

The Viking Thunderbolt is a self contained radio frequency power amplifier capable of CW and AM, SSB or DSB linear operation over a continuous frequency range of 3.5 to 30 megacycles. The amplifier employs two Type $4-400 \mathrm{~A}$ tetrode tubes in parallel, bridge neutralized, which permits power inputs of 2000 watts P.E.P. Iinear with suppressed carrier, 800 watts AM linear, and 1000 watts class C continuous wave. Drive requirements are approximately 10 watts from a well regulated exciter for class AB_{2} linear (SSB and AM) operation and 20 watts for class C (CW) operation, TVI suppression, spurious filtering, rigorous shie?aing, and parasitic oscillation suppression are included in the amplifier design.

The complete Thunderbolt amplifier including high voltage, regulated screen and regulated bias power supplies is contained in a cabinet $21^{\prime \prime}$ wide $\times 115 / 8^{\prime \prime}$ high x $167 / 8^{\prime \prime}$ deep. The total weight is 120 pounds.

CAUMION Operation of this equipment involves high voltages which are dangerous to Iife and the operator should observe proper safety precautions at all times. Always remove the power plug when the amplifier is out of the cabinet. Make a habit of using a grounding hook with an insulated handle which can be hooked on to the rectifier tube caps whenever working inside the amplifier.

B. INSTALLATION

1. Observe all packages for damage due to mishanding or abuse during shipment.
2. Open all packages and inspect contents for hidden damage or missing parts. Remove amplifier from cabinet.
3. Report all claims for transportation damage immediately to the carrier and not to the E. F. Johnson Company.
4. Report any missing parts to the distributor.
5. Power Transformer Installation
a. In wired units, the transformer was tested in the amplifier, removed, and shipped in a separate container to avoid shipping damage. All wired amplifiers are shipped wired for operation from a 3 wire, single phase 230 to 250 volt $50 / 60$ cycle power source with a grounded neutral. It is preferable to operate this equipment from this type power source. If it is necessary to operate from a two wire, single phase 115 volt $50 / 60$ cycle source, the amplifier may be converted from the 230 VAC circuit as described in section $B 5 c$.

The three wire cable connecting the Thunderbolt to the 230 VAC power should be Underwriter Laboratory approved with current rating of 15 amperes. The grounded neutral. wire of the cable must be connected to the power plug PIOl so that it contacts the wide contact of JlOl. The two other wires of the cable should each connect to a narrow contact in JlOl, as follows:
neutral wire, wide contact

b. Disconnect the leads from the 8 mfd 2000 roit nominal W.V. filter capacitor and remove it from the unft. Install the power transformer in the rear left corner on the top of the chassis so the four mounting studs fit into the hoies provided and the five ieads feed through the $1 / 8^{\prime \prime}$ diameter hoie near the back of the ressiftor board as shown in Figure A. Secure the transformer to the chassis with a $1 / 4^{* \prime}$ jockwasher and a $1 / 4$ 20 hex nut on each stud. Maise the foliowing connections:

1. Connect the red lead with yellow tracer wo the serew terminal on the capacitor boand CH9 (Figure ().
2. Connect the black wire with green tracer to terminal 1 of TSl (Figures 1 aná7.
3. Conrect the white wire to tenmain e of msi.
4. Connect the black wire to taminain 3 of risi.
5. Connect the black wiye with red wacer to temmael 4 of TSl.
c. Conversion to two wire iis VAc operation is accompiishea by making the following changes:
6. Disconnect the biack wite with white tracer from terminal I of TSI (lead from FHCor), remove solder terminal, and solder to terminal 2 of FHIO. Fuses FICl and F.o2 are now conected in parainel to cariy the larger current.
7. Remove the jumper wire (whita wire with black tracer) from terminal 2 of TSl and copnect this enä to temninal 1 of mgi. Remwe the white-bleck-browa * 20 wire from terminel 2 of $T 51$ ened connect it to torminolS of TS 1 .
8. Make two jumper wires iike the one used ebove. Connect one jumper wire between terminale 2 and 4 of asi. Conuect the other jumper wire between terminal 1 of 131 and the screw tembreal at the end of TSI.
9. Connect the two narrow contacts of the power pilug Plol together with a short length of NC. 16 tinned wire (Be sure the power cord is completely isconnected trom the power source). The 115 volt power source has one lead at ground potential and the other lead 115 volts above ground and this poierity must be observed whea connecting the power cord to FlOl: Comnect the 115 volt power lead which is above ground to the two narrow eontacts. Connect the grounded 115 volt power lead to the wide contact of F1OL.
d. Install the 8 mfd filiem eapscitor and reconiect the two leads.

Cacefily instali ail vacum twes in the appropriate acckets as shown in Figures A and F.

Plawe the PIATE SWTHEH et OFF, the FTLAMENT SWIPOH at ON, and aliow the tubes to heat at jeast 30 mimutes before the initial application of high voltage on the bives. Wiss thlament on time wil permit the marcury in the 866A tubes, which may have splattered upon the filaments during shigment, to evaporate.

Sukseguent operation of the Thunderbolit will require oniy l minute of filement heating time before application of high voltage. This period is sufficient to allow the bias suply to reach full volizge and the thabe filaments to reach the proper temperature.
7. Plate Suppressor Installation

After the wireri un:t had been completely testea, the plate suppressoris ard plate connectors (inciuding mounting hardwawe) ware removed fo\% shipment, utilizing separate packaging. The piate suppressors (tir ard E2) shoule be mounted on the neutrslizing capacitor (cc) using the $6-32 \times 1 / 4$ "binding head screw and \#o lockwasher (Figure A and F). The shorter suppressor goes to VI (4.40 OA :n the socket on the right side, vitwed from the front) and the longer suppressor goes to Y 2 ($4-400 \mathrm{~A}$ on the left side). Flace the plate corneciors on the tube caps ana adjust, the suppressor assemblies so that the plate cornectors co not apose whete etress on the tube caps. Careftuly tighten the set screwe
 capecitos.
8. Neatariataon

The wireci amplifiers are shipped from the factory neutralizel and need not be reneutiaiszer.

Neucral:zation is adjusted with the amplifier operatirg in tre (W mode with 20 ma . of gria current and a 450 ma . plate current loatirg on I4 megacyeles (soe bectich D. fow tuming and loading procedure). fit proper newradization,
 soname aithough a sidght rise of 2 ma. or jeas of gria cument is permaseble on one stoe or tank resorames. If the grid eurrent inereases on the righ Prequency side of tank resmance, increase the newtraitring capanty by turing
 the lowtr sime of tank resonance, decrease the neutralization oapaity. Proper
 imately 13 twons fron the minimum cepscity stop postenon.
9. Ground Connections

Both the Viking nmunderbolt, and the exciter chassis shouid be bonded together by a heavy copper wire or strap. The same type wire or strap should be used to connect the chassis to an earth ground. The length of the ground wtre shouid be ae short as possible avoiding iengths which ave a quarter wavelength long on any of tre operating frequencies. If the ground leat must be iong, 允t is tesirsible to make ith iength a $1 / 2$ or fuid wave long on the oparating frequeicise. In some instablations, it may be adrisable to instajl mose than one grount whe.
Note Be we the forr awret tie rode and ac sorews (with Lonkashers)
attachaty the crbinet are tightered secureng.
B. 10. Exciter and Thunderbolt Intercomectiono
a. Pacemaker - Thunderboit Interconnection

Make up intercomecting cabies for interconnection of the exciter and Thunderiolt amplifier as shown in the sketches below. Avoid excessive lengthe of coaxial trensmession jines.

