SERVICE MANUAL

Model:

PDP-5025M Monitor

Safety Precaution
Technical Specifications
Block Diagram
Circuit Diagram
Basic Operations \& Circuit Description
Main IC Specifications
Trouble Shooting Manual of PDP Module
Spare Part list
Exploded View
If You Forget Your V-CHIP Password
Software Upgrade

Safety Precaution

CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK, DO NOT REMOVE COVER (OR BACK). NO USER-SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL ONLY.

The lightning flash with arrowhead symbol, within an equilateral triangle, is intended to alert the user to the presence of uninsulated "dangerous voltage" within the product's enclo sure that may be of sufficient magnitude to constitute a risk of electric shock to persons.

The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance.

PRECAUTIONS DURING SERVICING

1. In addition to safety, other parts and assemblies are specified for conformance with such regulations as those applying to spurious radiation. These must also be replaced only with specified replacements.
Examples: RF converters, tuner units, antenna selection switches, RF cables, noise-blocking capacitors, noise-blocking filters, etc.
2. Use specified internal Wiring. Note especially:
1) Wires covered with PVC tubing
2) Double insulated wires
3) High voltage leads
3. Use specified insulating materials for hazardous live parts. Note especially:
1) Insulating Tape
2) PVC tubing
3) Spacers (insulating barriers)
4) Insulating sheets for transistors
5) Plastic screws for fixing micro switches
4. When replacing AC primary side components (transformers, power cords, noise blocking capacitors, etc.), wrap ends of wires securely about the terminals before soldering.

5. Make sure that wires do not contact heat generating parts (heat sinks, oxide metal film resistors, fusible resistors, etc.)
6. Check if replaced wires do not contact sharply edged or pointed parts.
7. Make sure that foreign objects (screws, solder droplets, etc.) do not remain inside the set.

MAKE YOUR CONTRIBUTION TO PROTECT THE ENVIRONMENT

Used batteries with the ISO symbol

for recycling as well as small accumulators (rechargeable batteries), mini-batteries (cells) and starter batteries should not be thrown into the garbage can.

Please leave them at an appropriate depot.

WARNING:

Before servicing this TV receiver, read the SAFETY INSTRUCTION and PRODUCT SAFETY NOTICE.

SAFETY INSTRUCTION

The service should not be attempted by anyone unfamiliar with the necessary instructions on this apparatus. The following are the necessary instructions to be observed before servicing.

1. An isolation transformer should be connected in the power line between the receiver and the AC line when a service is performed on the primary of the converter transformer of the set.
2. Comply with all caution and safety related provided on the back of the cabinet, inside the cabinet, on the chassis or picture tube.
3. To avoid a shock hazard, always discharge the picture tube's anode to the chassis ground before removing the anode cap.
4. Completely discharge the high potential voltage of the picture tube before handling. The picture tube is a vacuum and if broken, the glass will explode.
5. When replacing a MAIN PCB in the cabinet, always be certain that all protective are installed properly such as control knobs, adjustment covers or shields, barriers, isolation resistor networks etc.
6. When servicing is required, observe the original lead dressing. Extra precaution should be given to assure correct lead dressing in the high voltage area.
7. Keep wires away from high voltage or high tempera ture components.
8. Before returning the set to the customer, always perform an AC leakage current check on the exposed metallic parts of the cabinet, such as antennas, terminals, screwheads, metal overlay, control shafts, etc., to be sure the set is safe to operate without danger of electrical shock. Plug the AC line cord directly to the AC outlet (do not use a line isolation transformer during this check). Use an AC voltmeter having 5 K ohms volt sensitivity or more in the following manner.
Connect a 1.5 K ohm 10 watt resistor paralleled by a $0.15 \mu \mathrm{~F}$ AC type capacitor, between a good earth ground (water pipe, conductor etc.,) and the exposed metallic parts, one at a time. Measure the AC voltage across the combination of the 1.5 K ohm resistor and 0.15 uF capacitor. Reverse the AC plug at the AC outlet and repeat the AC voltage measurements for each exposed metallic part. The measured voltage must not exceed 0.3 V RMS.
This corresponds to 0.5 mA AC . Any value exceeding this limit constitutes a potential shock hazard and must be corrected immediately.
The resistance measurement should be done between accessible exposed metal parts and power cord plug prongs with the power switch "ON". The resistance should be more than 6 M ohms.

etc.
AC Leakage Current Check

PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in this apparatus have special safety-related characteristics.

These characteristics are offer passed unnoticed by visual spection and the protection afforded by them cannot necessarily be obtained by using replacement components rates for a higher voltage, wattage, etc.

The replacement parts which have these special safety characteristics are identified by $\mathbb{\Lambda}$ marks on the schematic diagram and on the parts list.

Before replacing any of these components, read the parts list in this manual carefully. The use of substitute replacement parts which do not have the same safety characteristics as specified in the parts list may create shock, fire, or other hazards.
9. Must be sure that the ground wire of the AC inlet is connected with the ground of the apparatus properly.

1. Standard Test Conditions

All tests shall be performed under the following conditions, unless otherwise specified.
1.1 Ambient $\quad: \quad 150 \mathrm{ux}\left(\right.$ When measuring I_{B}, the ambient luminance $\leqq 0.1 \mathrm{Cd} / \mathrm{m}^{2}$)
1.2 Viewing distance : 50 cm in front of PDP
1.3 Warm up time : 30 minutes
1.4 PDP Panelfacing : no restricted
1.5 Measuring_Equipment: PC, Chroma 2225 signal generator (with Chroma digital additional card) or equivalent, Minolta CA100 photometer
1.6 Magnetic field : no restricted
1.7 Controlsettings : Brightness, Contrast, Tint, Color set at Center(50)
1.8 Powerinput : 100~120Vac
1.9 Ambient temperature : $\quad 20^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F} \pm 9^{\circ} \mathrm{F}\right)$
1.10 Display mode : $31.5 \mathrm{KHz} / 60 \mathrm{~Hz}$ (Resolution 1366×768)
1.11 Otherconditions :
1.11.1 With image sticking protection of PDP module, the luminance will descend by time on a same still screen and rapidly go down in 5 minutes. When measuring the color tracking and luminance of a same still screen, be sure t o accomplish the measurement in one minute to ensure its accuracy.
1.11.2 Due to the structure of PDP, the extra-high-bright same screen should not hold over 5 minutes for fear of branding on the panel.

Technical	Specifications	PDP-5025M	continuation page number $\mathbf{3}$ of $\mathbf{1 0}$ pages

ELECTRICAL CHARACTERISTICS

2. Power Input

2.1	Voltage	$:$	$100 \sim 120 \mathrm{VAC}$
2.2	Input Current	$:$	$5.0 / 2.5 \mathrm{~A}$
2.3	Maximum Inrush Current	\vdots	$<30 \mathrm{~A}$ (FOR AC110V ONLY)
Test condition	$:$	Measured when switched off for at least 20 mins	
2.4	Frequency		50 Hz to $60 \mathrm{~Hz}(\pm 3 \mathrm{~Hz})$
2.5	Power Consumption	\vdots	450 W Typical full white display with maximum brightness and Test condition
			Meets IEC $1000-3-2$

3. Display
3.1 Screen Size
3.2 Aspect Ratio
3.3 Pixel Resolution
3.4 Peak Brightness
3.5 Contrast Ratio (Dark room)
3.6 Viewing Angle
3.7 OSD language

50" Plasma display
16:9
1366×768
$1000 \mathrm{~cd} / \mathrm{m}^{2}$ (Typical, Panel only)
5000:1 (Ratio, Typical, in a dark room, Panel only)
Over 160°
English,Spanish,French
4. Signal
4.1 AV \& Graphic input
4.1.1 Composite signal
4.1.2 Y,C Signal
4.1.3 Component signal
4.1.4 Graphic I/P
4.1.5EDID compatibility
4.1.6 I/P frequency

CVBS

S-Video
Y PbPr1, YPbPr2, HDMI compatible
Analog: D-sub 15pin detachable cable Digital : HDMII
DDC 1.3
$\mathrm{f}_{\mathrm{H}}: 31.5 \mathrm{kHz}$ to $60 \mathrm{kHz} / \mathrm{fv}: 56.25 \mathrm{~Hz}$ to 75 Hz ($1024 \mathrm{X} 76 \varepsilon$ recommended)

4.2 Audio input

VGA (D-Sub 15 pin Type) $\times 1$
D-Sub 9 Pin (RS-232 Input) $\times 1$
HDMI (Ver. 1.1) connector $\times 1$
S-Video (Mini Din 4 Pin) $\times 1$
Video (RCA Type) $\times 1$
YpbPr1/YpbPr2 $\times 1$
Stereo/Audio $\times 6$
4.3 Audio output \quad Audio $(L+R) \times 1 \quad$ Video (RCA Type) $\times 1 \quad$ SPDIF (Optical) $\times 1$

PIP/POP/PBP, Picture size, Picture Still, Sound mode,Last memory, Timer, MTS

5. Environment

5.1 Operating environment
5.1.1 Temperature : 5° to $33^{\circ} \mathrm{C}$
5.1.2 Relative humidity: $\quad 20 \%$ to 85% (non-condensing)

5.2 Storage and Transport

5.2.1 Temperature: $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
5.2.2 Relative humidity: 5% to 95%

6. Panel Characteristics

6.1	Type	$:$	S50HW-XD03
6.2	Size	$:$	$50 ", 1106.5 \mathrm{~mm}(\mathrm{~W}) \times 622.1 \mathrm{~mm}(\mathrm{H})$
6.3	Aspect ratio	$:$	$16: 9$
6.4	Viewing angle	\vdots	Over 160°
6.5	Resolution	\vdots	1366×768
6.6	Weight	\vdots	$22.0 \mathrm{~kg} \pm 0.5 \mathrm{~kg}$ (Net)
6.7	Color	\vdots	16.7 millions of colors (R/G/B each 256 scales) 6.8 Contrast
		Average $60: 1$ (In a bright room with 150 Lux at center) Typical $5000: 1$ (In a dark room $1 / 100$ White Window pattern at center).	
6.9	Peak brightness :Typical $1000 \mathrm{~cd} / \mathrm{m}^{2}(1 / 25$ White Window)		

6.10 Color Coordinate Uniformity: Contrast; Brightness and Color control at normal

Test Pattern

setting Full white pattern

Average of point A, B, C, D and $E+/-0.01$

Technical	Specifications	PDP-5025M	COntinuation Page NUMBER $\quad 5 \quad$ OF

6.11 Color temperature : Contrast at center (50); Brightness center (50); Colortemperature set at Natural $\mathrm{x}=0.285 \pm 0.02$
$y=0.290 \pm 0.02$

6.12 Cell Defect Specifications

Subject to Panel supplier specification as appends.
7. Front Panel Control Button

7.1 SET Up / Down Button	$:$	Push the key to select Item up or down. When selecting the item on OSD menu. Push the key to increase the volume left or right. When selecting the adjusting item on OSD menu
Volume Left/Right Butt	$:$increase or decrease the data-bar.	
Enter to the OSD menu.		
Menu Button	$:$Press this button and use up/down button to sellect the signal sources. AV, S-Video, YPbPr1,YPbPr2 Source Select Button	VGA or HDMI.

