
Test Fixture (T1512), 1-11
Test Port Converters
Model 361XA/362XA, 7-6
Test Set
Description, 2-6
Types, 2-6
Test Set (General)
Overall Circuit Description, 6-4
Test Set Signal Descriptions, 6-7

Test Set Signal Descriptions
Test Set (General), 6-7
Testing the ALC Loop
Model 360SSXX, 10-38
Testing the FM Phase-Lock Circuit
Model 360SSXX, 10-42
Testing the Frequency Generation Subsystem
Model 360SSXX, 10-40
Troubleshooting
Model 360SSXX, 10-5
Troubleshooting Procedures
\(360 \mathrm{ACM}, \mathrm{B}-8\)
Troubleshooting Tables, 4-3

\section*{U}

Using the Antenna Switch Drivers (363XA), A-5

\section*{\(V\)}

\section*{Vector Processor (Main \#1), 5-5}

VNA
A1 PCB Circuit Description, 5-8
A2 PCB Circuit Description, 5-10
A3 PCB Circuit Description, 5-12
A4 PCB Circuit Description, 5-14
A5 PCB Circuit Description, 5-18
A6 PCB Circuit Description, 5-20
A7 PCB Circuit Description, 5-22
A8 PCB Circuit Description, 5-24
A9 PCB Circuit Description, 5-26

A10 PCB Circuit Description, 5-28
A11 PCB Circuit Description, 5-30
A12 PCB Circuit Description, 5-32
A13 PCB Circuit Description, 5-34
A14 PCB Circuit Description, 5-36
A15 PCB Circuit Description, 5-38
A16 PCB Circuit Description, 5-40
A17 PCB Circuit Description, 5-40
A18 PCB Circuit Description, 5-42
A19 PCB Circuit Description, 5-44
A20 PCB Circuit Description, 5-46
Assembly Locations, 5-6
Description, 2-6, 5-4
Graphics Control Processor, 5-5
Human Interface Processor (Main \#2), 5-5
I/O Processor, 5-5
Remove and Replace Color Display VGA
Assembly, 5-52
Remove and Replace Covers, 5-49
Remove and Replace Front Panel and
Disk Drive, 5-51
Remove and Replace PCBs, \(5-50\)
System Block diagram, 5-7
Vector Processor (Main \#1), 5-5
VNA System Block Diagram, 2-9
\[
\boldsymbol{Y}
\]

YIG Bias Check
Model 360SSXX, 10-52```

[^0]: LIEEARITY
 401 Yct
 LOI 0 at
 \rightarrow - 2 cc

 50035
 EXT 1HPUT
 FityER
 *)

 $\underset{1}{\text { Man }} 1$

[^1]: * The A30T/A31T Tripler Assemblies used in the $3612 \mathrm{~A} / 3622 \mathrm{~A}$ and $3613 \mathrm{~A} / 3623 \mathrm{~A} / 3615 \mathrm{~A} / 3625 \mathrm{~A}$ test sets are functionally alike, but differ in upper frequency range (60 GHz to 50 or 65 GHz). Refer to the description for the A30T/A31T Tripler Assemblies on page 7-38.

[^2]: - A2T Reference Channel IF Amplifier - R_{A} or R_{B}
 - A3T Channel AIF Amplifier - T_{A} or R_{A}
 - VNA Source Lock - R_{A} for forward measurements, R_{B} for reverse measurements

[^3]: * Test Set Models 3613A and 3623A only

[^4]: * Test Set Models 3613A and 3623A only
 ** Test Set Models 3615A and 3625A