3
Pacemaker

Plo2
Thuncerbolt

Bias Switeting Oontrol Circuit Shicleaea Genje three \#ze or iearger ctraneed wires.

To Recesver
The output of the Pacemaker requires no external swamping for CW, SSB and AM linear operation. Proper loading fom linear operation is provided by the 350 ohm grid loading resistor, Ry, when the Thunderbolt grid switch is placed in the "RES" (restetive) position. This grid switch position requires no tuning of the grid circuit and is used for linear operation.

For CW operation the grid switch is turned to the operating frequency band, which switches the 350 ohm resistor out of the circuit.
B. 10. b. Ranger, Viking II or Similar Exciters - Thunderbolt Interconnections.

Make up interconnecting cables for interconnection of the exciter and Thunderbolt amplifier as shown in the sketches below. Avoid excessive lengths of coaxial transmission lines.

Ranger or Viking II Antenna Relay Jack

J5

Bias Switching Control Circuit Shielded Cable three \#22 or larger stranded wires.

In AM linear operation, these exciters will require an external swamping attenuator in addition to the 350 ohm resistor provided in the Thunderbolt when the BAND switch is in the RES position. If the Thunderbolt is operated in the CW mode or TUNE position, the swamping attenuator must be switched out. Two swamping attenuators, JOHNSON Part No. 250-42-1 for the Ranger and JOHNSON Part No. 250-42-2 for the Viking II, will be available 15 March 1958.
B. 10. b. This 6 ab swamping attenuator may be constructed as shown in the diagram. The attenuator should be housed in a shielded enclosure to prevent radiation.

Ranger Attenuator

Viking II -
Similar Exciter Attenuator

$R_{1}=$ ten 1200 onm 2 watt non-inductive resistors in parallei.
$R_{2}=$ four 470 ohm 2 watt non-inductive resistors in parallel.
$R_{3}=$ ten 4700 ohm 2 watt non-inductive resistors in parallel.
$c_{1}=47 \mathrm{mmfd} 500 \mathrm{~W} . \mathrm{V}$. mica capacitor.
$J=83 R-1$ coaxial connector.
$S=$ DPDT rotary switch .
$\mathrm{C}_{2}=150 \mathrm{mmfd} 500 \mathrm{~W} . \mathrm{V}$. mica capacitor
$I=75$ watt 115 VAC light bulb.
c. Thunderbolt - HT-32 Exciter Interconnections

Make up interconnecting cables for interconnetion of the exciter and Thunderbolt amplifier as shown in the sketches below. Avoid excessive lengths of coaxial transmission lines.

Bias Switching Control Circuit Shielded Cable - three \#22 or larger stranded wires

When an HT-3C excfter is used the Thunderbolt bias leads in the above circuit shouid be connected to pins 2, 3 and 4 of so8 in the HT- 32 . A swamping attenuator (GOHNSON Part No, 250-42-3, available 15 March 1958) shouid be used on the RF output of the HT- 32 and should be switched out when driving the Thumderbolt in ow operetion.

This 6ab swaming attenuator may be constructed as shown in the diagram. The attenuator shound be housed in a shielded enclosure to prevent radiation.

$R_{1}=$ treive 220 ohm 2 watt non-inductive resistors in parailel.
$R_{2}=f o u=68$ ohm 2 watt non-inductive resistors in parallel.
$R_{3}=$ tweive 820 ohm 2 watt non-inauctive resistors in parallel.
$J=8 \mathrm{R}-1$ maxiai connector.
$S=$ DPDT rotary switch.
B. 10. d. Tinunderber - 2CA Exoiter Fnteromendiona.

Max: up intemonrectirg rables for interconection of the exciter and the Thumerbolt amitifer as shown in the sketches beiow. Avoid excessjus iengths of coaxia: transmission lines.

2 A

The Thunderbolt bias switching leads shouid be connected to terminals 8 , 9 , ard 0 at the 20A excter as shown in the above circuit. The output of the COA shouic be straped with 100 ohms of resistance (three $330 \mathrm{ohm}, 2$ watt non-Indurive resictors in parailal: Due to the reduced outpat of the 204 on the 15,12 and 10 meter bands, the exciter may not be capabie of ariving the Thunderbolt to fual power on these bands. The swamping resistor wil have to ke removel to irive the Thunderbolt in (Whoracion.
B. io. e. Navigator - Thunderbolt Intercornection.

Make up interconecting cables for interconnection of the exciter and the Thunderbolt ampifier as shown the sketches below. Avoid excessive lengthe of coaxiai transmission lines.

No swamping resistance load is reguired on the Navigator since it is only capable of CW operation. The tuning procedure is the same as described in section D1.

Refer to Figure K, Control Famiさiarization Chart.

1. PLATE CURRENT-POWER meter (ML) indicates the plate current of the amplifier and the power input for plate voltage of 2000 volts. If the plate voltage is other than 2000 volts, multiply plate current and plate voltage to obtain watts input.
2. The MUTPI-MEIER (M2) indicates the grid current, screen current, and plate voltage as selected by the meter switch located below the meter. The top scale reads the grid current directly and the screen current when the scale is multiplied by 5 . The plate voltage is read by the bottom scale and is in kilovolts.
3. The FILAMENT SWITCH controls the filament, bias and screen voltages. The filament switch must be turned on only when the plate switch is in the off Fosition. Sufficient time must be allowed for heating of the 866 A filaments and the bias and screen voltages to come up to value before the plate switch is placea in the on position. One minute is suffictent.
4. The PLATE SWIICH controls the high voltage. It must be in the OFF position when the filament switch is turned on or whenever the mode or coupling switches are changed.
5. The MODE SWITCH selects the proper bias and screen voltage for CW, TUNE and IINEAR operation. The CW position is used for Class C operation of the Thunderbolt smpilfier. The TUNE position is used only for the tuning and loading of the amplifier for linear operation. The LINEAR position is used for $A M, S S B$ and $D S B$ operation of the amplifier.
6. The BAND SWITCH seleets the input coupling coil and grid tuning inductance for continuous coverage from 3.5 to 30 megacycles. The RES (resistance) position disconnecte che tuned grid circuit and places a 350 ohm swaming resistor across the grid circuit of the 4-400A tubes. The RES position may be used with the PACEMAKER (AM ani SSB operation), the Ranger and Viking II (AM operation) or any similar exciter whose output circuit will load into 350 ohms. For CW operation, the BAND SWTTCF mast always be in tured circuit position for the desired operating band and not in RES position.
7. The GRID diai controls the grid circuit tuning capacitor.
8. The PIATE ITNING control provides single knob tuning of the plate circuit inductor and apacitor from 3.5 to 30 megacycles. The PLATE TUNING control also arives the side rule type indicator.
9. The COUFLiNG controls provide switching of the fixed loading capacitors and adjustment of the variable loading capacitor to obtain the desired plate current (loading).
10. The Thunderbolt has three fuses (F.01, F102, Fl03) located at the rear of the amplifier chassis and one fuse (F104) located on the Capacitor Board CH9. The fuses protect the following circuits.
a. F101 protacts all AC power primaries.
b. F1.02 protects the high voltage transformer primary.
C. 10. c. FIC3 protects the filament and low voltage transformer primaries.
a. FlO 4 protects the high voltage transformer secondary.
11. J102, the four pin socket on the rear of the chassis, provides control of blocking and operating bias. An external set of SFDT relay contacts (usually available in the exciter) iransfers the bias from blocking to operate (See Section BiO). Blocking bias la used during standby periods to cut of f the amplifiex thus reducing power consumption and plate dissipation and eliminating diade noise in the receiver.