7.2 Stand by Button

7.3 Main Power Switch : Turn on or off the unit.
8. OSD Function
8.1 Picture : State (Normal,Dark,Bright,User); Display (Bright,contrast,Color,Hue)

Temp (warm,Cool,Normal,User);
Position (H-posit, V-posit,Phase,H-size,Auto Adjust)
8.2 Sound : Setup (Mode,AVC,Volume,Balance);

Equalizer ($120 \mathrm{HZ}, 500 \mathrm{HZ}, 1.5 \mathrm{KHZ}, 5 \mathrm{KHZ}, 10 \mathrm{KHZ}$)
BBE Setup (Gain,Treble,Bass)
8.3 OSD : Size (Panorama, 16:9,Normal,Anamorphic,Letter Box,TV Mode)

OSD Set (Language, OSD Position,Time Out)
Option (Burn Protect, Version) V-Chip, C/C
8.4 Layout: Layout (Full Screen,PIP,Split Screen,Grid,POP 3,POP 12) PIP Set (Sub Win Source, Sub Win Size, PIP Size.PIP Position)
8.5 Time : Sleep (30Min,60Min,90Min,120Min,180Min)

Wake Up (Time Edit, Volume,TV Mode,Channel)
Time Set

9. Agency Approvals

Safety UL/FCC/cUL
Emissions FCC class B
10. Reliability
11.1 MTBE : 20,000 hours(Use moving picture signal at $25^{\circ} \mathrm{C}$ ambient)

User manual x 1 , Remote control x 1 , Stand x 1 , Battery $\times 2$, Accessories box $\times 1$, AC Cable $\times 1$

Technical	Specifications	PDP-5025M	CONTINUATION PAGE NUMBER_7_OF_10_ PAGES

12. Support the Signal Mode

A. HDMI Mode / D-Sub Mode (VGA or DVI) / HDTV Mode (YpbPr1 or YpbPr2)

4.4 Remote Control

1 POWER(c): Press this button to turn off to standby and turn on from standby.
2 MUTE(财): Press this button to quiet the sound system. Press again to reactivate the sound system.
3 P.STILL: Press this button to hold on the screen. Press again to normal.
4 P.SIZE: When the input source is YPbPr 1 , YPbPr 2, VGA or HDMI, press this button, the picture will change according to Fill All, Force 4:3, Letter Box, Wide or Anamorphic. When the input source is AV or S-Video, press this button, the picture will change according to Fill All, 4:3, Letter Box, Wide or Anamorphic.
5 S.SELE: Press this button to select the sound output from Main Window or Sub Window.
6 P.MODE : Press the button to select different picture effect.
7 TIME: Press this button to pop up the "Clock Set" menu.
8 SLEEP: Press this button to select the sleep time.
9 INFO: Press the button to display the source information.
10 AUTO: The Display automatically adjusts the phase, vertical / horizontal position when pressing this button in VGA mode.
11 LAYOUT: Press this button to pop up Layout menu.
$12 \mathrm{C} / \mathrm{C}$: Press this button to enter the Closed Caption Function. (Only for AV or S-Video)
13 V-CHIP: Press this button to enter the V-Chip Function. (Only for AV or S-Video)
14 Number buttons: Use these buttons to enter the password.
(Continued on next page)

15 SWAP: Press this button to switch the Main window or Sub window pictures in PIP and Split Screen.
16 F.WHITE: Press this button to show a full white picture.
17 PIP POS. : Press the button to select different Image Position in PIP Mode.
18PIP SIZE : Press the button to select different Image Size in PIP Mode.
19 SPEAKER: Press this button to pop up the "Speaker" menu, use the $\boldsymbol{\|} \mid$ button to select "Internal" or "External".
20 SOUND: Press the button to select different sound effect.
21 W.SELE: Press this button to select the Main Window or Sub Window.
22 SOURCE: Press this button and use $\mathbf{\Delta} / \boldsymbol{\nabla}$ button to select the signal sources. AV, S-Video, YPbPr 1, YPbPr 2, VGA or HDMI.
23 PIP: Press this button to change different Picture Mode.
24 MENU: Press this button to pop up the OSD Menu and press it again to exit the OSD Menu.
25 OK : Press to enter or confirm.
26 / $/$: They are used as $4 /$ buttons in the OSD Menu screen and they can be used for the adjustment of volume when the OSD Menu is not shown on the screen.
$\boldsymbol{\Delta} / \boldsymbol{\nabla}$: They are used as $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ buttons in the OSD Menu screen.
They also can be used for the selection of the program when the OSD Menu is not shown on the screen, but only for the Model with Tuner.

Technical Specifications	PDP-5025M	CONTINUATION PAGE number 10 of 10 pages

PHYSICAL CHARACTERISTICS

14. Power Cord

Length : 1.8m nominal
Type : optional
15. Cabinet
15.1 Color : black colour as defined by colour plaque reference number
15.2 Weiaht

Net weight	$:$	51 kg
Gross weight	$:$	74 kg

15.3 Dimensions	(W/O stand\&handles)
Width	1227.8 mm
Height	739.8 mm
Depth	100.5 mm

[^0]Block Diagram

Circuit Diagram

- Power supply board of Audio Amplifier,
- Main (Video) board
- Audio/Tuner board
- Keypad board
- Remote control receiver board
- Remote control board

MPT012A

REMOTE PCB

REMOTE CONTROL CODE ASSIGNMENT

KEY NO.	KEY NAME	DATA CODE	KEY NO.	KEY NAME	DATA CODE
	POWER	00	K33	dumb	40
K2	1	01	K34	dumb	41
K3	2	02	K35	dumb	42
K4	3	03	K36	dumb	43
K5	P.MODE	04	K37	MUTE	44
K6	4	05	K38	INF0	45
K7	5	06	K39	nil	46
K8	6	07	K40	nil	47
K9	nil	08	K41	100	48
K10	7	09	K42	PREV	49
K11	8	$0 A$	K43	P.STILL	$4 A$
K12	9	$0 B$	K44	SOUND	$4 B$
K13	MTS	$0 C$	K45	SLEEP	$4 C$
K14	nil	$0 D$	K46	TIME	$4 D$
K15	S.SELE	$0 E$	K47	Picture	$4 E$
K16	OK	$0 F$	K48	CH Erase	$4 F$
K17	CH.+	10	K49	CH Save	50
K18	VOL.+	11	K50	C/C	51
K19	VOL.-	12	K51	V-CHIP	52
K20	CH.-	13	K52	nil	53
K21	MENU	14	K53	nil	54
K22	Source	15	K54	nil	55
K23	nil	16	K55	nil	56
K24	P.SIZE	17	K56	nil	57
K25	0	18	K57	nil	58
K26	F.White	19	K58	nil	59
K27	PIP Source	$1 A$	K59	nil	$5 A$
K28	EXIT	$1 B$	K60	nil	$5 B$
K29	PIP	$1 C$	K61	nil	$5 C$
K30	SWAP	$1 D$	K62	nil	$5 D$
K31	PIP CH-	$1 E$	K63	nil	$5 E$
K32	PIP CH+	$1 F$	K64	nil	$5 F$

CUSTOM CODE: 20DD

FOR NTSC

Basic Operations \& Circuit Description

MODULE

There are 1 pc . panel and $12 \mathrm{pc.s}$ PCB including $2 \mathrm{pc.s} \mathrm{Y} / \mathrm{Z}$ Sustainer board, $2 \mathrm{pc} . \mathrm{s} \mathrm{Y}$ Drive board, $6 \mathrm{pc} . \mathrm{s} \mathrm{X}$ Extension boards, 1 pc . Control (Signal Input) and 1 pc . Power board in the Module.

SET

There are 6 pc.s PCBs including 1 pc. AUX. PSU Board, 1 pc. Keypad board, 1 pc.
Remote Control Receiver board, 1 pc. L/R Speakers and 1 pc. Main (Video) board in the SET.

PCB function

1. Power:
(1). Input voltage: AC $100 \mathrm{~V} \sim 120 \mathrm{~V}, 45 \mathrm{~Hz} \sim 60 \mathrm{~Hz}$.

Input range: $\mathrm{AC} 90 \mathrm{~V}(\mathrm{Min}) \sim 265 \mathrm{~V}(\mathrm{Max})$ auto regulation.
(2). To provide power for PCBs.
2. Main (Video InterFace) board: To converter TV signals, S signals, AV signals, $\mathrm{Y} \mathrm{Pb} /$ $\mathrm{Cb} \mathrm{Pr} / \mathrm{Cr}$ signals, DVI signals and D-SUB signals to digital ones and to transmit to Control board.
3. Control board: Dealing with the digital signal for output to panel.
4. Y-Sustainer / Z-Sustainer board:
(1). Receiving the signals from Control and high voltage supply.
(2). Output scanning waveform for Module.
5. Y-Drive board: Receive signal from Y sustainer, output horizontal scanning waveform to the panel.
6. X extension board (6pcs): Output addressing signals.
7. Tuner/Audio Board: Process and Amplifying the audio signal to speakers and convert TV RF signal to video/audio signal and send to Main board.

PCB failure analysis

1. CONTROL : a. Abnormal noise on screen. b. No picture.
2. MAIN (video) : a. Lacking color, Bad color scale.
b. No voice.
c. No picture but with signals output, OSD and back light.
d. Abnormal noise on screen.
3. POWER : No picture, no power output.
4. Z-Sustainer : a. No picture.
b. Color not enough.
c. Flash on screen.
5. Y-Sustainer: Darker picture with signals.
6. X -Extension : Abormal vertical noise on screen.
7. Audio Board or AUX PSU: a. No voice. (Make sure Mute/OFF) .
b. Noise.

Basic operation of Plasma Display

1. After turning on power switch, power board sends 5Vst-by Volt to Micro Processor
2. The micro Processor memorize the last state of Power, When the last state of power is on or receive power on signal from local Key or Remote control, Micro Processor will send on control signal to power. Then Power sends (5Vsc, 9Vsc, 24 V and RLYON, Vs ON) to PCBs working. This time VIF will send signals to display Image, OSD on the panel and start to search available signal sources. If the audio signals input, them will be amplified by Audio AMP and transmitted to Speakers.
3. If some abnormal signals are detected (for example: over volts, over current, over temperature and under volts), the system will be shut down by Power off.

