TRANSMITTING CONVERTER
MODEL 2-150

TABLE OF CONTENTS

TRAMSIITTITG CONVERTRR
IODBI 2-150

Application

E $B \mathrm{~F}$ Blectronics, pioneer in the field of transmitting con. verters for the amateur VHF frequencies, has taken advantage of their experience in presenting this ner Model 2-150 two meter transmitting converter. Developed primarily for the single sideband VHF enthusiast, it is essentially a linear mixing device follored by a linear RF amplifier. This unit permits the amateur to utilize his existing 20 meter station equipment as a signal source for the 2 meter VHF band. The features of his existing 20 meter equipment are then available on the 2 meter band. For example, if his exciter is SSB, voice controlled, and VFO Uith . 5NC coverage, then he may operate 2 meters with SSB, voice control, VFO and . 5 MC coverage with similar stability. The owner of existing 20 meter Arr equipment with VPO or crystal will be able to operate the 2 meter band, Ari, VFO, or crystal controlled.

This concept prevents costly duplication of equipment; for many desirable features on two meters are included in many modern new and used SSB, AM, Pr, FIT, RTTY, DSB, or CIT 20 meter exciters.

A signal from the high stability oscillator circuit may be used to provide the injection for a receiving converter, thus preventing duplication of circuitry and correct correlation be.. treen transmitter and receiver calibration.

Description

The Iodel $2-150$ consists of a high stability oscillator and tripler circuit, employing a 6IA8, which will operate on any frequency from 130 NC to 133.5 FC . This rill permit the operator to select any secment of the 2 meter band in which he wants to operate. The wit is normally supplied with a crystal on 130 or 131 NC which, rith most exciters, will permit operation within the 144 NC to 144.5 or 145 MC to 145.5 MC band segment.

The 130 KC sichal is available at a jack on the rear of the chassis marked 0sc. output. This permits the same oscillator signal to be used for a receiving converter.

The 130 ro signal is then link coupled to the push~pull grids of the 6360 balanced mixer sta. ${ }^{\circ} \mathrm{C}$. By adjusting the injection and grid bias of this stace, compensation is made for small variations in exciter output levels.

The external fi section pad is used to attenuate the signal from the popular 100 matt class exciters while maintaining the exciter load impedance of 50 ohms. Exciters with outputs from 5 watts to 25 ratts may drive the unit at an impedance of 50 ohms When connected directly to the RF IIT connector. The 3 DB pad
can be used to correct for large differences in porier levels or may be used in conjunction rith Ai operation as described later in the operating instructions.
io tuning of the 20 meter input signal is required in the transmitting converter. This exclusive passive screen single ended injection circuit thus leads itself to more simplicity of operation, as well as superior performance with respect to mixing product attenvation.

Following the 6360 mixer is a second 6360 used as a Class A buffer amplifier. Reduced mutval coupling between the buffer input and output circuits has been accomplished by shielding and iso= lation. The buffer plate circuit is overcoupled to the 7854 erid circuit permittine further simplicity of operation. The final amplifier operates in class $A B$, rith reasonable efficiency wo to 60%. The quiet operating tube cooling fan delivers up to 200 cu . Ft./ min. of air flor in the area of the amplifier tube envelope and the pushepull plate tank circuits. This air circulation also leeps the cabinet temperature to a lov value increasing component life. The hish level RF amplifier circuit is completely shielded vithin the cabinet.

The $R F$ output passes through a hamonic filter to the antenna comector on the rear of the chassis. The RF output is sampled, detected, and filtered for relative RF output readings used in tune up.

Ifetering of the PA grid current, PA plate current and relative RF output is provided. The meter scale is calibrated accordingly.

The conservatively rated built-in power supply provides all voltages for operation of the transmitting converter. It features separate high voltace, low voltage, and bias rectifiers. Each source is separately filtered. The PA screen voltage is regulated as well as the oscillator voltare. The mixer and Pa bias voltages are variable. A terminal strip, normally shorted, on the rear of the chassis provides a IA plate current cut off bias then these teminals are open. These should be connected to a normally open relay contact on the exciter voice control relay if an electronic TR suitch is used to suitch the antenna from the receiver to the tramsmitter. This is necessary as the noise generated by the elec.. tron flow through the 7854 under the static current conditions of 50 in can be heard in the recejver.