D. ADJUSTMENT AND OPERARION

1. CW Class C Operation

The Thunderbolt Amplifier is operated as a Class C amplifier for CW by switching the MODE SWITCH to the CW position which selects the proper bias and screen voltages. For this type of operation, the BAND SWITCH must be placed in the operating frequency position and the GRID capacitor adjusted for resonance. The maximum permssible loading of the Thunderbolt is secured when the plate power input, at resonance, is 1000 watts (plate current x plate voitage) with 20 ma. of grid current drive. The Thinderbolt may be adjusted to a lower power input by reducing the load coupling.

The Thunderbolt is adjusted for CW operation in the following manner.
a. Place the Thuncerboit PLATE at OFF, FITAMENM at ON, METER at GRID, MODE at $C W$, and BAND at the cperating freguency.
b. Set the Thunderbont dial positions to those given in Figure I.
c. Adjust the exciter and the rhunderbolt grid circuit to xesonance (tune GRID for meximum grid current). Adjust the exciter output for 10 ma . of grid current in the Thunderooit.
d. Flace Thunderbo"t FIATE at ON and adiust tie FLATE TUNN for resonance, minimum flate current (dip).
e. Increase the output of the exciter (keeping the exciter final in resonance) for C ma. of Thunderbolt, grid current; Adjust the COUFILING and PIATE TUNING until 1000 watts input is secured ati resonance. After each incremental adjuatment of the COUPLNG controls (coupling is increased with increasing dis? numbers), the PIATE TUNTN is adjustea for minimum piete curent (dip). Tuning for dip should always be the i.ast, adjustnent.
f. Keying of the exciter will operate the amplifier. Since blocking bias is providet on the grids of the $4-400 \mathrm{~A}$ tubes, the plate current will be cut of'f during key up condition.

General

The Johnson Viking Thuncerboit uses voltage regulated bias and screen supplies and a well regulated plate voltage supply to assure good linearity and low distortion. Although the Thunderbolt is very "clean", the on-the-air signal can be no better than the signal supplied by the exciter. For example, a popular 20 watt exciter produces relatively high distortion at the rated output of 20 watts and, althovgh it may be tolerable "barefooted", it may cause excessive splatter when the signal is of much greater intensity due to the use of a high-powered amplifier (The Thunderbolt. gives a power increase of 60 times in this case!).

A SSB exciter should be loaded to rated input when it is used to drive a linear amplifier in order that the inherent signal-to-noise and suppression characteristics of the exciter be fully realized. This requires an attenuator or "swamping" load to abscrb excessive power when the exciter produces more output than needed to excite the linear amplifier. The Thunderbolt operates in Class ABl (zero grid current) up to a peak envelope power input of 1400 watts and is driven into the grid current region, Class $A B 2$, to obtain the maximum rated power of 2000 watts. When grid current starts to flow, the Thunderbolt grid impedance drops thus presenting a variable load to the exciter. The exciter should be heavily loaded so that the changing grid load has relatively little effect upon the exciter. An exciter should have, preferably, an output of 40 watts or more, swamex dow, when driving into the Class AB2 region. When in doubt, do not drive into the grid current region (limit audio level to the point where grid current just starts to flick upward) until careful checks are made to assure that there is no splatter.

AM linear operation requires that the exciter be loaded reasonably close to its normal operating level with the output then attenuated to prevent overdriving the Thunderbolt.

Appropriate attenuators for typical exciters are shown in Section $B 10$.
a. Loading Point

The linearity of any linear amplifier is largely dependent upon the loading and it is important, therefore, that a linear amplifier be properly loaded. The Viking Thunderbolt utilizes a unique loading procedure which compensates for differences in vacuum tubes and permits optimum loading without the use of an oscilnoscope.

With exciter interconnections properly made (See Section Blo), temporarily disconnect the coaxial cable from the input coaxial fitting, Jl , on the Thunderbolt. Piace Thunderbolt MODE switch in LINEAR position, PLATE OFF, FIJAMENT ON. Turn on exciter, turn Thunderbolt PLATE ON and record the plate current, $\mathbf{2 5 0 m a}$ (should be between 200 and 300 ma). This value is the static plate current and will now be used to determine the proper plate current loading point per the following chart:

Static Plate Current	Ioading Point, MA
	325
200	340
235	350
250	360
275	375
300	390

D. 2. a. Pick the loading point nearest the static piate current previously recorded. Henceforth, this loading point plate current will serve on all bands as the proper loading point for linear operation. For example, a static plate current vaidue of 250 ma calls for a loading point value of 360 ma .
b. Linear Operation Loading Procedure

The loading procedure for Inear operation of the Viking Thunderbolt is simply this: In the TUNE position and with four (4) ma grid current, adjust the PLATE TUNING and COUPLING controls to obtain the proper load point current (360 ma in the example above). This establishes the proper load point and the amplifier can now be switched to IINEAR mode and linear operation commenced.

For the purpose of initial famiiiarization, a detailed step-by-step loading procedure is listed below:

1. With exciter interconnections properiy made (See Section Blo), set the Thunderboit controis

MODE to	TUNE	
PIATE	OFF	
FILAMENT	ON	
METER	GRID	
BAND		for Pacemaker, Ranger, Viking II and similar units. Appropriate band for HT-32, 20A and others.
PLATE TUNI		Set per Figure I, Approximate Dial
COUPLING		Positions.
GRID	$\begin{aligned} & T \\ & i \end{aligned}$	Tune for peak gria current in following step if RES position is not used.

2. Turn on exciter and adjust exciter output for four (4) ma. grid current on Thunderbolt. During following adjustments, readjust exciter as necessary to maintain 4 ma grid current.
3. Turn PLATE ON and adjust FLADE TUNING for minimum Elate current (dip) on luper meter.
4. Aajust coarse and fine COUPLNG controls to increase plate current reading (clockwise adjustment, increases reading) to desired load point current (See D2a, above). After eack incremental adjustment of COUPIING, the PIATE THNING shoula be adjusted for dip. Adjustment for dip should always be the last adjustment.
5. If the desired load point curant cannot be reacked in step 4, load just below the point where the plate current aip disappears.