Main IC Specifications

- PW181 Image Processor, Scaler
- PW1231 Digital Video Signal Processor
- VPC 323XD Comb-filter Video Processor
- Z86229 NTSC Line 21 CCD decorder
- MSP34x0G Multistandard Sound Processor
-AD9880 Analog/HDMI Dual Display Interface
-PI5V330 Wideband/Video Quad 2-Channel MUX/DEMUX
-SM5304AV Video Buffer with Built-in Analog LPF
-TDA2616 2 X 12 W hi-fi audio power amplifier with mute
-SAA5360 Multi page intelligent teletext decoder
-AT24C32 Z-Wire Serial EEPROM
-HT48R06A-1 8-Bit Cost-Effective I/O Type MCU

General Description

The PW181 ImageProcessor is a highly integrated "system-on-a-chip" that interfaces computer graphics and video inputs in virtually any format to a fixed-frequency flat panel display.
Computer and video images from NTSC/PAL to WUXGA at virtually any refresh rate can be resized to fit on a fixedfrequency target display device with any resolution up to WUXGA. Video data from 4:3 aspect ratio NTSC or PAL and $16: 9$ aspect ratio HDTV or SDTV is supported. Multiregion, nonlinear scaling allows these inputs to be resized optimally for the native resolution of the display.
Advanced scaling techniques are supported, such as format conversion using multiple programmable regions. Three independent image scalers coupled with frame locking circuitry and dual programmable color lookup tables create sharp images in multiple windows, without user intervention.

Embedded SDRAM frame buffers and memory controllers perform frame rate conversion and enhanced video processing completely on-chip. A separate memory is dedicated to storage of on-screen display images and CPU general purpose use.

Advanced video processing techniques are supported using the internal frame buffer, including motion adaptive, temporal deinterlacing with film mode detection. When used in combination with the new third-generation scaler, this advanced video processing technology delivers the highest quality video for advanced displays.

Both input ports support integrated DVI 1.0 content protection using standard DVI receivers.
A new advanced OSD Generator with more colors and larger sizes supports more demanding OSD applications, such as on-screen programming guides. When coupled with the new, faster, integrated microprocessor, this OSD Generator supports advanced OSD animation techniques.

Programmable features include the user interface, custom start-up screen, all automatic imaging features, and special screen effects.

Features

- Third-generation, two-dimensional filtering techniques
- Third-generation, advanced scaling techniques
- Second-generation Automatic Image Optimization
- Frame rate conversion
- Video processing
- On-Screen Display (OSD)
- On-chip microprocessor
- JTAG debugger and boundary scan
- Picture-in-picture (PIP)
- Multi-region, non-linear scaling
- Hardware 2-wire serial bus support

Applications

- Multimedia Displays
- Plasma Displays
- Digital Television

Device	Application	Package
PW181-10V	Up to XGA Displays	352 PBGA
PW181-20V	Up to UXGA Displays	

pixelworks

8100 SW Nyberg Road
Tualatin, OR 97062 USA
Telephone: 503.454.1750
FAX:503.612.0848
www.pixelworks.com 110 MSPS/140 MSPS Analog Interface for Flat Panel Displays

AD9883A

FEATURES

140 MSPS Maximum Conversion Rate
300 MHz Analog Bandwidth
0.5 V to 1.0 V Analog Input Range

500 ps p-p PLL Clock Jitter at 110 MSPS
3.3 V Power Supply

Full Sync Processing
Sync Detect for "Hot Plugging"
Midscale Clamping
Power-Down Mode
Low Power: 500 mW Typical
4:2:2 Output Format Mode

APPLICATIONS

RGB Graphics Processing
LCD Monitors and Projectors
Plasma Display Panels
Scan Converters
Microdisplays
Digital TV

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The AD9883A is a complete 8 -bit, 140 MSPS monolithic analog interface optimized for capturing RGB graphics signals from personal computers and workstations. Its 140 MSPS encode rate capability and full power analog bandwidth of 300 MHz supports resolutions up to SXGA (1280×1024 at 75 Hz).
The AD9883A includes a 140 MHz triple ADC with internal 1.25 V reference, a PLL, and programmable gain, offset, and clamp control. The user provides only a 3.3 V power supply, analog input, and Hsync and COAST signals. Three-state CMOS outputs may be powered from 2.5 V to 3.3 V .

The AD9883A's on-chip PLL generates a pixel clock from the Hsync input. Pixel clock output frequencies range from 12 MHz to

140 MHz . PLL clock jitter is 500 ps p-p typical at 140 MSPS . When the COAST signal is presented, the PLL maintains its output frequency in the absence of Hsync. A sampling phase adjustment is provided. Data, Hsync, and clock output phase relationships are maintained. The AD9883A also offers full sync processing for composite sync and sync-on-green applications.

A clamp signal is generated internally or may be provided by the user through the CLAMP input pin. This interface is fully programmable via a 2 -wire serial interface.

Fabricated in an advanced CMOS process, the AD9883A is provided in a space-saving 80 -lead LQFP surface-mount plastic package and is specified over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights ofthird parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

General

The PW1231A is a high-quality, digital video signal processor that incorporates Pixelworks' patented deinterlacing, scaling, and video enhancement algorithms. The PW1231A accepts industry-standard video formats and resolutions, and converts the input into many desired output formats. The highly efficient video algorithms result in excellent quality video.

The PW1231A combines many functions into a single device, including a memory controller, auto-configuration, and others. This high level of integration enables simple, flexible, cost-effective solutions that require fewer components.

Features

- Built-In Memory Controller
- Motion-Adaptive Deinterlace Processor
- Intelligent Edge Deinterlacing
- Digital Color/Luminance Transient Improvement (DCTI/DLTI)
- Interlaced Video Input Options, including NTSC and PAL
- Independent horizontal and vertical scaling
- Copy Protection
- Two-Wire Serial Interface

Applications: For use with Digital Displays

- Flat-Panel (LCD, DLP) TVs
- Rear Projection TVs
- Plasma Displays
- LCD Multimedia Monitors
- Multimedia Projectors

Device	Application	Package
PW1231A	Up to XGA	160-pin PQF
PW1231AL		

NOTE: " L " denotes lead (Pb) free

pixelworks

Preliminary Datasheet 3/26/2004 AD9880

FEATURES
Analog/HDMI Dual Interface
Supports High-Bandwidth Digital Content Protection
RGB to YCbCr two-way color conversion
Automated clamping level adjustment
1.8/3.3V Power Supply

100-pin LQFP Pb-Free Package
RGB and YCbCr Output Formats
Analog Interface
8-bit Triple Analog to Digital Converters
150 MSPS Maximum Conversion Rate
Macrovision Detection
2:1 Input Mux
Full Sync Processing
Sync Detect for "Hot Plugging"
Mid-Scale Clamping
Digital Video Interface
HDMI 1.0, DVI 1.0
150 MHz HDMI Receiver
Supports High-Bandwidth Digital Content Protection (HDCP 1.1)
Digital Audio Interface
HDMI 1.0 compatible audio interface
S/PDIF (IEC90658 compatible) digital audio output
Multi-channel $\mathrm{I}_{2} \mathrm{~S}$ audio output (up to 8 channels)

APPLICATIONS

Advanced TV
HDTV
Projectors

LCD Monitor

GENERAL DESCRIPTION
The AD9880 offers designers the flexibility of an analog interface and High-Definition Multimedia Interface (HDMI) receiver integrated on a single chip. Also included is support for High bandwidth Digital Content Protection (HDCP).
Analog Interface
The AD9880 is a complete 8 -bit 150 MSPS monolithic analog interface optimized for capturing Component Video (YPbPr) and RGB graphics signals. Its 150 MSPS encode rate capability and full power analog bandwidth of 300 MHz supports all HDTV formats (up to 1080p) and FPD resolutions up to SXGA (1280 x 1024 at 75 Hz).
The analog interface includes a 150 MHz triple ADC with internal 1.25 V reference, a Phase Locked Loop (PLL), and programmable gain, offset, and clamp control. The user provides only 1.8 V and 3.3 V power supply, analog input, and Hsync.
Three-state CMOS outputs may be powered from 1.8 V to 3.3 V .
The AD9880's on-chip PLL generates a pixel clock from Hsync.
Pixel clock output frequencies range from 12 MHz to 150 MHz .

FUNCTIONAL BLOCK DIAGRAM

PLL clock jitter is typically less than 500 ps p -p at 150 MHz . The AD9880 also offers full sync processing for composite sync and Sync-on-Green (SOG) applications.
Digital Interface
The AD9880 contains a HDMI 1.0 compatible receiver and supports all HDTV formats (up to 1080p) and display resolutions up to SXGA (1280×1024 at 75 Hz). The receiver features an intra-pair skew tolerance of up to one full clock cycle. With the inclusion of HDCP , displays may now receive encrypted video content. The AD9880 allows for authentication of a video receiver, decryption of encoded data at the receiver, and renewability of that authentication during transmission as specified by the HDCP 1.1 protocol.
Fabricated in an advanced CMOS process, the AD9880 is provided in a space-saving $100-$ lead LQFP surface-mount plastic package and is specified over the $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range.
information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Comb Filter Video Processor

1. Introduction

The VPC $323 x D$ is a high-quality, single-chip video front-end, which is targeted for $4: 3$ and $16: 9,50 / 60-\mathrm{Hz}$ and $100 / 120 \mathrm{~Hz}$ TV sets. It can be combined with other members of the DIGIT3000 IC family (such as DDP 331x) and/or it can be used with 3rd-party products.