The simple operating controls are:

```
1. Imming (iA plate circuit)
2. Loading (Iinls reactance)
3. Seter S:itch (PA Srid, PA plate, Rel. Output)
4. Pover 0T and OFR sT:itch
```


SPECIFICATIOITS

Imput Frequency: 14 to 14.5 itc
Input Impedance: 50 to 70 ohms
Input Power: 5 to 100 watts
Output Frequency: 144 to 148 MC , dependent on crystal selected and injection frequency.
Plate Power input to final amplifier: SSB - 175 watts PEP CV - 165 vatts Linear Am. - 90 watts
Output Impedance: 50 to 70 ohms
AC Requirements: 117 Volts AC 50/60 cycles
Dimensions: $15^{\prime \prime}$ wide, $9^{\prime \prime}$ high, $11 \frac{1}{2}{ }^{\prime \prime}$ deep
Shipping Veight: 45 Ibs.

1. Remove the unit from the packing carton and inspect the unit for evidence of any physical damage. If inspection reveals damage in shipment, retain the carton and notify the shipper immediately. $P \stackrel{\circ}{\circ} \mathrm{H}$ Plectronics certifies that the unit has been inspected and tested before leaving the factory. P i H Rlectronics is not responisble for damage due to shipping, careless handling, or failure to operate the unit in accordance with the instructions contained in this manual. A one year tarranty on all parts except tubes is provided. All tubes are warranted for 90 days. Any alteration of this unit will invalidate the warranty.
2. Refer to the interconnection diagrams on page 8 for your installation, and make proper connections.
3. With power OFF on the transmitting converter, tune up the exciter on twenty meters. With exciters of the 100 watt class, use the external pad provided between the exciter and the transmitting converter input. 刃xciters of the 20 watt or less class are comected directly to the input of the model 2-150.
4. Apply power to the model 2-150 and set meter switch to PA Plate position. Allov 3 minutes to warm up, and adjust PA bias control on rear deck so that the PA static plate current is 50 IIA.

FOR SSB OPBRATION
5. a. Gradually insert a carrier or single tone signal and observe PA plate current.
b. Do not exceed 100 NA plate current at this time.
c. Resonate the PA plate circuit with the tuning control.
d. Switch meter to relative output and adjust tuning and loading controls for maximum output.
e. Increase the carrier injection and again adjust the tming and loading controls.
6. Continue this process until the PA Plate Current is 220 IIA and the relative output is a maximum. At this time there should be no indication of frid current flow with the meter stritched to the grid current position. Grid current flow is an indication of insufficient loading or a miss-match to the antenna.
7. Another indication of proper loading can be observed by checling the V tubes when the excitation is applied. They should not be extinguished then 220 IA plate current is reached.
8. In the event that the exciter reaches saturation before the model 2-150 is loaded to the 220 MA level, proceed as follors:

> Page \#4
a. Adjust the excitation to produce a maximum available loaded 7854 plate current. Switch exciter off.
b. Place meter switch to PA grid position.
c. Sritch erriter $O \mathbb{N}$ and adjust mixer bias control on rear deck until the 7854 just draws grid current. Then back off to the point where no grid current is seen. Sritch excíter ORF.
d. Flace meter srfitch in plate current position and apply excitation. Tune and load as in steps 5 and 6 for 220 NA plate current. If necessary, then rewadjust mixer bias for 0 grid current at 220 in plate current.
S. The object of the tuning and loading procedure is to obtain a. maximum relative output reading when the PA plate current is 220 itA and the 7854 is not drarring grid current. This should be accomplished by rapid but careful adjustments in short excitation periods. In addition, PA excitation adjustment is made so that the exciter just reaches saturation at the 0 grid current 220 ifA plate current level. Use the mixer bias controls and/or the 3 db pad switch to help accomplish this. This is necessary to talre advantage of the maximum carrier and sideband suppression capabilities of the exciter.
10. The mit is now ready to operate on SSD. It will be found that With inost antema installations the only retuning required to chance frequency from one end of the .5 MC band segment to the other will be those on the exciter itself. It would be desirable, if a ride excursion is made, to check the plate tuning for maximum relative output. Thile operating, a check can be made of grid current. On voice pealss a slight indication of grid current may be noted. Talk the unit up to about 120 IIA plate current in actual operation.

TOR CU, FI-, PH, FSK OPRRATION
11. Tuine and load the unit as described above but load for maximum output at 220 irA plate current.