ADDITIONAL COMMENTS ON LOADING OF THUNDERBOLT. Steps 4 and 5 above refer to Linear Operation Loading Procedure and in particular to "plate current dip"。
6. When loading for linear operation, there should always be a 25 to 35 ma plate current dip when the Thunderbolt is fuily loaded. In the example given, the load point current is 360 ma . If the 360 ma current is obtained but a 25 to 35 ma "dip" (25 to 35 ma difference between outofresonance piate current and dipped plate current) is not possible, decrease the coupling to the point where this amount of dip is present. Instead of 360 ma , the dipped plate current will be some lower value.
D. 2. b. 6. In other words, load to the specified plate current loading point whenever possible but in all cases decrease the loading (coupling) to secure a 25 to 35 ma dip whenever such dip is not present.

Excessive loading decreases the power output in the Thunderbolt or any other linear amplifier.
7. This completes the loading procedure. Reloading will only be necessary if bands are changed, if frequency is changed appreciably within a band, or different antenna systems used.
8. Turn PIATE OFF, switch MODE to LINEAR. Operation in the linear mode may now be commenced by placing exciter in proper mode and placing PLATE in ON position. In SSB operation, the peak plate current meter swing should not exceed a value which times the voltage equals 1000 watts (for example, 455 ma if plate voltage is 2200 volts) as 1000 watts meter reading is the maximum legal power permitted in the Amateur Service by the FCC. With average voices, and due to the fact that the inertia of the meter needie results in a reading considerably below the true plate current, the peak envelope power input will be 2000 watts. The plate current meter has a time constant of $1 / 4$ second as required by the FCC.
c. Exciter Tuning

1. Johnson Viking Pacemaker

The Pacemaker exciter is fed directiy into the Thunderbolt with the BAND switch in the RES position and no GRID tuning or external swamping is required on any band, SSB or AM (See Section BlOa). Set Pacemaker controls:

VFO and BAND
MODE
CARRIER INSERT
OPERATE
AUDIO
Set Thunderboit controls:
METER

MODE
BAND
PIATE
FMIAMENT
PLATE TUNING COUPLING
desired band and frequency AM-HI 0
STANDBY 0

VOLTAGE (This position is used to avoid pinning the meter in ${ }_{G} R I D$ position during Facemaker tuneup.)
TUNE
RES
OFF
ON
Set per Figure I, Approximate Dial Settings
a. Turn on Pacemaker and load it according to Pacemaker tuning instructions to 0.2 ma grid current and 115 ma plate current. Be sure that BALANCE MOD and EXCITER are tuned for maximum Pacemaker grid current.

 is above four ma with carrier insert at 0 , adjust CARRIER BALANCE controis to bring curmert down within range of eneswt control).
c. Load Thuncribit as Eeseribed in puecesaing section, Deb. Tirn PLATE saidec OFP, MODE to LINEAR.
d. Turn Pacemaker MODE switch to aesjren sidebend for SEB OPERATION AND ADUST CARRIER BALANCE controls for misimum rate current on Pacemaker. Wurn FAATE ON and advance Ardio controi while speaking into microphone. Maximum Iegol powew is obtaines when plate coment meter poak meach approximasiy 455 ma. Thee thunderbolt plate curment may enve as a more sensitive indionto: for CARRIER BALANOE ajuntment.
e. For AM OPEFATON, tune up as j.ri preceaing steps. with GARRTER INSERT at O, UHT Pacemaker MCDE switeh to AV-IO. With PIATE ON, advanct CARRIER INSERT artil the Thunderboit plate current is 375 ma . Advance Augro ontrol, while apeaking into microphone until the plate curant kicks upward sightily (appoximately 25 ma). Monitoring the signal and reporte wis incicate proper audio setting.
f. For OW OFERAGON, the RES position is not used. BANJ and GRTD are adustee or pofer fequency and loaking of Pacemeker (with 0.2 grid ma) nest orly be encugh to obtain a ma grit duzert on the Thundembit as despribed in sextion
2. AM Linear Operarion with Ragex, Viking IT or Bimider korotas
 Set exciter on agsime band with atternetor switches gut, (no atemuation). Set Thumarbot eontros.

METER	RUP
MOTE	TAP
BAND	EES
PLAES	OFF
FILAMENS	ON
COUPLING	Dial Settings.

a. With nomal ginf cument or the exator and with ita output decoupled to avoit overciving the Thaderbol, incosse the
 During following adjustments, readjust exceter as necessary to maintain 4 ma grid emrent.
 Turn PIATE OF'F Tum MODE
c. Switch the atsemado into the oircuit and increase the exciter loading to where the Thuderbolt pate current is 375 ma (Thunderbolt FLATE ON, MODE in LTNEAR). Advance the autio gain while speaking into the miorophone mistil the rinmaerbolt plate current kicks upmarg alightly.
D. 2. c. 2. c. The exciter grid current should always be maintained at the normal operating value. Using the specified attentuator, the Ranger plate current will be approximately 75 to 90 ma and the Viking II 100 to 190 ma when properly loaded. Although these figures are below the normal loading for AM operation, the loading is still adequate and the waveform very satisfactory.
3. HTY-32 Exciter

Interconnect the $\mathrm{HT}-32$ and Thunderbolt as shown in Section Bloc. Set HT-32 controls.

BAND and FREQUENCY	desired band and frequency
OPERATION	STANDBY
FUNCTION	DSB
RF IEVEL	0
METER COMPRESSION	1
AUDIO LEVEL	0

Set Thunderbolt controls.

METER
GRID
MODE
BAND
PLATE
FILAMENT
PLATE TUNING
COUPLING

TUNE
desired frequency range OFF
ON
Set per Figure I, Approximate Dial Settings

For SSB Operation

a. Turn HT-32 OPERATION switch to MOX, advance RF LEVEL slightly and tune DRIVER TUNE and FINAL TUNE for peak meter reading.
b. Adjust Thunderbolt GRID tuning for maximum Thunderbolt grid current. Repeak His- 32 FINAL TUNE and adjust RF LEVEL for four (4) ma grid current on Thunderbolt. Maintain 4 ma in following loading steps.
c. Turn Thunderbolt PLATE ON and load as described in Section D2b. Turn PLATE OFF. This completes the loading of the Thunderbolt.
d. Turn METER to VOLTAGE on Thunderbolt to prevent pinning meter on the grid range during following HT- 32 loading adjustment.
e. Adjust RF LEVEL, DRIVER TUNE and FINAL TUNE on the HT-32 for just under maximurn output (peak on meter) and adjust METER COMPRESSION as described in HT-32 Operating Manual.
f. Switch FUNCTION to desired sideband, upper or lower, Thunderbolt MODE to LINEAR, METER to GRID, PLATE ON.
g. Advance AUDIO LEVEL, while speaking into the microphone, until Thunderbolt plate current meter peaks reach approximately 455 ma . The HT-32 OPERATE switch may be placed in the VOX position for voice-operate or used between STANDBY and MOX for manual operation.
a. Follow procedure as detailed above for SSB Operation, steps a through e.
b. Turn RF LEVEL to 0, Thunderbolt METER to GRID, MODE to LINEAR, PLATE ON.
c. Turn up RF LEVEL so that Thunderbolt plate current reads 375 ma .
d. Advance AUDIO LEVEL, while speaking into microphone, until a very slight upward kick of the Thunderbolt plate current is observed. Either VOX or MOX operation may be used.