The main features of the VPC $323 \times D$ are

- high-performance adaptive 4H comb filter Y/C separator with adjustable vertical peaking
- multi-standard color decoder PAL/NTSC/SECAM including all substandards
- four CVBS, one S-VHS input, one CVBS output
- two RGB/YCr C_{b} component inputs, one Fast Blank (FB) input
- integrated high-quality A/D converters and associated clamp and AGC circuits
- multi-standard sync processing
- linear horizontal scaling (0.25 ... 4), as well as non-linear horizontal scaling 'Panoramavision'
- PAL+ preprocessing
- line-locked clock, data and sync, or 656-output interface
- peaking, contrast, brightness, color saturation and tint for RGB/YCr C_{b} and CVBS/S-VHS
- high-quality soft mixer controlled by Fast Blank
- PIP processing for four picture sizes $\left(\frac{1}{4}, \frac{1}{9}, \frac{1}{16}\right.$, or $\frac{1}{36}$ of normal size) with 8-bit resolution
- 15 predefined PIP display configurations and expert mode (fully programmable)
- control interface for external field memory
- $1^{2} \mathrm{C}$-bus interface
- one $20.25-\mathrm{MHz}$ crystal, few external components
- 80-pin PQFP package

1.1. System Architecture

Fig.1-1 shows the block diagram of the video processor

Fig. 1-1: Block diagram of the VPC $323 \times D$

Z86229
 NTSC Line 21 CCD Decoder

FEATURES

				Automatic Data Extraction		
Devices	Speed (MHz)	Pin Count/ Package Types	Standard Temp. Range	On-Screen Display \& Closed Captioning	Program Rating	Time of Day
Z86229	12	18-Pin DIP, SOIC	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Yes	Yes	Yes

- Complete Stand-Alone Line 21 Decoder for ClosedCaptioned and Extended Data Services (XDS)
- Preprogrammed to Provide Full Compliance with EIA-608 Specifications for Extended Data Services
- Automatic Extraction and Serial Output of Special XDS Packets (Time of Day, Local Time Zone, and Program Blocking)
- Programmable XDS Filter for a Specific XDS Packet
- Cost-Effective Solution for NTSC Violence Blocking inside Picture-in-Picture (PiP) Windows
- Minimal Communications and Control Overhead Provide Simple Implementation of Violence Blocking, Closed Captioning, and Auto Clock Set Features
- Programmable, On-Screen Display (OSD) for Creating Full Screen OSD or Captions inside a Picture-inPicture (PiP) Window
- User-Programmable Horizontal Display Position for easy OSD Centering and Adjustment
- $I^{2} \mathrm{C}$ Serial Data and Control Communication
- Supports 2 Selectable $I^{2} \mathrm{C}$ Addresses

GENERAL DESCRIPTION

Capable of processing Vertical Blanking Interval (VBI) data from both fields of the video frame in data, the Z86229 Line 21 Decoder offers a feature-rich solution for any television or set-top application. The robust nature of the Z86229 helps the device conform to the transmission format defined in the Television Decoder Circuits Act of 1990, and in accordance with the Electronics Industry Association specification 608 (EIA-608).
The Line 21 data stream can consist of data from several data channels multiplexed together. Field 1 consists of four data channels: two Captions and two Texts. Field 2 consists of five additional data channels: two Captions, two Texts, and Extended Data Services (XDS). The XDS data structure is
defined in EIA-608. The Z86229 can recover and display data transmitted on any of these nine data channels.
The Z86229 can recover and output to a host processor via the $I^{2} \mathrm{C}$ serial bus. The recovered XDS data packet is further defined in the EIA-608 specification. The on-chip XDS filters in the Z86229 are fully programmable, enabling recovery of only those XDS data packets selected by the user. This functionality allows the device to extract the required XDS information with proper XDS filter setup for compatibility in a variety of TVs, VCRs, and Set-Top boxes.
In addition, the Z86229 is ideally suited to monitor Line 21 video displayed in a PiP window for violence blocking, CCD, and other XDS data services. A block diagram of the Z86229 is illustrated in Figure 1.

Multistandard Sound Processor Family

Release Note: Revision bars indicate significant changes to the previous edition. The hardware and software description in this document is valid for the MSP 34x0G version B8 and following versions.

1. Introduction

The MSP 34x0G family of single-chip Multistandard Sound Processors covers the sound processing of all analog TV-Standards worldwide, as well as the NICAM digital sound standards. The full TV sound processing, starting with analog sound IF signal-in, down to processed analog AF-out, is performed on a single chip. Figure 1-1 shows a simplified functional block diagram of the MSP $34 \times 0 \mathrm{G}$.

This new generation of TV sound processing ICs now includes versions for processing the multichannel television sound (MTS) signal conforming to the standard recommended by the Broadcast Television Systems Committee (BTSC). The DBX noise reduction, or alternatively, Micronas Noise Reduction (MNR) is performed alignment free.

Other processed standards are the Japanese FM-FM multiplex standard (EIA-J) and the FM Stereo Radio standard.

Current ICs have to perform adjustment procedures in order to achieve good stereo separation for BTSC and EIA-J. The MSP $34 \times 0 \mathrm{G}$ has optimum stereo performance without any adjustments.

All MSP 34xxG versions are pin compatible to the MSP 34xxD. Only minor modifications are necessary to adapt a MSP $34 x x D$ controlling software to the MSP 34xxG. The MSP 34x0G further simplifies controlling software. Standard selection requires a single $I^{2} \mathrm{C}$ transmission only.

The MSP 34x0G has built-in automatic functions: The $I C$ is able to detect the actual sound standard automatically (Automatic Standard Detection). Furthermore, pilot levels and identification signals can be evaluated internally with subsequent switching between mono/ stereo/bilingual; no $\mathrm{I}^{2} \mathrm{C}$ interaction is necessary (Automatic Sound Selection).

The MSP 34x0G can handle very high FM deviations even in conjunction with NICAM processing. This is especially important for the introduction of NICAM in China.

The ICs are produced in submicron CMOS technology. The MSP $34 \times 0 \mathrm{G}$ is available in the following packages: PLCC68 (not intended for new design), PSDIP64, PSDIP52, PQFP80, and PLQFP64.

Fig. 1-1: Simplified functional block diagram of the MSP $34 \times 0 \mathrm{G}$

PI5V330

Low ON Resistance Wideband/Video Quad 2-Channel MUX/DEMUX

Product Features:

- High-performance, low-cost solution to switch between video sources
- Wide bandwidth: 200 MHz
- Low ON-resistance: 3Ω
- Low crosstalk at $10 \mathrm{MHz}:-58 \mathrm{~dB}$
- Ultra-low quiescent power ($0.1 \mu \mathrm{~A}$ typical)
- Single supply operation: +5.0 V
- Fast switching: 10 ns
- High-current output: 100 mA
- Packages available:
- 16-pin 300-mil wide plastic SOIC (S)
- 16-pin 150 -mil wide plastic SOIC (W)
- 16-pin 150-mil wide plastic QSOP (Q)

Functional Block Diagram

Truth Table

$\overline{\mathbf{E N}}$	IN	ON Switch
0	0	S1A, S1B, S1c, S1D $^{\text {A }}$,
0	1	S2A, S2B, S2C, S2D
1	X	Disabled

Product Description:

Pericom Semiconductor's PI5V series of mixed signal video circuits are produced in the Company's advanced CMOS low-power technology, achieving industry leading performance.
The PI5V330 is a true bidirectional Quad 2-channel multiplexer/demultiplexer that is recommended for both RGB and composite video switching applications. The VideoSwitch ${ }^{\mathrm{TM}}$ can be driven from a current output RAMDAC or voltage output composite video source.
Low ON-resistance and wide bandwidth make it ideal for video and other applications. Also this device has exceptionally high current capability which is far greater than most analog switches offered today. A single 5 V supply is all that is required for operation.
The PI5V330 offers a high-performance, low-cost solution to switch between video sources. The application section describes the PI5V330 replacing the HC4053 multiplier and buffer/amplifier.

16-Pin Product Configuration

Product Pin Description

Pin Name	Description
$\begin{aligned} & \hline \mathrm{S}_{1 \mathrm{~A}}, \mathrm{~S} 2_{\mathrm{A}} \\ & \mathrm{~S}_{\mathrm{B}}, \mathrm{~S} 2_{\mathrm{B}} \\ & \mathrm{~S} 1_{\mathrm{C}}, \mathrm{~S} 2_{\mathrm{C}} \\ & \mathrm{~S} 1_{\mathrm{D}}, \mathrm{~S} 2 \mathrm{D} \end{aligned}$	Analog Video I/O
IN	Select Input
$\overline{\mathrm{EN}}$	Enable
$\begin{aligned} & \mathrm{DA}_{\mathrm{A}}, \mathrm{DB}_{\mathrm{B}} \\ & \mathrm{D}_{\mathrm{C}}, \mathrm{D}_{\mathrm{D}} \end{aligned}$	Analog Video I/O
GND	Ground
Vcc	Power

OVERVIEW

The SM5304AV is a 75Ω terminating resistance drive video buffer with built-in analog filter. The filter cutoff frequency, controlled by the resistance connected to RFC pin, can be set to match any system resolution. The output buffer can be selected $0 \mathrm{~dB}, 6 \mathrm{~dB}$, and 12 dB . The feedback point occurs after the external coupling capacitors, and the coupling capacitances can be reduced.

FEATURES

- $5 \mathrm{~V} \pm 10 \%$ supply voltage
- Adjustable cutoff frequency using external resistor
- $0 \mathrm{~dB}, 6 \mathrm{~dB}, 12 \mathrm{~dB}$ selectable gain using logic signal
$\pm 0.5 \mathrm{~dB}$ output gain error
- Two systems (two load resistances) can be driven
- 0.7% output signal harmonic distortion
- Sag compensation circuit built-in
- Package: 8-pin VSOP (Pb free)

APPLICATIONS

- DVD
- Digital still camera
- Digital VHS

ORDERING INFORMATION

Davice	Package
SM5304AV	B-pin VSOP

PINOUT
(Top view)

PACKAGE DIMENSIONS

(Unit: mm)
Weight: 0.04 g

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	10^{1}	$A D^{2}$	Description
1	VIN	1	A	Input signal pin
2	ENable	I	0	Enable signal input pin (with pull-down resistor)
3	RFC	0	A	LPF cujoff frequency sel pin
4	VCC	*	-	5V supply pin
5	GND	-	-	Ground pin
6	VOUT	0	A	Oulput signal pin
7	VF	I	A	Output signar feedhack pin for sag compensation circuit
B	GSEL	I	0	Gain sat signal input pin

1. I: input, O: output
2. A: anolog, D: tigital

$2 \times 12 \mathrm{~W}$ hi-fi audio power amplifiers with mute

FEATURES

- Requires very few external components
- No switch-on/switch-off clicks
- Input mute during switch-on and switch-off
- Low offset voltage between output and ground
- Excellent gain balance of both amplifiers
- Hi-fi in accordance with IEC 268 and DIN 45500
- Short-circuit proof and thermal protected
- Mute possibility.

GENERAL DESCRIPTION

The TDA2616 and TDA2616Q are dual power amplifiers. The TDA2616 is supplied in a 9 -iead single-in-line (SIL9) plastic power package (SOT131), while the TDA2616Q is supplied in a 9 -lead SIL-bent-to-DIL plastic power package (SOT157). They have been especially designed for mains fed applications, such as stereo radio and stereo TV.