POR IITTAR AI OFGRATIOIT USING AIE BKCITER
12. Load exciter into transmitting converter input as described in steps 1 throuch 4.
13. Adjust mixer bias with 3 db pad in the 'out' position so that the loaded resonant PA plate current is 200-210 WA vith Ali exciter carrier only.
14. Suitch 3 db pad in; plate current should drop to 100-110 IIA. If the current is higher than this value, the 7854 is probably not loaded sufficiently. Repeat step 13 by increasing loading and resonating the plate tuning.
15. With tho 3 db pad in, modulate the exciter. The plate current of the $2-150$ vill remain constant if the exciter is not overmodulated. Horrever, a slicht fluctuation is nomal.
16. Tune and load unit as previously described for SSB exciters in steps 5 and 6.
17. Reduce carrier so that PA plate current is 100-110 MA and modulate the exciter. The plate current will remain constant. However, a slight fluctuation is iormal.

Alignment Instructions

The model 2-150 is completely rired and tested when it leaves the factory. The normal oscillator frequency supplied with the unit is either 130 IC or 131 MC . When mixed with a 14 to 14.5 MC signal the 130 NC will produce an output on 144 to 144.5 rC. When mixed with a 14. to 14.5 WC signal, the 131 will produce an output on 145 to 145.5 MC . For other segment coverage, consult the frequency and coverage chart on page 8.

The alignment procedure for other frequencies is essentially the same as for 130 NO alignment; therefore the alignment instructions herein cover the steps for the standard units normally supplied.

WARNING:
Bxercise extreme care when handing unit when cabinet is reinoved. Lethal High Voltage is used in this unit.

1. Remove transmitting converter from cabinet by removing 2 each \#10.32 screvs at the rear of the cabinet.
2. Make interconnections as described in the operating instructions and adjust PA bias to obtain a static current reading of 50 MA plate current.
3. Loosely couple a grid dip meter or bther indicating device operating as a wave meter at 130 MC to $\mathrm{I}-2, \mathrm{I}-3$ and adjust $\mathrm{I}-1$ and C-14 for naximum output starting with the slug of I_{1} all the way out and working into the coil. Then turn slug $\frac{1}{4}$ turn counter clockriise or until a slight drop in output is noticed.
4. Adjust C-14 for maximum output as seen on the wave meter.
5. Apply a small amount of excitation from the 14.250 Kc exciter and resonate plate circuit of 8117, if an indication of plate current rise is apparent on the plate meter.
6. Set vave meter to 144 FC, and loosely couple to I-4. Adjust C-17 for maximum output. Reduce excitation from 20 meter exciter if necessary to keep PA plate current below 100 MA .
7. Ioosely couple wavemeter (still set to 144 NC) to I-6. Adjust C-27 and C-25 for maximum output.
8. Remove wave meter from circuit.
9. Re-touch $C-14, C-17, C-25$, and $C-27$ for peak output as indicated on the plate current meter of the 2-150
10. Remove 20 meter excitation from 2-150.
11. Re-install unit in cabinet and refer to operating instructions before operation.

CRYSTAI FRPQUEITCY ATD COVERAGE CHART

When used with exciters covering 14.0 to 14.5 FC.

CRYSTAL FRTQ.

$$
\begin{gathered}
\because 43.333 \mathrm{ICC}(130 \mathrm{IIC}) \\
43.5 \mathrm{ICC}(130.5 \mathrm{IIC}) \\
\because 43.666 \mathrm{IC}(131 \mathrm{IC}) \\
43.833 \mathrm{IC}(131.5 \mathrm{IC}) \\
44 \\
44.166 \mathrm{ICC}(132 \mathrm{IIC}) \\
44.333 \mathrm{ICC}(133.5 \mathrm{IIC}) \\
44.5 \mathrm{ICC}(133.5 \mathrm{INC})
\end{gathered}
$$

COVPRAGE

144 to 144.5 IIC 144.5 to 145 MC 145 to 145.5 IIC
145.5 to 146 ICC

146 to 146.5 IIC
146.5 to 147 FC

147 to 147.5 MC
147.5 to 148 IIC

* Units normally supplied with one of these crystals.

Exciters rith more than 500 KC coverage of the 20 meter band will provide similarly greater coverage on the 2 meter band.