For CW Operation

The attenuator should be switched out of the circuit and loading accomplished as described in Section Dl.

4. 20A Exciter

Interconnect the 20A and the Thunderbolt as shown in Section Plod.

For SSB Operation

Set 2OA for AM Operation on desired band, SPEECH LEVEL at O. Set Thunderbolt controls.

METTER	GRID
MODE	TUNE
BAND	desired frequency range
PLATE	OFF
PLATE TUNING	
COUPLING	Set per Figure I, Approximate
FILAMENT	Dial Settings
	ON

a. Turn on 2OA and tune MIXER and AMPLIFIER for maximum output.
b. Tune Thunderboit GRID for maximum grid current, retune AMPLIFIER for maximum Thunderbolt grid current. Adjust CARRIER control for four (4) ma Thunderbolt grid current. Maintain 4 ma in following loading steps.
c. Turn Thunderbolt PLATE ON and load as described in Section D2b. Turn PLATE OFF。
d. Adjust 20A for SSB operation per 20A Instruction Manual. Turn Thunderbolt MODE to LINEAR, PLATE ON.
e. Advance SPEECH LEVEL, wnile talking into the microphone, until Thunderbolt plate current meter peaks reach approximately 455 ma . Either VOX or MANUAL operation may be used.

NOTE: The power output of the 20A falls off on the higher bands making $\overline{i t}$ difficult to drive the Thunderbolt to full output. It should be possible to drive to the maximum Class ABl (zero grid current) power of 1400 watts on all bands. In fact, on any band the 20A distortion should be checked when driving the Thunderbolt to 2000 watts or in the grid current region.
D. 2. c. 4. For AM Operation
a. Follow procedure as detailed above for SSB operation, steps a through c.
b. Turn Thunderbolt MODE to LINEAR, PLATE ON. Adjust CARRIER control for 375 ma plate current on Thunderbolt.
c. Advance SPEECH LEVEL control, while speaking into the microphone, until a very slight upward kick of the Thunderbolt plate meter is observed. VOX or MANUAL operation may be used.

For CW Operation
The swamping resistor should be removed from the $20 A$ and tuning accomplished as described in Section Dl.

Parts List

Description
Motor, $115 \mathrm{~V}, 60$ cycles AC Blade, 4" fan
Blade, $5^{\prime \prime}$ fan
Bracket, final tank and loading switch Bracket, final tuning capacitor mounting
Bracket, component, $13 / 16^{\prime \prime}$
Bracket, component, $17 / 8^{\prime \prime}$
Bracket, H.V. capacitor
Bracket, $27 / 32^{\prime \prime}$, component mounting
Bracket, $37 / 8^{\prime \prime}$, panel support
Bracket, blower and resistor board mounting
Bracket, H.V. siorting switch
Bracket, H.V. grounding
Capacitor, variable, 75 Ll 5
Capacitor, neutralizing
Capacitor, 320 E 30 variable
Capacitor, 300 mmfd 2500 WV
Capacitor, 620 mmf 2500 WV
Capacitor, $500 \mathrm{mmf}, 20 \mathrm{KV}$ ceramic
Capacitor, variable 675E20

Capacitor, . 005 mf ceramic disc
Capacitor, $1000 \mathrm{mmf}, 1500 \mathrm{VW}$ disc geramic
Capacitor, . 001 mf mica
Capacitor, filter, $8 \mathrm{mf}, 2000 \mathrm{VDC} 011$
Capacitor, 500 mmfd 500 VW
Capacitor, $30 \mathrm{mfd}, 450 \mathrm{VW}$
Chassis
Cabinet
Chassis rail

Panel

Sub chassis, VR tube
Shield, VR tube chassis
Bracket, meter shield
Shield, meter
Filter capacitor board assembly
Mounting board assembly
Mounting board, resistor, transite
Plate, grid compartment bottom assembly
Escutcheon, dial.
Back plate and bracket assembly
Pulley, 3" diameter
Pulley, outside hub, $13 / 4^{\prime \prime}$ diameter Pointer, dial
Bearing and shaft assembly

Fart No. or	Item	
Drewing No.	No.	Qty.
22.1336-2	D7	2
23.1246-1	D8	3
23.907--22	D9	2
23.907-4	D10	1
13.123-12	DII	6
204-250	D12	1
14.139-2	Di3	1
14.139-9	D14	1
14.139-10	015	1
28.753-1	D16	1
14.568-1.	Di?	1
23.900-1	D] 8	1
104-252	D19	1
104-264-2	D20	1
13,760-2	D2.	2
23.910-2	D22	1
$23.544-2$	D24	1
23.909-2	L25	1
42,49-148	D26	5 ft
23.2.292-1	EI	1
23.1292-2	H2	1
23.1299	E 3	1
23.1084	E4, 5	2
22.747	E6	2
22.1309	E?	1
1.0.19-1	E8	2
16.1347	E10	1
16.1348	Eil	1
16.51.-5	E12	2
16.3.3-4	E13	1
10.19-5	E14	1
26.313-3	E15	1
26.2352	E16	1
22.2540	FJot	1
$22.74{ }^{2}$	F103	1
22, 3.45	F101,102	2
22.739-2	FHicl,102,103	3
22.13-7	G1, 2, 3, 4	4
22.113-5	65,6,7,14	4
7.1.43-097	98	65"
22.1475-2	G9, 10,11,12	4
22.994-2	Gl3	1
23.1293	H	1
16.895-2	HW	1
22.1272	HW	4
22.21	1.201	1
22.375	1102,103	2
22.746	II, 2	2
22.1429-1.	$J 101$	1.
22.1.191	1102	1