QUICK REFERENCE DATA

Stereo application

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\pm \mathrm{V}_{\mathrm{P}}$	supply voltage range		7.5	-	21	V
Po	output power	$V_{P}= \pm 16 \mathrm{~V} ; \mathrm{THD}=0.5 \%$	-	12	-	W
G_{V}	internal voltage gain		-	30	-	dB
$\left\|G_{v}\right\|$	channel unbalance		-	0.2	-	dB
α	channel separation		-	70	-	dB
SVRR	supply voltage ripple rejection		-	60	-	dB
$V_{n o}$	noise output voltage		-	70	-	$\mu \mathrm{V}$

ORDERING INFORMATION

EXTENDED TYPE NUNBER	PACKAGE			
	PINS	PIN POSITION	MATERIAL	CODE
TDA2616	9	SIL	plastic	SOT131 ${ }^{(1)}$
TDA2616Q	9	SIL-bent-to-DIL	plastic	SOT157 (2)

Notes

1. SOT131-2; 1996 August 27.
2. SOT157-2; 1996 August 27.
$2 \times 12 \mathrm{~W}$ hi-fi audio power amplifiers with mute

Fig. 1 Block diagram.

1 FEATURES

- Support for 50 or 60 and 100 or 120 Hz and progressive scan display modes
- Complete 625 line teletext decoder in one chip reduces printed-circuit board area and cost
- Automatic detection of transmitted fastext links or service information (packet 8/30)
- On-Screen Display (OSD) for user interface menus using teletext and dedicated menu icons
- Video Programming System (VPS) decoding
- Wide Screen Signalling (WSS) decoding
- Pan-European, Cyrillic, Greek, Turkish, Arabic and Iranian character sets in each chip
- High-level command interface via $1^{2} \mathrm{C}$-bus gives easy control with a low software overhead
- High-level command interface is backward compatible to Stand-Alone Fastext And Remote Interface (SAFARI)
- 625 and 525 line display
- RGB interface to standard colour decoder ICs; current source
- Versatile 8-bit open-drain Input/Output (//O) expander: 5 V tolerant
- Single 12 MHz crystal oscillator
- Single power supply: from 3.0 V to 3.6 V
- Operating temperature: -20 to $+70^{\circ} \mathrm{C}$
- Automatic detection of transmitted pages to be selected by page up and page down

- 8 page fastext decoder
- Table Of Pages (TOP) decoder with Basic Top Table (BTT) and Additional Information Tables (AITs)
- 4 page user-defined list mode.

2 GENERAL DESCRIPTION

The SAA5360; SAA5361 is a single-chip multi page 625 line world system teletext decoder with a high-level command interface, and is SAFARI compatible.

The device is designed to minimize the overall system cost, due to the high-level command interface offering the benefit of a low software overhead in the TV microcontroller.

The SAA5360 incorporates the following functions:

- 10 page teletext decoder with OSD, fastext, TOP, default and list acquisition modes
- Automatic channel installation support.

The functionality of the SAA5361 is similar to the SAA5360, but offers the capability to store up to 250 additional pages of teletext in an external SRAM.

3 QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {DD }}$	all supply voltages	referenced to $V_{\text {SS }}$	3.0	3.3	3.6	V
lodp	periphery supply current	note 1	1	-	-	$m A$
IDDC	core supply current	normal mode	-	15	18	mA
		idle mode	\checkmark	4.6	6	mA
IDDA	analog supply current	normal mode	-	45	48	mA
		idle mode	-	0.87	1	mA
$\mathrm{f}_{\text {xal(}}$ (nom)	nominal crystal frequency	fundamental mode	-	12	-	MHz
$\mathrm{T}_{\text {amb }}$	ambient temperature		-20	-	+70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	-	+125	${ }^{\circ} \mathrm{C}$

Note

1. Periphery supply current is dependent on external components and I/O voltage levels.

Multi page intelligent teletext decoder
SAA5360; SAA5361

4 ORDERING INFORMATION

| TYPE NUMBER | PACKAGE | | |
| :--- | :---: | :---: | :---: | :---: |
| | NAME | DESCRIPTION | VERSION |
| SAA5360HL | LQFP100 | plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4 \mathrm{~mm}$ | SOT407-1 |
| SAA5361HL | LQFP100 | plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4 \mathrm{~mm}$ | SOT407-1 |

5 BLOCK DIAGRAM

Fig. 1 Block diagram.

Features

- Low-Voltage and Standard-Voltage Operation
$-5.0\left(\mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V}\right.$ to 5.5 V$)$
$-2.7\left(\mathrm{~V}_{\mathrm{cc}}=2.7 \mathrm{~V}\right.$ to 5.5 V$)$
$-2.5\left(\mathrm{~V}_{\mathrm{cc}}=2.5 \mathrm{~V}\right.$ to 5.5 V$)$
$-1.8\left(\mathrm{~V}_{\mathrm{cc}}=1.8 \mathrm{~V}\right.$ to 5.5 V$)$
- Low-Power Devices ($\mathrm{I}_{\mathrm{SB}}=2 \mu \mathrm{~A} @ 5.5 \mathrm{~V}$) Available
- Internally Organized $4096 \times 8,8192 \times 8$
- 2-Wire Serial Interface
- Schmitt Trigger, Filtered Inputs for Noise Suppression
- Bidirectional Data Transfer Protocol
- $100 \mathrm{kHz}(1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 2.7 \mathrm{~V})$ and 400 kHz (5V) Clock Rate
- Write Protect Pin for Hardware Data Protection
- 32-Byte Page Write Mode (Partial Page Writes Allowed)
- Self-Timed Write Cycle (10 ms max)
- High Reliability
- Endurance: 1 Million Write Cycles
- Data Retention: 100 Years
- ESD Protection: >3,000V
- Automotive Grade and Extended Temperature Devices Available
- 8-Pin JEDEC PDIP, 8-Pin JEDEC SOIC, 8 -Pin EIAJ SOIC, and 8-pin TSSOP Packages

Description

The AT24C32/64 provides 32,768/65,536 bits of serial electrically erasable and programmable read only memory (EEPROM) organized as 4096/8192 words of 8 bits each. The device's cascadable feature allows up to 8 devices to share a common 2wire bus. The device is optimized for use in many industrial and commercial applications where low power and low voltage operation are essential. The AT24C32/64 is available in space saving 8-pin JEDEC PDIP, 8-pin JEDEC SOIC, 8-pin EIAJ SOIC, and 8-pin TSSOP (AT24C64) packages and is accessed via a 2-wire serial interface. In addition, the entire family is available in $5.0 \mathrm{~V}(4.5 \mathrm{~V}$ to 5.5 V$), 2.7 \mathrm{~V}(2.7 \mathrm{~V}$ to 5.5 V$)$, $2.5 \mathrm{~V}(2.5 \mathrm{~V}$ to 5.5 V$)$ and $1.8 \mathrm{~V}(1.8 \mathrm{~V}$ to 5.5 V$)$ versions.

Pin Configurations

Pin Name	Function
A0-A2	Address Inputs
SDA	Serial Data
SCL	Serial Clock Input
WP	Write Protect

Absolute Maximum Ratings*

Operating Temperature..	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with Respect to Ground	$.-1.0 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
Maximum Operating Voltage 6.25 V
DC Output Current. 5.0 mA

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Block Diagram

Pin Description

SERIAL CLOCK (SCL): The SCL input is used to positive edge clock data into each EEPROM device and negative edge clock data out of each device.
SERIAL DATA (SDA): The SDA pin is bidirectional for serial data transfer. This pin is open-drain driven and may be wire-ORed with any number of other open-drain or open collector devices.
DEVICE/PAGE ADDRESSES (A2, A1, A0): The A2, A1 and AO pins are device address inputs that are hard wired or left not connected for hardware compatibility with AT24C16. When the pins are hardwired, as many as eight $32 \mathrm{~K} / 64 \mathrm{~K}$ devices may be addressed on a single bus system (device addressing is discussed in detail under the

Device Addressing section). When the pins are not hardwired, the default A_{2}, A_{1}, and A_{0} are zero.
WRITE PROTECT (WP): The write protect input, when tied to GND, allows normal write operations. When WP is tied high to V_{Cc}, all write operations to the upper quandrant ($8 / 16 \mathrm{~K}$ bits) of memory are inhibited. If left unconnected, WP is internally pulled down to GND.

Memory Organization

AT24C32/64, 32K/64K SERIAL EEPROM: The $32 \mathrm{~K} / 64 \mathrm{~K}$ is internally organized as 256 pages of 32 bytes each. Random word addressing requires a $12 / 13$ bit data word address.

Features

- Operating voltage:
$\mathrm{f}_{\mathrm{SYS}}=4 \mathrm{MHz}: 2.2 \mathrm{~V} \sim 5.5 \mathrm{~V}$
$\mathrm{f}_{\mathrm{SYS}}=8 \mathrm{MHz}: 3.3 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- 13 bidirectional I/O lines
- An interrupt input shared with an I/O line
- 8-bit programmable timer/event counter with overflow interrupt and 8 -stage prescaler
- On-chip crystal and RC oscillator
- Watchdog Timer
- 1024×14 program memory ROM
- 64×8 data memory RAM
- Buzzer driving pair and PFD supported
- HALT function and wake-up feature reduce power consumption
- Up to 0.5μ s instruction cycle with 8 MHz system clock at $\mathrm{V}_{D D}=5 \mathrm{~V}$
- Allinstructionsinone ortwo machinecycles
- 14-bit table read instruction
- Two-level subroutine nesting
- Bit manipulation instruction
- 63 powerful instructions
- Low voltage reset function
- 16-pin SSOP package

18-pin DIP/SOP package

General Description

The HT48R06A-1/HT48C06 are 8-bit high performance, RISC architecture microcontroller devices specifically designed for cost-effective multiple I/O control product applications. The mask version HT48C06 is fully pin and functionally compatible with the OTP version HT48R06A-1 device.

The advantages of low power consumption, I/O flexibility, timer functions, oscillator options, HALT and wake-up functions, watchdog timer, buzzer driver, as well as low cost, enhance the versatility of these devices to suit a wide range of application possibilities such as industrial control, consumer products, subsystem controllers, etc.

Block Diagram

Pin Assignment

PA3	$1^{\checkmark}{ }_{16}$	PA4
PA2	15	$\square \mathrm{PA} 5$
PA1	14	$\square \mathrm{PA6}$
PAO	13	$\square \mathrm{PA} 7$
PBO/BZ	12	\square OSC2
vss	11	\square osc1
PCo/INT	10	$\checkmark \mathrm{VDD}$
PC1/TMR	$8 \quad 9$	RES
HT48R	R06	8C06

HT48R06A-1/HT48C06

- 18 DIP-A/SOP-A

Pad Assignment

HT48C06

* The IC substrate should be connected to VSS in the PCB layout artwork.

Pad Description

Pad Name	I/O	Options	Description
PAO~PA7	I/O	Pull-high* Wake-up	Bidirectional 8-bit input/output port. Each bit can be configured as wake-up input by options. Software instructions determine the CMOS output or Schmitt trigger input with a pull-high resistor (determined by pull-high op- tions).
PB0/BZ PB1/BZ PB2	I/O	Pull-high* I/O or BZ/BZ	
Bidirectional 3-bit input/output port. Software instructions determine the			
CMOS output or Schmitt trigger input with a pull-high resistor (determined by			
pull-high options).			
The PB0 and PB1 are pin-shared with the BZ and $\overline{\text { BZ, respectively. Once the }}$			
PB0 and PB1 are selected as buzzer driving outputs, the output signals come			
from an internal PFD generator (shared with a timer/event counter).			