Page No 9

1. Wvyovi !noxv7 3s nd

Part ino.
T-I
$\mathrm{CH}-1$
CH-2
RFC-1
RPC. 2
$\mathrm{PRC-3}$
RFC. 4
RFC-5
I-1
I-2
L-3
工-4
I-5
L-6
I-7
I-8
I-9, 10
R-1,2
R-3,5
R-4
R-6,10
R-7
$R-8,22,32$
R-9
$\mathrm{R}-11$
R-12
R-13
R-14,15,16
R-17
R-18,19
R-20
$R-21,27,28,31,35$
R-23,30
R-24
R-25
R-26
R-29
in-33
R-34
$\mathrm{R}-36$
R-37,39 *
R-38
21-40
R-41
R-42

Description
BE8968 Power Transformer
306303 Low Voltage Filter Choke
BE8931 High Voltage Filter Choke
22 Micro Fenry RF Choke
l Micro Henry RF Choke
3.3 Micro Henry RF Choke

Z-144 RF Choke
2.2 Micro Henry RF Choke

Oscillator Coil
Tripler Plate Coil
Mixer Grid Coil
Mixer Plate Coil
Buffer Plate Coil
PA Grid Coil
PA Plate Coil
PA Output Link Coil
Harmonic Filter Coil
loK 10 watt resistor
5K 10 watt resistor
560 ohm 2 watt resistor
$33 \mathrm{~K} \frac{1}{2}$ watt resistor
$12 \mathrm{~K} \frac{1}{2}$ watt resistor
$22 \mathrm{~K} \frac{1}{2}$ watt resistor
25K Pot.
5.6 K 2 watt resistor

1K Pot.
2.7K 2 watt resistor
look 2 watt resistor
16.5 K 30 watt resistor

270 ohm $\frac{1}{2}$ watt resistor
look $\frac{1}{2}$ watt resistor
1K $\frac{1}{2}$ watt resistor
lo ohm 1 watt resistor
70 ohm 16 watt N.I..-(8-560-ohm 2 watt)
330 ohm 2 watt resistor
1K 2 watt resistor
47K 1 watt resistor
68 ohm 2 watt resistor
4.7K $\frac{1}{2}$ watt resistor

- Meter Shunt

180 ohm $\frac{1}{2}$ watt resistor
47 ohm $\frac{1}{2}$ vatt resistor
600 ohm 10 watt resistor
100 ohm 20 watt IT.I. (10-IK-2 watt)
70 ohm 80 watt IT.I. (40-2700 ohm-2 watt)

```
#AKPS IIST 00% 1-150
```

```
Nort ITO.
3-1,2,10,20,41
2-3,6
0-4,7,8,9
O.0
-11,42
C-2
0-13,15,16,29,53,43,44,45,62
0-14,32
0-17
c-18,24,61
0-19,23,26,26,30,32,32,40,46,%
            43,45,50,51,52,53,54,55,50
            51,53,59
C-21,22
0-25
0-2?
0-3.
0-35,36,37,30
X-1
S-1
3-2
8-3
M-1
PNOI
I-1
T-1
2-1
0^-1
OR-2
|-1
-2
v-3,4,6
V-5
4-7
-3
T-
Seccrintion
.005M DHsc Ceramic Condeamer
BMPD:50 %olt Oommenver
40 MIDD 450 volt Condersen
2% MED 450 Volt Condermor
800 Mm Iica Condenscr un-13
51 mat=Ceramic jondenser
OH DLse Cemamic Condensex
1.5 to 5 Mh Vaviable Condenser
2.2 to 8 NGT Variable Condonser
.001 TM Ceramic peed Thru Condenser
Yu0 Ceramio Mued Nmu Comdenster
Lo \r, Cemamic Condenser
8,mar miable condensu-
1.5 to 7 MMFVarisdle cundunmen
30 MMF armale Condenser
6 MHF Ceramic Condenser
Gqucal 43.33 to 4.4.5 inO
S上SN Evitch
l wle 2 Position Switch
Z wolo 3 Position Swteh
Levc%
TuDe cooLing Pan
W200 Light hasembly
G Sma Wase
TGMamal Strip
Qilicon Rectilier
weten Recoifiex
5xyen Low Voltage Rectifier
5#4aT INich Voltage Nectifion
OAz Voltage Regulator
6328 Oscillator Triplo:
6 3 0 0 ~ H a l a n c e ~ N i z e c
600 nufler Amplifien
7654 10N6. AmplimLe%
```


If complete re-alignment is done in the field, L-1A should be adjusted for maximum signal measured at L2-L3 as covered in step \#3 of the alignment in-

* structions. L-1A is located next to C-14. This adjustment is very broad and will not need to be peaked when crystals are changed.