Description

Pulley
Knob, 1 5/8" diameter
Knob, $100-0$ skirted, 180°
Knob, line indicator
Bearing, panel, 3/8-32
Shaf't couping, fiexible
Shaft, $1 / 4^{\prime \prime}$ dia. $67 / 16^{\prime \prime}$ long, N.P. steel
Shaft, $1 / 4^{\prime \prime}$ dia. $61 / 4^{\prime \prime}$ long, N.P. steel
Shaft, $1 / 4^{\prime \prime}$ dia. $67 / 8^{\prime \prime}$ long, N.P. steel
Rod, $1 / 4^{*}$ dia. phenolic
Rod, $1 / 4^{11}$ dia. aluminum
Gear ass'y, final tank
Coupine, insulated shaft
Coupling, insuiated shaft
Coupling, rigid metal s aft
Knob, spinner, 2 3/8" dia.
rewel assembly, red
Pulley, insiひ̂e hub, $13 / 4^{\prime \prime}$ dia.
Cord, dial, . 040 nylon
Suppressor, plate assembly
Suppressor, plate assembly
Suppressor, gria
Suppressor, screen
Hood, coax, 83-1H
Hood, coax, UGl77U
Insulator, $I^{1 "}$ cone
Strap, grid connecting
Strap, filament grounding
Cap, plate (866A)
Strap, loading capacitor connecting
Insulator, 5/8" cone
Strap, blocking capacitor
Strap, blocking capacitor
Fuse, i ampere, Buss 3AGC-1A
Fuse, 5 ampere, Buss MTH5
Fuse, 10 ampere, Buss MTH10
Post, fuse extractor
Grommet, $9 / 1.6^{\text {t }}$ rubber
Grommet, 5/16" rubber
Gasket, $3 / 16^{\prime \prime}$ round metaltex
Button, polyethylene, rest
Gasket rubber
Harness, cable
Spring, shorting switch
Spring, dial cord
Lamp, 120 V., candelabra base \#656 pilot
Lamp, 6.3 V., \#44 psiot
Connector, $83 \mathrm{R}-2$ coax.
10 amp. 3-wire male flush base
Jack, 4 terminal

Parts List

Part No. or	Item	
Drawing No.	No.	Qty.
23.1294	LI	1
16.1350-1	L2	1
23.1088-2	L3	1
229.204	L4	1
23.1295	L5	1
102-752-4	16	1
23.1085-2	17	1
23.1000	[106,107,108	3
22.951	18,9,10	3
16.1181-5	[104,105	2
16.1181-3	$\begin{aligned} & \mathrm{I} 109,110,12, \\ & \mathrm{il2} \end{aligned}$	4
22.1265	L201	1
22.749	I102,103	2
22.1400	M1	1
22.1399	M2	1
C2. 1430 l	PlOL	1
22.1190	P102	1
$22.7077-10$	R1,2	2
22.1457	R3	1
22.1433	$\begin{aligned} & \text { R102,102,103, } \\ & 104,105,106 \end{aligned}$	6
22, $\mathrm{i}^{4}+2-3$	R10'7, 108	2
22.1432	Rili	1
22.95 ${ }^{\prime}+10$	R110	1
22.1433	RI15	1
22.9504-10	RII6	1
$22.146 ?$	R117	1
22.2480	R4	1
22.1 .099	Ril2	1
22.7097-10	R113,114	2
22.6073-30	Rl09	1
22.1434	SWI	1
23.1297	SW2	1
22.1435	SW102,102	2
22.1436	SWl03,104	2
22.1466	TIO1	1
22.1422	Tl102	1
22.1421	Tl03	1
22.789-1.	TS1	1
22.740-3	TS2, 3,4,5,6	5
22.837	TS7	1
$22.740-4$	TS8	1
22.790-1	TS9.	1
22.1243	V1,2	2
22.25	V101,102	2
22.1104	V103	1

Description

Inductor, 10 meter grid and link
Inductor, 15 meter grid
Inductor, low freg. grid
Inductor, rotary
Inductor, io neter final tank
Choke, R.F., static drain (without bracket)
Choke, R.F., plate
Choke, 4.7 uh R.F.
Choke, 2.5 w.ll R.F.
Choke, R.F. ine filter
Choke, R.F. filter
Choke, 5-25 HY H.V. filter
Choke, . $095 \mathrm{amp} ., 15 \mathrm{HY}$ L.V. filter
Meter, grid current - voltmeter
Meter, plate current - watts
Connector body, 10 amp . 3 wire female
Plug, 4 terminal
Resistor, is K 2 watt composition
Resistor, 350 ohms
Resistor, 4000 ohms 50 watt
Resistor, 1.5 meg. 2 watt $\pm 1 \%$
Resistor, 20 K ohms 50 wat \bar{t}
Resistor, 4 K ohms 10 watt
Resistor, 2500 ohms 50 watt
Resistor, 2000 ohms 10 watt
Resistor, $\pm .724$ ohms meter shunt $\pm 1 \%$ tol. $1 / 2$ watt, wire wound
Resistor, 0.335 ohm meter shunt $\pm 1 \%$ tol. 1/2 watt wire wound
Resistor, 20,000 ohm 10 watt
Resistor, 100 K ohms 2 watt
Resistor, 10 K ohms 1 watt
Switch, 8 どid band
Switch, coupling
Swituch, SPST
Switch, 3 poje 3 position
Transformer, H.V. power
Transformer, filailent
Transformer, L.V. power
Terminal strip, 4 terminal barrier
Terminal strip, 3 point
Terminal strip, 2 point
Terminal strip, 4 point
Marker strip, terminal
Tube, 4 -400A
Irube, 866A
Thube, 5iJlta

VIKING THUNDERBOLT AMPLIFIER

Parts List

Fart No. or Drawing No.	$\begin{aligned} & \text { Item } \\ & \text { No. } \\ & \hline \end{aligned}$	Qt,y.	Description
22.332	V104	1	Tube, 6BY5GA
22.8109	V105,106	2	Tube, VR150-0D3
22.1110	V107,108	2	Tube, VR105-003
22.1438	V.109	1	Tube, VR75-UA3
$71.32-179$	W1	$117 / 16^{11}$	Cable, RG8U-coax
$71.32-178$	W2	$101 / 2^{\prime \prime}$	Cable, RG59U-coax
42.24-107	W3	3 "	Tubing, plastic, 133 I.D.
42.24-112	W4	$12^{\prime \prime}$	Tubing, plastic, .187' I.D.
23.546-2	XIIO.	1	Bracket, dial light, 115 V. candelabra base
23.1047	XIIO2,103	2	Pilot light, snap-in type
122-224-1	XV101,102	2	Socket, 4 prong steatite
22.1274	$\begin{aligned} & \text { XVL03,104,105, } \\ & 106,107,108, \end{aligned}$		
	109	7	Socket, molded octal
.22-273	XVI, 2	2	Socket, 5 prong jumbo for 4 -400A

FIGURE CAA

FIGURE CB

METHOD OF STRINGING STRING DIAL CORD AS SHOWN IN FIGURE 2. ATTACH LOOP "C" TO DA. STRING CORD "A" AND CORD "B" AS SHOWN IN FIGURE I. AND ATTACH TO D25.

MN "C" ND RE

FIGURE H
APPROXIMATE OPERATING VALUES

	CW		AM LINEAR		TUNE	SSB or DSB	
	'trans.	No. Excyt.	Trans .	With Block Bias	Trans.	Trans.	With Biock Bias
Plate Voltage	22.00	2350	2200	2350	2200	2200	2350
Screen Voltage	465	510	510	510	360	510	510
Bias Voltage	-165	-165	-75	-142	-75	-75	-142
Flate Current	455	0	375	0	360	$250+455$	0
Screen Current	45	0	$0 \rightarrow 5$	0	0	$0 \rightarrow 2$	0
Grid Current	20	0	$0 \rightarrow 0.5$	0	4	$0 \rightarrow 3$	0

FIGURE I
APPROXIMATE DIAL POSITIONS, CW MODE 50 OHM LOAD

FRREUENCY, MCS.	4.0	7.3	14.25	21.25	27	29
Plate Tuning Dial	18	53	76	86	92	94
Coupling Capacitor	75	76	49	58	42	47
Coupilng Switch	3	4	5	5	5	5
Gria Capacitor	58	35	60	64	68	73
Band Switch						

VOLTAGE AND RESISTANCE CHECK LIST

1. Resistance Values, may be useful in trouble shooting.

All resistance measurements are to ground, unless otherwise noted, and may vary $+10 \%$ in value. Power plug Plol and bias control plug PlO2 removed from sockets. Refer to Figures A, B, F and G for location of measurement points.