* All pull-high resistors are controlled by an option bit.

Absolute Maximum Ratings

Supply Voltage.	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{SS}}+6.0 \mathrm{~V}$	Storage Temperature $50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage	$. \mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	Operating Temperature....................... $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics							$\mathrm{Ta}=25^{\circ} \mathrm{C}$
Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		$V_{D D}$	Conditions				
$V_{D D}$	Operating Voltage	-	$\mathrm{f}_{\mathrm{SYS}}=4 \mathrm{MHz}$	2.2	-	5.5	V
		-	$\mathrm{f}_{\mathrm{SYS}}=8 \mathrm{MHz}$	3.3	-	5.5	V
$\mathrm{I}_{\text {D } 1}$	Operating Current (Crystal OSC)	3 V	No load, $\mathrm{f}_{\mathrm{SYS}}=4 \mathrm{MHz}$	-	0.6	1.5	mA
		5 V		-	2	4	mA
$\mathrm{I}_{\mathrm{DD} 2}$	Operating Current (RC OSC)	3 V	No load, $\mathrm{f}_{\mathrm{SYS}}=4 \mathrm{MHz}$	-	0.8	1.5	mA
		5 V		-	2.5	4	mA
$\mathrm{I}_{\text {D } 3}$	Operating Current (Crystal OSC)	5 V	No load, $\mathrm{f}_{\text {SYS }}=8 \mathrm{MHz}$	-	3	5	mA
$\mathrm{I}_{\text {StB }}$	Standby Current (WDT Enabled)	3 V	No load, system HALT	-	-	5	$\mu \mathrm{A}$
		5 V		-	-	10	$\mu \mathrm{A}$
Istb2	Standby Current (WDT Disabled)	3 V	No load, system HALT	-	-	1	$\mu \mathrm{A}$
		5 V		-	-	2	$\mu \mathrm{A}$
$V_{\text {IL1 }}$	Input Low Voltage for I/O Ports, TMR and INT	-	-	0	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
$\mathrm{V}_{1 \mathrm{H}^{\prime}}$	Input High Voltage for I/O Ports, TMR and INT	-	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
$\mathrm{V}_{\text {IL2 }}$	Input Low Voltage ($\overline{\mathrm{RES}}$)	-	-	0	-	$0.4 \mathrm{~V}_{\mathrm{DD}}$	V
V_{1+2}	Input High Voltage ($\overline{\mathrm{RES}}$)	-	-	$0.9 V_{D D}$	-	V_{DD}	V
$\mathrm{V}_{\text {LVR }}$	Low Voltage Reset	-	LVRenabled	2.7	3.0	3.3	V
lol	I/O Port Sink Current	3 V	$\mathrm{V}_{\mathrm{OL}}=0.1 \mathrm{~V}_{\mathrm{DD}}$	4	8	-	mA
		5 V		10	20	-	mA
IOH	I/O Port Source Current	3 V	$\mathrm{V}_{\mathrm{OH}}=0.9 \mathrm{~V}_{\mathrm{DD}}$	-2	-4	-	mA
		5 V		-5	-10	-	mA
R_{PH}	Pull-high Resistance	3 V	-	40	60	80	$\mathrm{k} \Omega$
		5 V	-	10	30	50	$\mathrm{k} \Omega$

MODEL : 50" HD D3.1 PDP

$1,269 \mathrm{~cm}$ (50 Inch) Wide Plasma Display Module

Quality Innovation Team

CONTENTS

1.Overview

1-1 Model Name of plasma Display
1-2 External View
1-3 Specifications

2. Precaution

2-1 Handling Precaution for Plasna Display,
2-2 Safety Precautions for Service (Handling, prevention of a electrical shock, measure against power outage, etc)
3. Name \& Function

3-1 Layout of Assemblies
3-2 Block Diagram:
3-3 Main function of Each Assembly
3-4 Product/Serial Label Location
4. Operation checking after rectification

4-1 Flow chart
4-2 Defects, Symptoms and Detective Parts
5. Disassembling / Assembling

5-1 Tools and measurement equipment
5-2 Exploded View
5-3 Disassembling \& Re-assembling

6. Operation Check after Repair Service

6-1 Check Item
6-2 Check Procedure

Formation and Specification of Module

1. Overview

1-1 Model Name of Plasma Display

MODEL : 50HD" D3.1 PDP (S50HW-XD03)

1-2 External View

【 M3 $=X$ Board $+Y$ Board + Logic Board + PSU + SUB PSU】

1-3 Points of Screw Mount
 Trouble Shooting

Blue Dot : SCREW 4X12
Red Dot: SCREW 3×10

1-4 Specifications

2. Precaution

** To prevent the risks of unit damage, electrical shock and radiation, take the following safety, service, and ESD precautions.

2-1 Handling Precautions for Plasma Display

- PDP module use high voltage that is dangerous to human. Before operating PDP, always check the dust to prevent circuit short. Be careful touching the circuit device when power is on
- PDP module is sensitive to dust and humidity. Therefore, assembling and disassembling must be done in no dust place.
- PDP module has a lot of electric devices. Service engineer must wear equipment(for example, earth ring) to prevent electric shock and working clothes to prevent electrostatic.

2-2 Safety Precautions for Service (Handling, prevention of a electrical shock, measure against power outage, etc)

(Safety Precautions)

- Before replacing a board, discharge forcibly The remaining electricity from board.
- When connecting FFC and TCPs to the module, recheck that they are perfectly connected.
- To prevent electrical shock, be careful not to touch leads during circuit operatior
- To prevent the Logic circuit from being damaged due to wrong working, do not connect/disconnect signal cables during circuit operations.
- Do thoroughly adjustment of a voltage label and voltage-insulation.
- Before reinstalling the chassis and the chassis assembly, be sure to use all protective stuffs including a nonmetal controlling handle and the covering of partitioning type.
- Caution for design change : Do not install any additional devices to the module, and do not change the electrical circuit design.
- For example: Do not insert a subsidiary audio or video connector. If you insert It, It cause danger on safety. And, If you change the design or insert, Manufactor guarantee will be not effect. .
- If any parts of wire is overheats of damaged, replace it with a new specified one immediately, and identify the cause of the problem and remove the possible dangerous factors.
- Examine carefully the cable status if it is twisted or damaged or displaced. Do not change the space between parts and circuit board. Check the cord of AC power preparing damage.
- Product Safety Mark : Some of electric or implement material have special characteristics invisible that was related on safety. In case of the parts are changed with new one, even though the Voltage and Watt is higher than before, the Safety and Protection function will be lost.
- The AC power always should be turned off, before next repair..
- Check assembly condition of screw, parts and wire arrangement after repairing. Check whether the material around the parts get damaged.
electric by ground connection, or must wear the antistatic wrist-belt and ring. (It must be operated after removing dust on it - It comes under precaution of electric shock.)
- Before handling semiconductor parts/assembly, must remove positive
- After removing ESD assembly, put on it with aluminum stuff on the conductive surface to prevent charging.
- Do not use chemical stuff using Freon. It generates positive electric that can damage ESD.
- Must use a soldering device for ground-tip when soldering or de-soldering ESD.
- Must use anti-static solder removal device. Most removal device do not have antistatic which can charge a enough positive electric enough damaging ESD.
- Before removeing the protective material from the lead of a new ESD, bring the
protective material into contact with the chassis or assembly that the ESD is to be installed on.
- When handing an unpacked ESD for replacement, do not move around too much. Moving (legs on the carpet, for example) generates enough electrostatic to damage the ESD.
- Do not take a new ESD from the protective case until the ESD is ready to be installed. Most ESD have a lead, which is easily short-circuited by conductive materials (such as conductive foam and aluminum)

No.	Code No.	Location	Name
1	LJ44-00065A	Main PUS	ASSY PCB PSU
2	LJ44-00099A	SUB-PSU	ASSY PCB SUB-PSU
3	LJ92-00949C	LOGIC-MAIN Board	ASSY PCB LOGIC MAIN
4	LJ92-00852A	X-MAIN Driving Board	ASSY PCB X MAIN
5	LJ92-00853A	Y-MAIN Driving Board	ASSY PCBY MAIN
6	LJ92-00917A	LOGIC E BUFFER Board	ASSY PCB BUFFER
7	LJ92-00918A	LOGIC F BUFFER Board	ASSY PCB BUFFER
8	LJ92-00919A	LOGIC G BUFFER Board	ASSY PCB BUFFER
9	LJ92-00920A	LOGIC H BUFFER Board	ASSY PCB BUFFER
10	LJ92-00921A	LOGIC I BUFFER Board	ASSY PCB BUFFER
11	LJ92-00922A	LOGIC J BUFFER Board	ASSY PCB BUFFER
12	LJ92-00880A	Y-BUFFER (UPPER) Board	ASSY PCB BUFFER
13	LJ92-00881A	Y-BUFFER (DOWN) Board	ASSY PCB BUFFER
14	LJ92-00959A	SUB-R	ASSY PCB BUFFER
15	LJ92-00923A	SUB-L	ASSY PCB BUFFER
16	3809-001526	LOGIC + Y-MAIN	FFC CABLE-FLAT
17	3809-001516	LOGIC + X-MAIN	FFC CABLE-FLAT
18	3809-001414	SUB R + LOGIC	FFC CABLE-FLAT
19	3809-001414	SUB L + LOGIC	FFC CABLE-FLAT
20	3809-001414	LOGIC BUF(I) + LOGIC BUF(J) (UP)	FFC CABLE-FLAT
21	3809-001415	LOGIC + LOGIC BUF(E)(Down)	FFC CABLE-FLAT
22	3809-001415	LOGIC + LOGIC BUF(F)(Down)	FFC CABLE-FLAT
23	3809-001415	LOGIC + LOGIC BUF(G)(Down)	FFC CABLE-FLAT
24	LJ39-00121A	LOGIC BUF(E) + LOGIC BUF(F)	LEAD CONNECTOR
25	LJ39-00121A	$\operatorname{LOGIC} \operatorname{BUF}(\mathrm{F})+\operatorname{LOGIC} \operatorname{BUF}(\mathrm{G})$	LEAD CONNECTOR
26	LJ39-00121A	LOGIC BUF(H) + LOGIC BUF(I)	LEAD CONNECTOR
27	LJ39-00121A	LOGIC BUF(I) + LOGIC BUF(J)	LEAD CONNECTOR
28	LJ39-00122A	Y-MAIN + LOGIC BUF(H)	LEAD CONNECTOR
29	LJ39-00122A	Y-MAIN + LOGIC BUF(E)	LEAD CONNECTOR
30	LJ39-00113A	PSU + LOGIC MAIN	LEAD CONNECTOR
31	LJ39-00118A	PSU + LOGIC BUF(E)	LEAD CONNECTOR
32	LJ39-00177A	PSU + LOGIC BUF(H)	LEAD CONNECTOR
33	LJ39-00175A	PSU + Y-MAIN	LEAD CONNECTOR
34	LJ39-00173A	PSU + X-MAIN	LEAD CONNECTOR
35	LJ39-00178A	PSU + SUB PSU	LEAD CONNECTOR

3-2 BLOCK DIAGRAM

To be Updated

3-2-2 Block Diagram for Logic circuit

Block Diagram

3-3 Main function of Each Assembly

X-main board : The X-main board generate a drive signal by switching the FET in synchronization with logic main board timing and supplies the X electrode of the panel with the drive signal through the connector.