0102 (terminal nearest viewer)

$$
\begin{array}{r}
20,000 \text { ohms } \\
4,000 \text { ohms } \\
22,500 \text { ohms } \\
0 \text { ohms } \\
24,000 \text { ohms } \\
\text { 4,000 ohms } \\
\text { Infinite ohms }
\end{array}
$$

ClO4 (terminal nearest viewer)
Terminal 2 of Mode Switch SWl03
LT Choke (H.V. shorting switch closed)
L7 Choke (H.V. shorting switch open)
PA Grid (terminal 3 of 4-400A socket)
Mode switch in CW
Mode switch in LINEAR
PA Screen Grid (terminal 2 of $4-400 \mathrm{~A}$ Socket) Mode Switch in CW or LINEAR
Bias Control plug socket. JlO2
Terminal 1, at all mode positions
Terminal 2, at all moae positions
Terminal 3, mode switch on CW
Terminal 3, mode switch on TUNE or LINEAR
Terminal 4, at all mode positions
High Voltage Transformer, TlOl
Black wire to black-red wire
White wire to black-green wire
Red-yellow wire to red wire
Red-yellow wire to red wire
High Voltage Filter Choke, Llol Between two leads, max.

22,500 ohms
ow Voltage Transformer, Tl03
Green to green wire practically zero ohms
Yellow to yellow wire
blue to blue wire
red to red-yellow wire
red to red-yellow wire
140 ohms
350 ohms
black to black wire
350 ohms
2.2 ohms

Low Voltage Chokes, L102 and $L 103$
black to black wire, $+15 \% \quad 290$ ohms
Filament transformer, T102 brown to brown wire green to green wire
practically zero ohms yellow to yellow wire black to black wire
1.2 ohms
2. Voltage Values

WARNING: The voltages encountered in this equipment are high enough to cause fatal injury. Exercise extreme caution when making the following checks. Place a grounding hook, with an insulsted handle, on the rectifier tube caps whenever working inside the cabinet with the primary power plug in its socket and the PTATE switch OFF. All measurements are with respect to chassis ground, without grid drive or plate voltage, and may vary plus or minus 10 percent.

Remove Flo2, H.V. primary fuse, place power plug Plol in socket Jlol, turn PLATE switch OFF and FIIAMENT switch to ON. Plug P102 not inserted into Jlo2.

Cl04 (terminal nearest viewer)	- 150 volts
Clo2 (terminal nearest viewer)	+600 volts
PA Screen grid (terminal 2 of 4-400A socket)	
Mode Switch on CW and LINEAR	+510 volts
Mode Switch on TINE	+360 volts

Insert Pl02 into $J 102$ so bias may te switched from operating to blocking.
PA Screen grid (terminal 2 of 4.400 A socket)
Mode switch on LINEAR and blocking bias on grid (pins 4 and 2 of 4102 connected) $\div 510$ volts
PA grid. (terminal 3 of $4-400 \mathrm{~A}$ socket)
Mode switch on CW -I50 volts
Mode switen on TUNE -75 volts
Mode switch on LINEAR and blocking bias on gria (wins 4 and 2 of JlO2 connected) -150 volts
Mode switch on LINEAR and operating bias on grid (pins 4 and 3 of 1102 connected) - 75 volts

Plate voltage: Place unit in the cabinet and make all connections. With the amplifier operating in the CW mode (20 ma . grid current and 1000 watts input) the plate voltage should read 2000 to 2300 volts depending upon the line voltage.

RE K
IARIZATION CHART

1000 watts CW
750 watts AM linear

* with an auxiliary SSB exciter

Viking "Thunderbolt"

Introducing the Viking "Thunderbolt" - the hottest linear amplifier on the market today! Here's solid communication power - 2,000 watts P.E.P.* input; 1,000 watts CW; 750 watts AM linear; in a completely self-contained desk-top package. The "Thunderbolt" may be driven by the Viking "Novigator," "Ranger," "Pacemaker" or other unit of comparable output. Continuous coverage 3.5 to 30 megacycles (bandswitched: - wide range pi-network output circuit. The "Thunderbolt" has been engineered to provide maximum "talk-power" to smash through QRM - delivers a dominant signal on all amateur bands. Completely self-contained with internal blocking bias, voltage regulated screen and bias supplies, and plate power supply.

- Propar wave shaping of the keyad signal, producing a clean, crisp CW note free of alicks and chirbs, is essential in high-powor operaCW note free of elicks and ehiros, is essennits without the famous tion. Information necessary to modify units without the famous
Johnson fimed Sequence Keying System will be made ayailable upon request.

EXCITATION REQUIREMENTS - Drive requirements are approximately 10 watts in class $A B_{2}$ linear, 20 wotts class C continuous wave. When used with the Viking "Pacemaker" or similar exciter, the non-inductive input circuit of the "Thunderbolt" requires no grid tuning. Use of the Viking I, II or similar unit as an exciter for the Viking "Thunderbolt" requires use of the Johnson power reducer, Cat. No. 250-29. OPERATING CONTROLS - The operating controls for the "Thunderbolt" are conveniently located on the front panel within easy reach of the operator. These controls include: grid tuning and bandswitch; plate tuning with slide rule indicator dial; coarse and fine coupling controls; filament; plate; "mode"; and meter switches. Two meters provide a constont visual check of operation. Plate current meter also reads watts input and the second meter will read either grid current or plate voltage.
OUTPUT CIRCUIT - The Viking "Thunderbolt" amplifier employs two Type 4-400A tetrode tubes in parailel, bridge neutralized. The pi-network output is designed to match nominal 40 to 600 ohm antenna loads and will tune out large amounts of load reactonce as well. Two fans, located within the amplifier cabinet, cool filament and plate seals for extended tube life.
TVI SUPPRESSION - In addition to complete shielding and the use of double " L " section filters in all outgoing leads, the "Thunderbolt" cabinet is electrically sealed with flexible monel braid - cup-type shields seal the meters, and interior harness leads and filaments are by-passed. Careful bypassing of the final, and special circuit techniques minimize harmonics in the output circuit.
POWER SUPPLIES - The high voltage power supply uses 866-A rectifiers and delivers adequate voltage and current for the rated input power. The screen supply emplays a $5 V 4$ rectifier and uses four VR tubes for screen voltoge regulation in Class $A B_{2}$ operation. A GBY5 rectifier and $V R 75$ regulator comprise the bias supply for the two 4-400A final amplifier tubes.

The F.C.C. permits a maximum one-kilowatt average power input for the amateur service. In 5SB operation under normal conditions, this results in Peak Envelope Power inputs of 2,000 watts or more depending on individual voice charotleristics. The Viking "Thumderbolt" lineor omplifier produces these higher powers and is the only equipment available to amaleurs which can reoch the maximum legal input of "talkpower," other than the Viking "Kilowatt."

SPECIFICATIONS

frequency range:

Continuous coverage 3.5 through 30 megacycles (Bandswitched:

POWER INPUT:

1.000 Watts CW

Class C
750 Watts AM Linear
2,000 Watts P.E.P.* Linear

Closs AB2
Class AB:

POWER REQUIREMENTS:

115 volts $A C$ two wire or 230 volts $A C$ three wire, $50-60$ cycle single phase. Fuses accessible on rear of chassis.

TUBE COMPLEMENT

1214-400A tetrode-Final Amplifier ! I VR -Bias Regulator
i2: 866A-High Voltage Rectifier
(2: VR 105) . Sereen Voltage
il. 68 Y 5 -Bias Rectifier \quad 2: VR 150$\}$ Regulator

1. 5U4-Screen Voltage Rectifier

The Viking "Thunderboft" is available completely wired and tested or as an easy to ossemble kit. The 18 gauge steel cabinet is finished in attractive maroon and grey, with green nomenclature. Complete kit in. sludes assembly instructions, photographs, diagrams and step-by-step wiring directions. Wiring horness, all necessary hardware furnished no drilling or metal work necessary. Dimensions: $21^{\prime \prime}$ long $\times 11^{5 / \mathrm{F}{ }^{\prime \prime}}$ high $\times 16^{1 / 6 "}$ deep. Net Weight: 120 lbs. Shipping Weight; 140 lbs.

OPERATING MANUAL CONIENTS

Page
A. INTRODUCIION 1
B. INSTALLATION 1
i. Thpacking and Inspection 1
2. Femoval of amplifier from Cabinet 1
3. Transportation Claims 1
4. Missing Parts Claims 1
5. Power Transfomer Installation 1
6. Tube Installation 3
7. Plate Suppressor Installation 3
8. Neutralization 3
9. Ground Connections 3
10. Exciter and Thunderbolt Interconnection 4
a. Pacemaker 4
b. Ranger or Viking II or Similar Exciters 5
c. HP-32 6
a. 20 A 8
e. Navigator 9
C. METERS, CONTROLS AND FUSES 10
D. ADJUSTMENT AND OPERATION 11

1. CW Class C Operation 11
2. Linear Operation 12
a. Loading 12
b. Linear Operation Loading Procedure 13
c. Exciter Tuning 14
3. Pacemaker 14
4. Ranger, Viking II or Similar Exciters 15
5. HT-32 16
6. $20 A$ 17
PARTS IIST 19-22
ILLUSTRATIONSFollowing Page 22Figure A Top View of Amplifier
Figure B Bottom View of Amplifier
Figure C Capacitor BoardFigure D Drjve Cable for Dial MechanismsFigure A Dial Drive AssemblyFigure F Rear View of Amplifier
Figure G Schematic Diagram
Figure H Approximate Operating Values
Figure I Approximate Dial Positions
Figure J Voltage and Resistance Check List
Figure K Control Familiarization ChartCalibration Chart

Adopted and Recormended by the

```
Radio - Electronics - Television Manufacturers Association
```

The E. F. Johnson Company warrants each new radio product manufactured by it to be free from defective material and workmanship and agrees to remedy any such defect or to furnish a new part, except for electron tubes, in exchange for any part of any unit of its manufacture which under normal installation, use and service disclosed such defect, provided the unit is delivered by the owner to us or to our authorized radio dealer or wholesaler from whom purchased, intact, for our examination, with all transportation charges prepald to our factory, within ninety days from the date of sale to original purchaser and provided that such examination disclosed in our judgement that it is thus defective.

This warranty does not extend to any of our radio products which have been subjected to misuse, neglect, accident, incorrect wiring not our own, improper installation, or to use in violation of instructions furnished by us, nor extend to units which have been repaired or altered outside of our factory, nor to cases where the serial number thereof has been removed, defaced or changed, nor to accessories used therewith not of our own manufacture, nor to electron tubes.

Defective electron tubes should be returned directly to the tube manufacturer for adjustment at the following addresses.
(a) For RCA tubes to: Adjustment Service, RCA at the nearest of the following addresses:

34 Exchange Place	3601 South Adams Street	6355 East Washington Blvd.
Jersey City 2, N. J. Marion, Indiana	Los Angeles 22, California	

(b) For General Electric tubes to:

> Adjustment Service
> Owensboro Tube Works
> General Electric Company
> Owensboro, Kentucky

Any part of a unit approved for remedy or exchange hereunder will be remedied or exchanged by the authorized radio dealer or wholesaler without charge to the owner.

This warranty is in lieu of all other warranties expressed or implied and no representative or person is authorized to assume for us any other liability in connection with the sale of our radio products.

Steps 4 and j, Section D2b, Thunderbolt Operating Manual, rerer to Linear Operation Loading Procedure and in particular to "plate current dip".

When loading for linear operation, there should always be a 25 to 35 ma . plate current dip when the Thunderbolt is fully loaded. In the example given, the load point current is 360 ma . If the 360 ma . current is obtained but a 25 to 35 ma . "dip" (25 to 35 ma. difference between out-of-resonance plate current and dipped plate current) is not possible, decrease the coupling to the point where this amount of dip is present. Instead of 360 ma. , the dipped plate current will be some lower value.

In other words, load to the specified plate current loading point whenever possible but in all cases decrease the loading (coupling) to secure a 25 to 35 ma . dip whenever such dip is not present.
Excessive loading decreases the power output in the Thunderbolt or any other linear amplifier.

1-15-58

ADDITIONAL INFORMATION:
Page 2 B. 5. c. 2. After first sentence add:
Remove the white-black-brown \#20 wire from terminal 2 of TSI and comest it to terminal 3 of TSl.

Page 2 B. 5. e. The bias-screer transformer is normaily wired for 115 VAC primary voltage. If the primary voltage is above 115 VAC, disconnect the black with yellow tracer wire from terminal 3 of TS3. kemove the black with red tracer wire from terminal 2 of IS3 and solder it to terminal 3 of TiS3. Connect, but do not solder the black with yellow tracer wire to terminai 2 of Ts3. Be certain none of the terminals on TS3 are shorted to each other.

Page 15 D. 2. c. 1. f. This section should read as follows:
For OW OPERATION, the RES position is not used and the BAND and GRID are adjusted to the proper frequency. Load the Pacemaker to a minimum of 50 ma. plate current (with .2 ma . grid current) and then reduce the CARRIER INSERT to obtain 2) ma. grid current on the Thunderbolt as described in section Dl.

Page 5 B. 10. b. last sentence should read as follows:
A swamping attenuator, JOHNSON Part No. 250-42-1 for the Ranger and the Viking $I I$, is available.

FIG. G