1) Maintain voltage waveforms (including ERC)
2) Generate X rising ramp signal
3) Maintain Ve bias between Scan intervals
I. Y-main board : The Y-main board generate a drive signal by switching the FET in synchronization with the logic Main Board timing and sequentially supplies the Y electrode of the panel with the drive signal through the scan driver IC on the Y-buffer board. This board connected to the panel's Y terminal has the following main functions.
4) Maintain voltage waveforms (including ERC)
5) Generate Y-rising Falling Ramp
6) Maintain V scan bias

- Logic main board: The logic main board generates and outputs the address drive output signal and the X, Y drive signal by processing the video signals. This Board buffers the address dirve output signal and feeds it to the address drive IC (COF module)
(video signal- $X Y$ drive signal generation, frame memory circuit / address data rearrangement)
■. Logic buffer(E,F) : The logic buffer transmits data signal and control signal.
■. Y-buffer board (Upper, Lower) : The Y-buffer board consisting of the upper and lower boards supplies the Y-terminal with scan waveforms. The board comprises 8 scan driver IC's (ST microelectronics STV 7617 : 64 or 65 output pins), but 4 ICs for the SD class

■.AC Noise Filter : The AC Noise filter has function for removing noise(low Frequency) and blocking surge. It effects Safety standards(EMC,EMI)
■.TCP(Tape Carrier Package) : The TCP applies Va pulse to the address electrode and constitutes address discharge by the potential difference between the Va pulse and the pulse applied to the Y electrode. The TCP comprise 4 data driver Ics(STV7610A :96 pins output pins) 7 TCPs are required for signal scan

Voltage label

4. OPERATION CHECKING AFTER RECTIFICATION

4-1 Flow chart

* A/S Check Point *

1.Checking the voltage for each assembly

2. Judging the Logic board working or not [Vsync, 3.3V, 5V]

3. Adjusting the output signal through test points

4. Checking the panel's crack

4-1-1 No voltage output

4-1-2 NO display (operating Voltage but an image doesn't exist on Screen)
$=$ No Display is related with Y-MAIN, X-MAIN, Logic Main and so on.
This page shows you how to check the boards, and the following pages show you how to find the defective board.

Check
(1) Dip SW
(2) LED 1
(3) Fuse F2000, F2001

Replace Logic B'd

Check
(1) F5001 for Vad (5V)
(2) F5002 for Vcc (15V)
(3) F5003 for Vs (170V)

Replace Logic B'd

Check

(1) Q5007/Q502
(2) Q5011/Q50112/Q5027
(3) Q5009/Q5008/Q5030
(4) Q5013/Q5014/Q5029
(5) Q5018/Q5019/Q5028

Replace Y-B'd

Replace Y-B'd

4-1-3 Abnormal Display (Abnormal Image is on Screen. (except abnormality in Sustain or Address)
$=$ Abnormal Display is related with Y-MAIN, X-MAIN, Logic Main and so on.
This page shows you how to check the boards, and the following pages show you how to find the defective board.

4-1-4 Sustain Open (some horizontal lines don't exist on screen)

4-1-5 Sustain Short (some horizontal lines appear to be linked on Video)

4-1-6 Address Open (some vertical lines don't exist on screen)
$=$ Address Open is related with Logic Main, Logic Buffer, FFC, TCP and so on.
This page shows you how to check the boards, and the following pages show you how to find the defective board.

4-1-7 Address Short (some vertical lines appear to be linked on screen
\Rightarrow Address Short is related with Logic Main, Logic Buffer, FFC, TCP and so on.
This page shows you how to check the boards, and the following pages show you how to find the defective board.

\quad Address Open
\Rightarrow
\Rightarrow Line Short

What is the status of onen?

4-2 DEFECTS, SYMPTONS AND DETECTIVE PARTS

Condition Name	Description	Related Board
\square No Voltage Output	Operating Voltages don't exist.	PSU
\square No Display	Operating Voltages exist, but an Image doesn't exist on screen	Y-MAIN, X-MAIN, Logic Main, Cables
\square Abnormal Display	Abnormal Image(not open or short) is on screen.	Y-MAIN, X-MAIN, Logic Main
\square Sustain Open	some horizontal lines don't exist on screen	Scan Buffer, FPC of X/Y
\square Sustain Short	some horizontal lines appear to be linked on screen	Scan Buffer, FPC of X/Y
\square Address Open	some vertical lines don't exist on screen	Logic Main, Logic Buffer, FFC,TCP
\square Address Short	some vertical lines appear to be linked on screen	Logic Main, Logic Buffer ,FFC,TCP

- Defect : panel damage	- Defect: Exhaust pipe damage
Symptom : Panel crack or break. No image appears in some cause depending on the damaged parts and damage level. - Cause (1) Manufacturing: Flatness/palette pin interruption (2) Operation: overload of panel corner / careless handling (3) Panel : Flatness / assembly error	Symptom. : Crack in break if exhaust pipe an image is partially lacking or the panel noise occurs depending on the damaged parts and with the passage of time Cause: Careless panel handling

5. Disassembling / Assembling

5-1 Tools and measurement equipment

5-1-1. Tools

1) (+) type Screw Drivers : to screw the screws
2) Air Blower
3) Earth Ring
4) Small Driver : to adjust potentiometer
5) Dummy Discharge Resistor : $2.4 \mathrm{kOhm} / 10 \mathrm{~W}$

5-1-2. Measuring Equipment

1) Oscilloscope : 500 MHz sampling
2) Probe: 10:1
3) Digital Multi-meter
4) Signal Generator

5-3 Disassembling \& Re-assembling

5-3-1 Disassembling \& Re-assembling of FPC (Flexible Printed Circuit) and Y-Buffer(Upper and Lower)

1. Removal procedures

1) Full out the FPC from Connector by holding the lead of the FPC with hands.
2. Assembling Procedures

1) Push the lead of FPC with same strength until to be connected completely.

* Notice: Be careful do not get a damage on the connector pin during connecting by mistake.

5-3-2 Assembling \& Disassembling of Flat Cable Connector of X-Main Board

1. Disassembling Procedure

1) Pull out the clamp of connector.

2) Pull Flat cable out press down lightly.

3) Turn the Flat cable reversely.
2. Assembling Procedure

1) Put the Flat cable into the connector press down lightly untill locking sound ("Dack")
comes out.

5-3-3 Assembling \& Disassembling the FFC and TCP from Connector

1. Disassembling of TCP

1) Open the clamp carefully.
2) Pull the TCP out from Connector.
2. Assembling of TCP

1) Put the TCP into the Connector carefully

* Notice : TCP and Connector was connected surely.
* Notice

1) Checking whether the foreign material is on the Connector inside before assembling of TCP
2) Be careful do not get a damage on the board by ESD during handling of TCP.
3. Misassembling of TCP
1) The misassembling of TCP is the cause of defect.

4. Checking method of misassembling of TCP
1)

5. Assembling \& Disassembling of FFC

(This is the photo of the assembling of FFC)
The procedure of assembling and disassembling of FFC is the same as TCP.
5-3-4 Exchange of LBE, LBF, LBG board

(Photo 1)

(Photo 2)

1) Remove the screws in order of Center - Left Side - Right Side from heat sink and then get rid of heat sink. (Photo 1)
2) Remove the TPC, FFC and power cable from the connectors.
3) Remove all of the screws from defected board
4) Remove the defected board.
5) Replace the new board and then screw tightly.
6) Get rid of the foreign material from the connector.
7) Connect the TCP,FFC and power cable to the connector.
8) Reassemble the TCP heat sink.
9) Screw in order of Right Side - Left Side - Center (Photo 2)

If you screw too tightly, it is possible to get damage on the Driver IC of TCP.

5-3-5 Exchange YBU, YBL and YM board

1) Separate all of the FPC connector of YBU (Y-Buffer upper) and YBL (Lower). (Photo 1)
2) Separate all of the connector of CN5001 and CN5008 from Y-Main.
3) Loosen all of the screws of YBU, YBL and YM.
4) Remove the board from chassis.
5) Remove the connector of CN5006 and CN5007 among YBU, YBL and YM.
6) Remove the YBL and YBU from Y-main.
7) Replace the defected board.

8) Reassemble the YBU and YBL to the Y-Main.
9) Connect the connector of CN5006 and CN5007 among YBU, YBL and YM.
10) Arrange the board on the chassis and then screw to fix.
11) Connect the FPC and YM of panel to the connector.
12) Supply the electric power to the module and then check the waveform of board.
13) Turn off the power after the waveform is adjusted.

6. Operation Check after Repair Service

6-1 Check Item

	Check Item	Specification	Remarks
Module assemble check	TCP Assembling condition	Securely connected or tightened	
	Drive board		
	Y BUFFER		
	Logic \& Logic Buffer		
	Harness	Securely connected	
	Material Mixing	No material mixing	

6-2 Check Procedure

1) Visual check as following
a. Assembling condition of module.
b. No problem on the connection of module.
c. The grounding and easily short-circuited parts are not damaged.
2) Check the Dip Switch is setting [SW2000]
3) Turn on the power to PDP module, and then check that LED lights up and the SET is working well.
4) Check the power voltage after turn on the power, and then check the Display condition by tapping slightly the Y-FPC 2 or 3 times.
5) Check whether something wrong during Full White Pattern period.
6) If something wrong, each voltage should be set to the standard voltage by using Multi-Tester and adjusting tools.
7) Adjust the waveform, using Oscilloscope for the waveform adjusting point.
8) Check the discharge of front panel by changing the image for each pattern.
9) Check the Low-discharge, Over-discharge and panel condition by adjusting the Pattern Generator Level.
10) Discharge still remain send back to SDI

PD50HAASUSXS1-A01 AKAI R\&D USA PDP5025M

Item	Component	Description/Country Origin	Unit	Quantity
二, ELECT PART				
1	771-50AA03-01	KEY PCB ASSY	SET	1
2	771-50AA04-01	IR PECEIVE PCB ASSY	SET	1
3	771-50AA05-01	SPK JACK PCB ASSY	SET	1
4	771E50AA02-01	MAIN PCB ASSY	SET	1
5	771L50AA01-01	AUDIO PCB ASSY	SET	1
6	774M50AA02-01	MECH CHASSIS ASSY	SET	1
7	774P50AA02-01	POWER ASSY	SET	1
8	786-SPA103-02	INT. SPK ASSY	SET	1
9	E3403-004001	TUBE SUMITUBE D5.0 BLK 600V	M	0.1
10	E3421-926067	WIRE ASSY 1H2.5-2H2.5 L=200MM 31P (L	PCS	1
11	E3421-926068	WIRE ASSY 2.5 9P/11P L=190MM EMI	PCS	1
12	E3421-926069	WIRE ASSY $2.58 \mathrm{P} / 10 \mathrm{P}+4 \mathrm{P}$ L=280MM EMI	PCS	1
13	E6205-002003	DISPLAY PDP 50" SDI-V3.0 (XGA) (127	PCS	1
14	E7801-08001	PCB ASSY POWER 240	SET	1
二, MECH PART				
1	244-34B811-01	GIFT BOX HANDLE 34B8	PCS	2
2	248-46D201-01	HANDLE FOR PLASMA	PCS	2
3	263-42D101-01S	POWER LENS 42D1	PCS	1
4	269-42D101-01L	REMOTE LENS 42D1	PCS	1
5	322-42P101-01	REMOTE LENS RUBBER SPACER PDP-42TP1	PCS	1
6	322-42P102-01	POWER LENS RUBBER SPACER PDP-42TP1	PCS	1
7	322-42P103-01	SEPARATE RUBBER SPACER FOR REMOTE AN	PCS	1
8	329-064510-50	SPONGE 645X10X5.0MM W/ADHESIVE	PCS	2
9	329-115010-50	SPONGE 1150X10X5.0MM W/ADHESIVE	PCS	2
10	361-101261-01	CABLE TIE	PCS	10
11	379-42P101-01	FILTER RUBBER BAG A PDP-42TP1	PCS	6
12	379-42P103-01	FILTER RUBBER BAR C 5.5X50X3.0MM W/	PCS	6
13	$384-42 \mathrm{D} 103-08 \mathrm{H}$	PVC SHEET FOR AKAI PCB PD42HAA USA	PCS	1
14	387-50AA01-03H	MODEL PLATE AKAI ENG PDP5025M H	PCS	1
15	388-42D103-01H	CAUTION PLATE ENG 42D1 H	PCS	1
16	388-42P101-01	PC SHEET FOR REMOTE PCB 42P1 94V0	PCS	1
17	388-42SB04-01H	POWER PLATE SANSUI 42SB	PCS	1
18	388-50AA01-01H	SPEAKER L PLATE ENG (-/+)	PCS	1
19	388-50AA01-02H	SPEAKER R PLATE ENG ($-/+$)	PCS	1
20	400-50AA02-01	FRONT CABINET FOR SAMSUNG PANEL BLAC	PCS	1
21	402-50AA02-01S	BACK COVER FOR 50AD HARSPER	PCS	1
22	420-50AA01-01S	MAIN BRACKET	PCS	2
23	423-50AA01-01S	GLASS FILTER SUPPORT TOP	PCS	1
24	423-50AA02-01S	GLASS FILTER SUPPORT BOTTOM	PCS	1
25	423-50AA03-01S	GLASS FILTER SUPPORT L/R	PCS	2
26	424-50AA01-01S	POWER PCB BRACKET (A)	PCS	1
27	424-50AA02-01S	POWER PCB BRACKET(B)	PCS	1
28	429-50AAOC-01S	TERMINAL SPEAKER BRACKET	PCS	2

29	429-50AD07-01	REMOTE PCB BRACKET	PCS	1
30	429-50AD0C-01S	POWER JACK BKT	PCS	1
31	429-50AD0D-01S	SPEAKER JACK BRACKET	PCS	1
32	457-42D101-01	CLAMP ID $=4.3 \mathrm{MM} \mathrm{L=46MM}$	PCS	3
33	486-50AD01-01	NAME PLATE AKAI SIL/BLACK 50AD	PCS	1
34	553-002509-40A	EMI SHIELD GASKET 25X9X4.0MM W/CONDU	PCS	4
35	553-005009-25A	SHIELD GASKET 50X9X2.5MM W/CONDUCTIV	PCS	2
36	553-006509-40A	SHIELD GASKET 65X9X4.0MM W/CONDUCTIV	PCS	4
37	553-015009-40A	EMI SHIELD GASKET 150X9X4.0MM W/COND	PCS	10
38	553-017009-40A	EMI SHIELD GASKET 170X9X4.0MM W/COND	PCS	2
39	553-018509-40A	EMI SHIELD GASKET 185X9X4.0MM W/COND	PCS	5
40	553-020009-40A	SHIELD GASKET 200X9X4.0MM W/CONDUCTI	PCS	2
41	553-067009-40A	EMI SHIELD GASKET 670X9X4.0MM W/COND	PCS	2
42	553-114009-40A	EMI SHIELD GASKET 1140X9X4.0MM W/CON	PCS	2
43	554-090030-01	SHIELD CLOTH 90X30MM W/CONDUCTIVE AD	PCS	1
44	563-119-	SERIAL NO. LABEL	PCS	1
45	568-P46T02-02	WARNING LB ENG 42SF NIL	PCS	1
46	579-42D103-02	ON/OFF LB ENG 42D1 NIL	PCS	1
47	579-42D105-01	PROTECTIVE EARTH LABEL FOR ESA 42TD1	PCS	1
48	579-50AA01-03	BAR CODE LABEL AKAI W/SERIAL NO PDP5	PCS	2
49	579-50AA02-01	DANGER CAUTION LABEL	PCS	1
50	579-50AD02-01	SERIAL NO/BAR CODE LABEL 50HA (USA)	PCS	1
51	580-P50AAHS-MU0	L IB E FOR AKAI PD50HAA MONITOR SDI SA	PCS	1
52	590-50AA01-02	WARRANTY CARD ENG AKAI PDP5025M	PCS	1
53	593-42D101-01	INSERTION CARD AKAI PDP4216M MONITOR	PCS	1
54	599-BM0502-02	IB SHEET E OF TEARDOWN FOR BM05 (50A	PCS	1
55	601-305008-00	MACH.SCREW CTS 3X8 BZN +	PCS	2
56	602-305004-10	MACH. SCREW PAN-WASHER M3X4 NIP +H	PCS	7
57	602-305006-00	MACH. SCREW PAN-WASHER 3X6 B ZNP +H	PCS	14
58	602-305006-10	MACH.SCREW WHR 3X6 NIP +	PCS	19
59	604-601020-00	MACHINE SCREW BINDING M6X1.0PX20MM B	PCS	6
60	60D-407010-40	MACH. SCREW W/SPRING WASHER M4.0X0.7	PCS	8
61	60D-508012-40	MACH. SCREW W/SPRING WASHER M5.0X0.8	PCS	4
62	60D-801235-00	MACHINE SCREW W/SPRING WASHER M8.0X1	PCS	4
63	610-300210-00	S-TAP.SCREW RND 3X10 A BZN +	PCS	4
64	623-401812-00	TAPING SCREW B-TYPE TRUSS 4X12 B ZNP	PCS	27
65	624-302406-10	TAP SCREW B-TYPE BINDING 3.0X6 WNC +	PCS	22
66	734-BM0501-02	STAND BM05	PCS	1
67	790-002517-A1	REMOTE CONTROL 0025	PCS	1
68	844-50AA01-01	WOODEN PALLET 1418X1115X116	PCS	0.333
69	900-500101-01B	DISPLAY FILTER 50" OPTIMAX (1155X67	PCS	1
三, PACKING				
1	300-50AA01-02C	POLYFOAM TOP 50HAA	PCS	1
2	300-50AA02-02C	POLYFOAM BOTTOM 50HAA	PCS	1
3	300-50AA03-01C	POLYFOAM BM05 STAND BASE PDP50	PCS	1
4	310-111404-07V	POLYBAG 11"X14"X0.04	PCS	1
5	310-633810-02T	POLYBAG 63"X38"X1.0MM W/WARNING \&REC	PCS	1

6	$510-50 A A 03-01 \mathrm{~K}$	GIFT BOX 1418X902X370 PDP5025 AKAI (PCS	1
7	$512-50 A A 01-01$	SHEET 1418X1316	PCS	0.333
8	$518-50 \mathrm{P} 111-01 \mathrm{~K}$	BOTTOM BOX 50HAB/50HSB	PCS	1
9	E3404-157004	AC CORD UL 1.88M (YY-3/ST3 YUNBIAO)	PCS	1
10	E7301-011002	BATTERY AA R6P1.5V $<2>$	PCS	2

If you forget your V-Chip Password

- Omnipotence V-Chip Password: 5898.
- Press MENU button.
- Press Up, Down and $\mathrm{CH}+$, CH -buttons to highlight " V -Chip" Control.
- Press OK button to pop up "INPUT PASSWORD".
- Use the Number buttons (0~9) to enter the omnipotence Password 1234.
- Press Down to highlight "Password change" Control.
- Press OK button to confirm and will pop up "Password Change" item.
- Change to your familiar Password again.

Software upgrade

- Connect the RS-232C input jack to an external control device (such as a computer) and software upgrade.

Type of connector; D-Sub 9-pin male

No.	Pin name
1	No connection
2	RXD (Receive data)
3	TXD (Transmit data)
4	DTR (DTE side ready)
5	GND
6	DSR (DCE side ready)
7	RTS (Ready to send)
8	CTS (Clear to send)
9	No Connection

RS-232C configurations

Software upgrade Process

- Power Switch OFF.
- Connect the serial port of the control device to the RS-232 jack on the PDP back panel.

RS-232C connection cables are not supplied with the PDP.

- Power Switch ON. The power indicator on the front of the panel should now display red, means that the PDP is in standby mode.
- Copy the software (Flash Upgrader) to the computer.
- Open the software (Flash Upgrader.exe)
- Point "Flash" on the interface of the Flash Upgrader.exe.
- Press STANDBY button on the front panel or POWER button of Remote control, Power indicator green, the PDP is in power ON mode, software start upgrader immediately.
- Waiting for the upgrader programing, when it is finished, the PDP will auto power on.
- After the upgrader is finished, shut down the power switch, take out the RS-232C connection after the power indicator is extinguished.

Note: The computer and PDP must be keep Power ON in the software upgrade processing.

[^0]: Applied Voltage level is specified at the time when Full-White pattern is displayed on the panel.

